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Summary

1 Species distribution models (SDMs) are important tools for forecasting the potential impacts of future envi-

ronmental changes but debate remains over themost robustmodelling approaches formaking projections.

2 Suggested improvements in SDMs vary from algorithmic development through to more mechanistic model-

ling approaches.Here, we focus on the improvements that can be gained by conditioning SDMsonmore detailed

data. Specifically, we use breeding bird data from across Europe to compare the relative performances of SDMs

trained on presence–absence data and those trained on abundance data.

3 Species distribution models trained on presence–absence data, with a poor to slight fit according to Cohen’s

kappa, show an average improvement in model performance of 0�32 (SE � 0�12) when trained on abundance

data. Even those species for which models trained on presence–absence data are classified as good to excellent

show a mean improvement in Cohen’s kappa score of 0�05 (SE � 0�01) when corresponding SDMs are trained

on abundance data. This improved explanatory power is most pronounced for species of high prevalence.

4 Our results illustrate that even using coarse scale abundance data, large improvements in our ability to predict

species distributions can be achieved. Furthermore, predictions from abundance models provide a greater depth

of information with regard to population dynamics than their presence–absence model counterparts. Currently,

despite the existence of a wide variety of abundance data sets, species distribution modellers continue to rely

almost exclusively on presence–absence data to train and test SDMs.Given our findings, we advocate that, where

available, abundance data rather than presence–absence data can be used to more accurately predict the ecologi-

cal consequences of environmental change. Additionally, our findings highlight the importance of informative

baseline data sets. We therefore recommend the move towards increased collection of abundance data, even if

only coarse numerical scales of recording are possible.

Key-words: species distribution modelling, ordinal abundance data, presence–absence data,

random forests, model performance

Introduction

To determine the impacts of future climate and habitat

changes on species, ecologists increasingly use species distribu-

tionmodels (SDMs) to quantify species–environment relation-

ships (Guisan & Thuiller 2005). SDMs are now widely used

and frequently refined (Guisan & Rahbek 2011; Higgins,

O’Hara & R€omermann 2012). Nevertheless, confidence in the

predictive power of these models continues to be undermined

by conceptual, biotic and algorithmic flaws, which include

uncertainty regarding variable selection (Austin & Van Niel

2011), unrealistic model assumptions (Schroder & Seppelt

2006; Dormann 2007b) and lack of agreement over the classifi-

cation of basic concepts (Segurado & Ara�ujo 2004; Ara�ujo &

Guisan 2006; Austin 2007). As a result, ongoing debate

concerns the strengths and limitations of SDMs and potential

areas for their improvement (Araujo & Peterson 2012). Sug-

gested areas of development range from the incorporation of

land cover variables and biotic interactions, to accounting for

spatial autocorrelation (Guisan & Thuiller 2005; Ara�ujo &

Guisan 2006; Dormann 2007a; Bagchi et al. 2013) and incor-

porating biological traits (Higgins, O’Hara & R€omermann

2012). Methodological improvements may well increase the

predictive performance of SDMs (Ara�ujo & Guisan 2006;

Austin 2007). Additionally, we might consider what could be

achieved by improving the information available for training

data sets. Although the relative value of presence-only and

presence–absence data has been widely discussed (Brotons

et al. 2004; Elith et al. 2006; Pearson et al. 2006), a third, more

detailed form of data is available for many taxa in some

regions: abundance data. This may either be an index of abun-

dance, for example based on frequency of reporting rates

(Harrison & Cherry 1997), or an estimate of true population*Correspondence author: E-mail: christine.howard@durham.ac.uk
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size, such as derived from surveys accounting for detectability

(Renwick et al. 2011). In addition to providing additional

information that may be better related to conservation status

(Gregory, Noble & Custance 2004; Johnston et al. 2013),

extinction risk (O’Grady et al. 2004) and community structure

and function (Davey et al. 2012), the greater information con-

tent of abundance data could also result in models with a

greater ability to discriminate species’ range boundaries, and

to produce more accurate models of presence–absence. At

present, however, there is no indication of the magnitude of

improvements in SDMs that could be gained through using

abundance rather than presence–absence data.

Based on the assumption that local abundance is an indica-

tor of habitat quality, SDMs derived from abundance data

may reflect the importance of key demographic and environ-

mental factors such as carrying capacity (Pearce & Ferrier

2001). Van Horne (1983) cautioned against the assumption

that abundance can be used as an indicator of habitat quality,

as some environmental factors and species characteristics, such

as detectability, can reduce the probability of a positive corre-

lation between abundance and habitat quality. Nevertheless,

by using abundance data and increasing the information avail-

able to train SDMs, we may be able to improve our ability to

predict occurrence. It is therefore important to understand the

extent to which structuring presence–absence data through the

use of abundance data improves model performance in cases

where land cover and spatial autocorrelation have already

been incorporated.

A curvilinear relationship between predictive performance

of SDMs and prevalence has been widely reported in the litera-

ture (Manel, Williams & Ormerod 2001; McPherson, Jetz &

Rogers 2004; Allouche, Tsoar & Kadmon 2006), especially

when fit is assessed using the kappa statistic (Santika 2011). A

positive relationship between range size and mean abundance

has also been reported within many taxonomic groups (Brown

1984).With this inmind, wewould expect themean abundance

of low prevalence species to be uniformly low across their

range, and therefore abundance values to be little more infor-

mative than presence–absence data.Wemight therefore expect

the predictive capabilities ofmodels trained on abundance data

and models trained using presence–absence data to converge

at low levels of prevalence.

Here, we use a machine learning technique, random forests,

to model the distribution of European breeding bird atlas data

across the scale of the continent. We analyse the relative per-

formance of models trained on abundance data and those

trained on presence–absence data. Additionally, we investigate

the role of prevalence on the performance of these models to

determine whether there are limitations to any benefit associ-

ated with abundancemodelling.

Materials andmethods

DATA

Spatial abundance data were available for 345 species of European

breeding birds from the EBCC (European Bird Census Council) Atlas

of breeding birds (Hagemeijer & Blair 1997). These data record a loga-

rithmically scaled, categorical estimate of the abundance of each species

across a 50 9 50 km Universal Transverse Mercator (UTM) grid,

mostly representing the period from 1985 to 1988 (data for a few areas

were drawn from slightly earlier/later censuses). Population size esti-

mates are based on a 7-point scale, including 6 logarithmically scaled

categories (1–9, 10–99, 100–999, 1000–9999, 10 000–99 999, ≥100 000

breeding pairs) and 0. These categorical abundance data were simpli-

fied to presence–absence data to enable a comparison of the perfor-

mance of SDMs trained on the two types of data.

ENVIRONMENTAL VARIABLES

Bioclimatic variables were derived from a global compilation (New,

Hulme & Jones 1999) for the 30-year period 1961–1990. This consisted

of four bioclimatic variables: mean temperature of the warmest month

(MTWM), mean temperature of the coldest month (MTCO), growing

degree days above 5° (GDD5) and the annual ratio of actual to poten-

tial evapotransipration (APET). These variables were calculated at the

same resolution as the species data, using the formulation in Prentice

et al. (1992). The specific bioclimatic variables were chosen because all

have been shown to describe both the range extents (Thuiller, Araujo &

Lavorel 2004;Huntley et al. 2007;Doswald et al. 2009) and abundance

patterns (Green et al. 2008;Gregory et al. 2009) of European birds.

Land cover variables were derived from the Pan-European Land

Cover (PELCOM) 1-km resolution data base (Mucher et al. 2000).

These data were aggregated to provide percentage coverage at the same

resolution as the species data. In total, eight land cover classifications

were used: forest, grassland, urban, arable, wetland, coastal, shrub

land,marine and barren.

STATIST ICAL MODELL ING

Random forest (RF) models were used to model species’ distributions

fromboth the abundance and the presence–absence data. Thismachine

learning technique is a bootstrap-based classification and regression

trees (CART) method (Cutler et al. 2007). Here, to account for a high

degree of correlation between climatic covariates (with Pearson’s r

ranging between 0�61 and 0�9) and the potential for biased variable

selection, we use the party package in R, which uses a RF implementa-

tion based on a conditional inference framework (Hothorn, Hornik &

Zeileis 2006a,b; Strobl, Hothorn & Zeileis 2009; R Development Core

Team 2012). As with other classificationmethods, RFs draw bootstrap

samples and a subset of predictors to construct multiple classification

trees (Prasad, Iverson & Liaw 2006). The classification trees find opti-

mal binary splits in the selected covariates to partition the sample recur-

sively into increasingly homogenous areas with respect to the class

variable (Cutler et al. 2007). Under the conditional inference frame-

work, unbiased variable selection is achieved by using a linear statistic

to test the relationship between covariate and response, selecting the co-

variate with the minimum P-value. This linear statistic is also used to

optimize the binary split into each homogenous area (Hothorn,Hornik

& Zeileis 2006a,b; Strobl, Hothorn & Zeileis 2009). In the case of ordi-

nal response variables, a score vector reflecting the ‘distances’ between

class levels is combined linearly with the linear statistic altering both the

selection and binary splitting of variables according to the scale of the

ordinal response data (Hothorn, Hornik&Zeileis 2006b).

Random forests make few assumptions about the distribution of

variables, are robust to over-fitting and are widely recognized to pro-

duce good predictive models (Breiman 2001; Liaw & Wiener 2002;

Prasad, Iverson & Liaw 2006). These models typically outperform
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traditional regression-based approaches to species distribution model-

ling and are ideal for modelling categorical and ordinal data (Lawler

et al. 2006; Magness, Huettmann & Morton 2008; Marmion et al.

2009). More established approaches to ordinal data modelling include

proportional odds and continuation ratio ordinal regression models

(Guisan&Harrell 2000). However, thesemodels have limiting assump-

tions, such as parallelism between classes, and lack the flexibility to

identify nonlinear, context-dependent relationships among predictor

variables (De’ath &Fabricius 2000; Olden, Lawler & Poff 2008; Strobl,

Malley&Tutz 2009).

To account for spatial autocorrelation, we included ameasure of the

surrounding abundance of conspecifics in the first-order neighbouring

UTM grid cells (Segurado, Araujo & Kunin 2006) as a spatial autoco-

variate (SAC). This term accounts for the greater degree of similarity

between more proximate samples, which arises through distance-

related biological process and spatially structured environmental

processes (Dormann et al. 2007). We account for potential spatial

autocorrelation in our abundance-based models by calculating an indi-

cator of surrounding abundance for each UTM grid cell, using the fol-

lowing equation:

L ¼ log10
1

n
Rn
i

1

2
10Ai

� �
eqn 1

whereL = surrounding local abundance, n = number of adjacent cells,

A = categorical abundance, i = abundance category index. The log-

scaled abundance categories in the adjacent cells are back-transformed

to the mid-points of the relevant categories; these are averaged and re-

transformed to the log scale. For models based on presence–absence

data, the spatial autocovariate used the same equation, except that the

abundance categories (Ai) were converted to binary (presence–absence)

data. Models were fitted using 10-fold cross-validation to reduce SAC

between training and test data and to minimize overfitting. We used

correlograms to compare autocorrelation in the model residuals with

autocorrelation present in the raw data. Correlograms plot a measure

of spatial autocorrelation, Moran’s I (Moran 1950), between grid cells

as a function of the distance between them (Fortin & Dale. 2005;

Dormann et al. 2007; Kissling & Carl 2008). A value of zero of

Moran’s I for within model residuals indicates an absence of spatial

autocorrelation. Therefore, a significant deviation from zero suggests

that the model is not adequately accounting for spatial autocorrelation

(Dormann et al. 2007). Here, we note that all of our models showed

substantial reductions in residual spatial autocorrelation when com-

pared to that present in the raw data (see Fig. S1). R code to implement

species abundance and distribution modelling using the party package,

along with code to calculate the spatial autocovariate term is available

in the Supporting Information.

Predictions of the probability of a species occurring at each abun-

dance class were based on the number of votes for each class from the

1000 classifiers that comprised each forest (Robnik-Sikonja 2004). Pre-

dicted probability across the abundance classes are summed to give a

predicted probability of occurrence, whilst predicted ordinal abun-

dance is based on the class with the majority vote. Ordinal predictions

from the distribution model based on abundance data were converted

to presence–absence data to enable a direct comparison to recorded

presence–absence data.

Model fits of simulated presence–absences derived from the abun-

dance (after conversion to presence–absence data) and presence–

absence models to observe presence–absence data were assessed using

three methods, which includedmeasures of bothmodel calibration and

discrimination. We used two measures of discrimination, which indi-

cate the ability of a model to discriminate between species presence and

absence. First, the kappa statistic measures model accuracy whilst

correcting for accuracy expected to occur by chance (Cohen 1960); we

used this on the simulated occurrences from the cross-validated data

sets. Kappa is the most widely used measure of discrimination and per-

formance for presence–absence models (Manel, Williams & Ormerod

2001; Pearson, Dawson & Liu 2004; Segurado & Ara�ujo 2004; Allou-

che, Tsoar & Kadmon 2006) but is criticized for being inherently

dependent on prevalence and the often arbitrary choice of threshold

value (Allouche, Tsoar & Kadmon 2006; Freeman & Moisen 2008).

Our second measure of discrimination therefore was a threshold-inde-

pendent measure of model performance, the area under the receiver

operating characteristic (ROC) curve (AUC) (Manel, Williams &

Ormerod 2001; Thuiller 2003; Brotons et al. 2004).

As a measure of model calibration, we used calibration curves to

assess agreement between the logits of the predicted probabilities and

the observed proportions of occurrence in the test data (Zurell et al.

2009). The slope and intercept of this regression can provide a mea-

sure of model bias and spread (Pearce & Ferrier 2000). Model bias is

the systematic over- or under-estimation of the probability of occur-

rence across the range of a species and results in an upwards or

downwards shift of the regression line, causing the intercept to devi-

ate from zero (Reineking & Schr€oder 2006). The slope of the regres-

sion line, fitted to the predicted and observed values on x and y logit

axes, respectively, indicates the spread of the data. If predicted values

lower than 0�5 overestimate the probability of occurrence whilst pre-

dicted values >0�5 underestimate the probability of occurrence, the

slope of the regression line will be greater than one. Conversely, a

gradient of less than one indicates that predicted values lower than

0�5 are underestimating the probability of occurrence, whilst pre-

dicted values >0�5 overestimate the probability of occurrence (Pearce

& Ferrier 2000). A perfectly calibrated model will have an intercept

of zero and a slope of one (Reineking & Schr€oder 2006; Zurell et al.

2009; Vorpahl et al. 2012).

We used a paired t-test on logit-transformed data to assess differ-

ences between the predictive performances, according to kappa, of

models trained on each data set. The effect of prevalence (the propor-

tion of presences out of 2813 cells) on predictive accuracy was assessed

using a generalised additive model (GAM), after controlling for species

(to account for the paired nature of the data set). The model was fitted

with a binomial error structure with a logit link and included species as

a random effect, using the mgcv package in R (Wood 2011; RDevelop-

ment Core Team2012).

Results

Models trained on abundance data, and later converted to

presence–absence predictions, were significantly more discrim-

inating than models trained on presence–absence data

(Fig. 1a,b; paired t-tests, kappa t344 = 13�23, P < 0�01, AUC

t344 = 3�72, P < 0�01). Measures of model calibration also

showed improved performance in the models trained on abun-

dance data, when compared with models trained on presence–

absence data. The measures of the intercept of the calibration

curve were significantly different between the two models

(t344 = 3�88,P < 0�01), with 74% of abundance models having

an intercept closer to zero than their presence–absence trained

counterpart. This significant difference is also true for the slope

of the model calibration curves (t344 = 3�33,P < 0�01) with the

slopes of the calibration curves from 76%of models showing a

greater tendency towards 1 when trained with abundance data

rather than presence–absence data. Furthermore, models
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trained on abundance data generally fitted the observed abun-

dance data well with a mean weighted Cohen’s kappa score

(Landis & Koch 1977) of 0�73 (SE � 0�01; Fig. 2). The

magnitude of the improvement in model performance associ-

ated with abundance-trained models varied with the perfor-

mance of the presence–absence data trained model (Fig. 3).

For presence–absence data trainedmodels with a poor to slight

rating kappa score (i.e. <0�2) (Landis & Koch 1977), mean

kappa improved by 0�32 (SE � 0�12). Unsurprisingly, the

magnitude of benefit declinedwith the fit of the original model,

with minimal improvements among presence–absence data

trained models that rated as almost perfect (i.e. with a kappa

score >0�8).
Improvements in model accuracy resulting from the use of

abundance data depended on the metric of model accuracy

used. When that metric was kappa, improvements were most

marked for models that had performed poorly when presence–

absence data were used (Fig. 3). Poorer performing presence–

absence models tended to be those associated with high or low

prevalence species (Fig. 4). Indeed, when kappa was used as

the metric of model accuracy, a GAM showed that prevalence

had a significant quadratic effect on model accuracy (z = 2�55,
P = 0�01, z = 1�38, P = 0�17) and that the modelling method

was also a significant categorical explanator (z = 2�317,
P = 0�02). There was amarginally significant but weak interac-

tion between prevalence and modelling method (z = 0�18,
P = 0�85, z = 2�02, P = 0�04; Fig. 4). By contrast, when AUC

was used as the metric of model accuracy, improvements

owing to the use of abundance data were unrelated to both

prevalence and the fit of the equivalent presence–absence

model.

Discussion

Here, we demonstrate the significant improvements in the

accuracy of SDMs that can be achieved from using abun-

dance data to train species distribution models. By including

measures of abundance, we derive a more accurate assessment

of the relative suitability of habitats, thereby improving

predictive performance. A lack of differentiation between

low- and high-quality habitats may lead to model bias in the

presence–absence trained models. For example, occurrences

(a) (b)

(c) (d)

Fig. 1. Measures of model performance for

each form of training data. (a) Cohen’s kappa,

(b) AUC, (c) Intercept of the model calibra-

tion curve and (d) slope of the model calibra-

tion curve (n = 345). Notches indicate the

95% confidence intervals of the median, with

a lack of overlap indicating a significant differ-

ence at the 5% level.
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Fig. 2. Abundance predictions from abun-

dance data trained models. Bars represent the

mean proportion of predictions for each abun-

dance class averaged across all species. N val-

ues indicate number of observed cells within

each abundance class.
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in low-quality, wide-ranging habitats will outweigh records

from high-quality, scarce habitats. Due to the large number of

observations, the relative importance of these low-quality

habitats will be over-weighted in models trained on presence–

absence data (Brotons et al. 2004).

We also show a hump-shaped relationship between species

prevalence and model predictive accuracy. A variety of

hypotheses on the causal factor behind this association already

exist in the literature (Segurado & Ara�ujo 2004; Allouche,

Tsoar & Kadmon 2006; Santika 2011). Here, however, the

interacting effects of method and prevalence on model perfor-

mance are of greater interest. The marginal interaction shows

that models built using abundance data generally outperform

those built with presence–absence data, particularly for species

with low prevalence. This contrasts with expectations based on

the positive relationship between range size and local abun-

dance (Brown 1984), which suggest that model performance

would converge at low prevalence, owing to the relative lack of

differentiation between presence–absence and abundance data

(Brotons et al. 2004).

Our results suggest that models trained on abundance data

are better able to identify the relative suitability of habitats,

than those trained on presence–absence data. The question

naturally arises: what biological explanations could underlie

this finding? The relationship between environmental suitabil-

ity and abundance has been widely discussed (Pearce & Ferrier

2001; Nielsen et al. 2005). Indeed, VanDerWal et al. (2009)

demonstrated that spatial patterns of abundance could be pre-

dicted using habitat suitability inferred from models based on

presence–absence data alone. Using models based on abun-

dance data (rather than presence–absence data), the relative

suitability of habitats can bemodelled with even greater refine-

ment. This is because information about the suitability of habi-

tats is lost when treating all presences as equal, regardless of

the abundance of individuals that the habitat supports. By con-

sidering abundance, presences – which are uninformative in

presence-absence modelling – gain structure, improving the

models’ ability to discriminate between fine-scale differences in

habitat quality. This could be particularly pronounced in situa-

tions inwhich the presence of a species is determined by habitat

features that occur at a finer scale than that at which the model

is fitted (Brotons et al. 2004). For instance, microclimates

within a cell may render small patches of that cell suitable for

low numbers of individuals, even where the mean climate of

the cell is unsuitable; presence–absence data alone would sug-

gest that the mean climate of that cell is as suitable as that of a

cell with suitable climate throughout. Additionally, this

increased level of model refinement and ability to discriminate

between finer scale differences in habitat quality may prove

beneficial when using the model to project across alternative

regions or time periods.

Our results suggest that even coarse scale abundance data

can deliver large improvements in predicting spatial patterns

of occurrence. With this in mind, why are spatial distribution

modellers not driving the collection of abundance data?

Gibbons et al. (2007), suggested that collecting abundance

data for bird atlases is no more costly or resource demanding

than collecting presence–absence data. Abundance data also

provide valuable baselines against which to assess future

changes (Cumming 2007). Changes in abundance will be much

more rapidly apparent, and hence more rapidly detected, than

changes in presence–absence patterns across ranges (which are

dependent upon colonization and extinction events) (Gregory

et al. 2005). Furthermore, categorical abundance data allow

for the use of new and more informative modelling techniques

such as density structured models and dynamic range model-

ling (Keith et al. 2008; Zurell et al. 2012; Mieszkowska et al.

2013). By integrating demographic data with range dynamics,

these models aim to reduce bias in future range projections
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(Pagel & Schurr 2012; Schurr et al. 2012). Additionally, exist-

ing methods for modelling ordinal data, such as proportional

odds models, are being improved by integration with boosting

approaches. These algorithms improve prediction accuracy

and avoid the overfitting problems associated with a maxi-

mum-likelihood approach (Schmid et al. 2011; H€aring et al.

2013). By including population dynamics, dynamic SDMs

allow for the temporal aspects of a species’ distribution to be

investigated, including future abundance trends and species

persistence. This in turn allows for a detailed assessment of the

long-termvalue of a site for species conservation. It is clear that

not only can abundance data trained models predict the distri-

bution of a species with a greater degree of accuracy, but that

the information provided by these models is much richer than

those predictions provided by distributionmodelling.

Currently, many global data sets already contain measures

of the local abundance of species (Robertson, Cumming &

Erasmus 2010). Aside fromperiodic atlases,many of these pro-

vide annually repeated census data across a broad range of

taxa including butterflies (Pollard & Yates 1993), birds (Sauer

et al. 2012), vascular plants (Preston, Pearman & Dines 2002)

and plankton (Barnard et al. 2004). Despite this array of data,

species distribution modellers continue to use presence–

absence data to train and test SDMs, choosing to focus on

methodological development to enhance model performance

(Guisan & Thuiller 2005; Ara�ujo & Guisan 2006; Elith et al.

2006; Pearson et al. 2006; Higgins, O’Hara & R€omermann

2012). To our knowledge, only two papers have attempted to

use these abundance data to model species’ abundance at a

large scale (Renwick et al. 2011; Johnston et al. 2013), yet

here, we show that relatively slight increases in the information

content of a training data set (the change from binary pres-

ence–absence data to a log-scaled set of seven abundance cate-

gories) result in significant improvements in model

performance. Given this improvement in model accuracy,

combined with the creation of better baseline data sets, where

existing abundance data are available, we advocate the use of

abundance models as tools to predict the ecological conse-

quences of environmental change. Where such data do not

exist, we recommend that abundance data be collected along-

side presence–absence data because, even if only relatively

coarse numerical scales of recording are possible, the benefits

are considerable.
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Figure S1. Correlogram indicating the mean (shaded areas show stan-

dard deviation) of the correlograms across all 345 species for raw data

(black line) and for the residuals aftermodel fitting (red line).

Data S1. Example R code to implement species abundance and distri-

bution modelling using the party package, along with example code to

calculate the spatial autocovariate term.
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