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Summary:  

1. Species distribution models (SDMs) are important tools for forecasting the 

potential impacts of future environmental changes but debate remains over 

the most robust modelling approaches for making projections. 

2. Suggested improvements in SDMs vary from algorithmic development 

through to more mechanistic modelling approaches. Here, we focus on the 

improvements that can be gained by conditioning SDMs on more detailed 

data.  Specifically, we use breeding bird data from across Europe to compare 

the relative performances of SDMs trained on presence-absence data and 

those trained on abundance data.  

3. SDMs trained on presence-absence data, with a poor to slight fit according to 

Cohen’s kappa, show an average improvement in model performance of 0.32 

(se ±0.12)  when trained on abundance data. Even those species for which 

models trained on presence-absence data are classified as good to excellent 

show a mean improvement in Cohen’s kappa score of 0.05 (se ±0.01)  when 

corresponding SDMs are trained on abundance data. This improved 

explanatory power is most pronounced for species of high prevalence. 

4. Our results illustrate that even using coarse scale abundance data, large 

improvements in our ability to predict species distributions can be achieved. 

Furthermore, predictions from abundance models provide a greater depth of A
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information with regard to population dynamics than their presence-absence 

model counterparts. Currently, despite the existence of a wide variety of 

abundance data sets, species distribution modellers continue to rely almost 

exclusively on presence-absence data to train and test SDMs. Given our 

findings, we advocate that, where available, abundance data rather than 

presence-absence data can be used to more accurately predict the ecological 

consequences of environmental change. Additionally, our findings highlight 

the importance of informative baseline data sets. We therefore recommend 

the move towards increased collection of abundance data, even if only coarse 

numerical scales of recording are possible. 

 

Key words: 

Species distribution modelling, ordinal abundance data, presence-absence data, 

random forests, model performance 

Introduction 

To determine the impacts of future climate and habitat changes on species, 

ecologists increasingly use species distribution models (SDMs) to quantify species-

environment relationships (Guisan & Thuiller 2005). SDMs are now widely used and 

frequently refined (Guisan & Rahbek 2011; Higgins, O'Hara & Römermann 2012). 

Nevertheless, confidence in the predictive power of these models continues to be 

undermined by conceptual, biotic and algorithmic flaws, which include uncertainty 

regarding variable selection (Austin & Van Niel 2011), unrealistic model assumptions 

(Schroder & Seppelt 2006; Dormann 2007b), and lack of agreement over the A
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classification of basic concepts (Segurado & Araújo 2004; Araújo & Guisan 2006; 

Austin 2007). As a result, ongoing debate concerns the strengths and limitations of 

SDMs and potential areas for their improvement (Araujo & Peterson 2012). 

Suggested areas of development range from the incorporation of land cover 

variables and biotic interactions, to accounting for spatial autocorrelation (Guisan & 

Thuiller 2005; Araújo & Guisan 2006; Dormann 2007a; Bagchi et al. 2013) and 

incorporating biological traits (Higgins, O'Hara & Römermann 2012). Methodological 

improvements may well increase the predictive performance of SDMs (Araújo & 

Guisan 2006; Austin 2007). Additionally, we might consider what could be achieved 

by improving the information available for training data sets. Although the relative 

value of presence-only and presence-absence data has been widely discussed 

(Brotons et al. 2004; Elith et al. 2006; Pearson et al. 2006), a third, more detailed 

form of data is available for many taxa in some regions: abundance data. This may 

either be an index of abundance, for example based on frequency of reporting rates 

(Harrison & Cherry 1997) , or an estimate of true population size ,such as derived 

from surveys accounting for detectability (Renwick et al. 2011). In addition to 

providing additional information that may be better related to conservation status 

(Gregory, Noble & Custance 2004; Johnston et al. 2013), extinction risk (O'Grady et 

al. 2004) and community structure and function (Davey et al. 2012), the greater 

information content of abundance data could also result in models with a greater 

ability to discriminate species’ range boundaries, and to produce more accurate 

models of presence-absence. At present, however, there is no indication of the 

magnitude of improvements in SDMs that could be gained through using abundance 

rather than presence-absence data.  
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Based on the assumption that local abundance is an indicator of habitat quality, 

SDMs derived from abundance data may reflect the importance of key demographic 

and environmental factors such as carrying capacity (Pearce & Ferrier 2001). Van 

Horne (1983) cautioned against the assumption that abundance can be used as an 

indicator of habitat quality, as some environmental factors and species 

characteristics, such detectability, can reduce the probability of a positive correlation 

between abundance and habitat quality. Nevertheless, by using abundance data and 

increasing the information available to train SDMs, we may be able to improve our 

ability to predict occurrence. It is therefore important to understand the extent to 

which structuring presence-absence data through the use of abundance data 

improves model performance in cases where land cover and spatial autocorrelation 

have already been incorporated.  

 

A curvilinear relationship between predictive performance of SDMs and 

prevalence has been widely reported in the literature (Manel, Williams & Ormerod 

2001; McPherson, Jetz & Rogers 2004; Allouche, Tsoar & Kadmon 2006), especially 

when fit is assessed using the kappa statistic (Santika 2011). A positive relationship 

between range size and mean abundance has also been reported within many 

taxonomic groups (Brown 1984). With this in mind, we would expect the mean 

abundance of low prevalence species to be uniformly low across their range, and 

therefore abundance values to be little more informative than presence-absence 

data. We might therefore expect the predictive capabilities of models trained on 

abundance data and models trained using presence-absence data to converge at 

low levels of prevalence. A
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Here, we use a machine learning technique, random forests, to model the 

distribution of European breeding-bird atlas data across the scale of the continent. 

We analyse the relative performance of models trained on abundance data and 

those trained on presence-absence data. Additionally, we investigate the role of 

prevalence on the performance of these models to determine if there are limitations 

to any benefit associated with abundance modelling. 

Methods 

Data 

Spatial abundance data were available for 345 species of European breeding birds 

from the EBCC (European Bird Census Council) Atlas of breeding birds (Hagemeijer 

& Blair 1997). These data record a logarithmically scaled, categorical estimate of the 

abundance of each species across a 50 x 50 km Universal Transverse Mercator 

(UTM) grid, mostly representing the period from 1985 -1988 (data for a few areas 

were drawn from slightly earlier/later censuses).  Population size estimates are 

based on a 7-point scale, including 6 logarithmically scaled categories (1-9, 10-99, 

100-999, 1000-9,999, 10,000-99,999, ≥100,000 breeding pairs) and 0. These 

categorical abundance data were simplified to presence/ absence data to enable a 

comparison of the performance of SDMs trained on the two types of data.   

Environmental variables 

Bioclimatic variables were derived from a global compilation (New, Hulme & Jones 

1999) for the 30 year period 1961-1990. This consisted of four bioclimatic variables 

(mean temperature of the warmest month (MTWM), mean temperature of the coldest 

month (MTCO), growing degree days above 5° (GDD5), and the annual ratio of A
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actual to potential evapotransipration (APET). These variables were calculated at the 

same resolution as the species data, using the formulation in Prentice et al. (1992).  

The specific bioclimatic variables were chosen because all have been shown to 

describe both the range extents (Thuiller, Araujo & Lavorel 2004; Huntley et al. 2007; 

Doswald et al. 2009) and abundance patterns (Green et al. 2008; Gregory et al. 

2009) of European birds.  

Land cover variables were derived from the Pan-European Land Cover 

(PELCOM) 1km resolution database (Mucher et al. 2000). These data were 

aggregated to provide percentage coverage at the same resolution as the species 

data. In total, eight land cover classifications were used: forest, grassland, urban, 

arable, wetland, coastal, shrub land, marine and barren.  

Statistical modelling 

Random forest (RF) models were used to model species’ distributions from both the 

abundance and the presence-absence data. This machine learning technique is a 

bootstrap based classification and regression trees (CART) method (Cutler et al. 

2007). Here, to account for  a high degree of correlation between climatic covariates 

(with Pearson’s r ranging between 0.61 and 0.9) and the potential for biased variable 

selection, we use the party package in R, which uses a random forest 

implementation based on a conditional inference framework (Hothorn, Hornik & 

Zeileis 2006a; Hothorn, Hornik & Zeileis 2006b; Strobl, Hothorn & Zeileis 2009; R 

Development Core Team 2012).  As with other classification methods, random 

forests draw bootstrap samples and a subset of predictors to construct multiple 

classification trees (Prasad, Iverson & Liaw 2006). The classification trees find 

optimal binary splits in the selected covariates to partition the sample recursively into A
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increasingly homogenous areas with respect to the class variable (Cutler et al. 

2007). Under the conditional inference framework, unbiased variable selection is 

achieved by using a linear statistic to test the relationship between covariate and 

response, selecting the covariate with the minimum P-value. This linear statistic is 

also used to optimise the binary split into each homogenous area (Hothorn, Hornik & 

Zeileis 2006a; Hothorn, Hornik & Zeileis 2006b; Strobl, Hothorn & Zeileis 2009). In 

the case of ordinal response variables, a score vector reflecting the ‘distances’ 

between class levels is combined linearly with the linear statistic altering both the 

selection and binary splitting of variables according to the scale of the ordinal 

response data (Hothorn, Hornik & Zeileis 2006b).  

Random forests make few assumptions about the distribution of variables, are 

robust to over-fitting, and are widely recognised to produce good predictive models 

(Breiman 2001; Liaw & Wiener 2002; Prasad, Iverson & Liaw 2006). These models 

typically outperform traditional regression based approaches to species distribution 

modelling and are ideal for modelling categorical and ordinal data (Lawler et al. 

2006; Magness, Huettmann & Morton 2008; Marmion et al. 2009).  More established 

approaches to ordinal data modelling include proportional odds and continuation 

ratio ordinal regression models (Guisan & Harrell 2000). However these models 

have limiting assumptions, such as parallelism between classes, and lack the 

flexibility to identify non-linear, context dependent relationships amongst predictor 

variables (De'ath & Fabricius 2000; Olden, Lawler & Poff 2008; Strobl, Malley & Tutz 

2009).  

To account for spatial autocorrelation we included a measure of the 

surrounding abundance of conspecifics in the first order neighbouring UTM grid cells 

(Segurado, Araujo & Kunin 2006) as a spatial auto-covariate (SAC). This term A
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accounts for the greater degree of similarity between more proximate samples, that 

arises through distance-related biological process and spatially structured 

environmental processes (Dormann et al. 2007). We account for potential spatial 

autocorrelation in our abundance-based models by calculating an indicator of 

surrounding abundance for each UTM grid cell, using the following equation:  

        (1)  

where: L= surrounding local abundance, n= number of adjacent cells, A= categorical 

abundance, i= abundance category index. The log scaled abundance categories in 

the adjacent cells are back transformed to the mid-points of the relevant categories; 

these are averaged and re-transformed to the log scale. For models based on 

presence-absence data, the spatial autocovariate used the same equation, except 

that the abundance categories (Ai) were converted to binary (presence-absence) 

data. Models were fitted using ten-fold cross validation to reduce SAC between 

training and test data and to minimise over-fitting. We used correlograms to compare 

autocorrelation in the model residuals with autocorrelation present in the raw data. 

Correlograms plot a measure of spatial autocorrelation, Moran’s I (Moran 1950), 

between grid cells as a function of the distance between them (Fortin & Dale. 2005; 

Dormann et al. 2007; Kissling & Carl 2008). A value of zero of Moran’s I for within 

model residuals indicates an absence of spatial autocorrelation. Therefore, a 

significant deviation from zero suggests that the model is not adequately accounting 

for spatial autocorrelation (Dormann et al. 2007). Here, we note that all of our models 

showed substantial reductions in residual spatial autocorrelation when compared to 

that present in the raw data (see supporting information figure s1). R code to 

implement species abundance and distribution modelling using the party package, A
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along with code to calculate the spatial autocovariate term is available in the 

supporting information. 

Predictions of the probability of a species occurring at each abundance class 

were based on the number of votes for each class from the 1000 classifiers that 

comprised each forest (Robnik-Sikonja 2004). Predicted probability across the 

abundance classes are summed to give a predicted probability of occurrence, whilst 

predicted ordinal abundance are based on the class with the majority vote. Ordinal 

predictions from the distribution model based on abundance data were converted to 

presence-absence data to enable a direct comparison to recorded presence-

absence data. 

 Model fits of simulated presence-absences derived from the abundance (after 

conversion to presence-absence data) and presence-absence models to observed 

presence-absence data were assessed using three methods, which included 

measures of both model calibration and discrimination. We used two measures of 

discrimination, which indicate the ability of a model to discriminate between species 

presence and absence. First, the kappa statistic measures model accuracy whilst 

correcting for accuracy expected to occur by chance (Cohen 1960); we used this on 

the simulated occurrences from the cross validated datasets. Kappa is the most 

widely used measure of discrimination and performance for presence-absence 

models (Manel, Williams & Ormerod 2001; Pearson, Dawson & Liu 2004; Segurado 

& Araújo 2004; Allouche, Tsoar & Kadmon 2006) but is criticised for being inherently 

dependent on prevalence and the often arbitrary choice of threshold value (Allouche, 

Tsoar & Kadmon 2006; Freeman & Moisen 2008). Our second measure of 

discrimination, therefore, was a threshold independent measure of model A
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performance, the area under the receiver operating characteristic (ROC) curve 

(AUC) (Manel, Williams & Ormerod 2001; Thuiller 2003; Brotons et al. 2004). 

As a measure of model calibration, we used calibration curves to assess 

agreement between the logits of the predicted probabilities and the observed 

proportions of occurrence in the test data (Zurell et al. 2009). The slope and intercept 

of this regression can provide a measure of model bias and spread (Pearce & Ferrier 

2000). Model bias is the systematic over- or under- estimation of the probability of 

occurrence across the range of a species and results in an upwards or downwards 

shift of the regression line, causing the intercept to deviate from zero (Reineking & 

der 2006). The slope of the regression line, fitted to the predicted and observed 

values on x and y logit axes respectively, indicates the spread of the data. If 

predicted values lower than 0.5 overestimate the probability of occurrence whilst 

predicted values greater than 0.5 underestimate the probability of occurrence the 

slope of the regression line will be greater than one. Conversely a gradient of less 

than one indicates that predicted values lower than 0.5 are underestimating the 

probability of occurrence, whilst predicted values greater than 0.5 overestimate the 

probability of occurrence (Pearce & Ferrier 2000). A perfectly calibrated model will 

have an intercept of zero and a slope of one (Reineking & der 2006; Zurell et al. 

2009; Vorpahl et al. 2012).  

We used a paired t-test on logit-transformed data to assess differences 

between the predictive performances, according to kappa, of models trained on each 

data set. The effect of prevalence (the proportion of presences out of 2813 cells) on 

predictive accuracy was assessed using a GAM, after controlling for species (to 

account for the paired nature of the data set). The model was fitted with a binomial A
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error structure with a logit link and included species as a random effect, using the 

mgcv package in R (Wood 2011; R Development Core Team 2012).  

Results 

Models trained on abundance data, and later converted to presence-absence 

predictions, were significantly more discriminating than models trained on presence-

absence data (Figure 1 a and b; paired t-tests, kappa t344=13.23, p<0.01, AUC t344= 

3.72, p<0.01). Measures of model calibration also showed improved performance in 

the models trained on abundance data, when compared with models trained on 

presence-absence data. The measures of the intercept of the calibration curve were 

significantly different between the two models (t344= 3.88, p<0.01), with 74% of 

abundance models having an intercept closer to zero than their presence-absence 

trained counterpart. This significant difference is also true for the slope of the model 

calibration curves (t344= 3.33, p<0.01) with the slopes of the calibration curves from 

76% of models showing a greater tendency towards 1 when trained with abundance 

data rather than presence-absence data. Furthermore, models trained on abundance 

data generally fitted the observed abundance data well with a mean weighted 

Cohen’s kappa score (Landis & Koch 1977) of  0.73 (se ± 0.01) (figure 2). The 

magnitude of the improvement in model performance associated with abundance-

trained models varied with the performance of the presence-absence data trained 

model (Figure 3). For presence-absence data trained models with a poor to slight 

rating kappa score (i.e. less than 0.2) (Landis & Koch 1977), mean kappa improved 

by 0.32 (se ± 0.12). Unsurprisingly, the magnitude of benefit declined with the fit of 

the original model, with minimal improvements among presence-absence data 

trained models that rated as almost perfect (i.e. with a kappa score greater than 0.8).  A
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Improvements in model accuracy resulting from the use of abundance data 

depended on the metric of model accuracy used. When that metric was kappa, 

improvements were most marked for models that had performed poorly when 

presence-absence data were used (Fig. 3).  Poorer performing presence-absence 

models tended to be those associated with high or low prevalence species (Fig. 4). 

Indeed, when kappa was used as the metric of model accuracy, a GAM showed that 

prevalence had a significant quadratic effect on model accuracy (z=2.55, p=0.01, 

z=1.38, p=0.17), and that the modelling method was also a significant categorical 

explanator (z=2.317, p=0.02).  There was a marginally significant but weak 

interaction between prevalence and modelling method (z=0.18, p=0.85, z=2.02, 

p=0.04; Fig. 4). By contrast, when AUC was used as the metric of model accuracy, 

improvements owing to the use of abundance data were unrelated to both 

prevalence and the fit of the equivalent presence-absence model. 

Discussion 

Here we demonstrate the significant improvements in the accuracy of SDMs that can 

be achieved from using abundance data to train species distribution models. By 

including measures of abundance we derive a more accurate assessment of the 

relative suitability of habitats, thereby improving predictive performance. A lack of 

differentiation between low and high quality habitats may lead to model bias in the 

presence-absence trained models. For example, occurrences in low quality, wide-

ranging habitats will outweigh records from high quality, scarce habitats. Due to the 

large number of observations, the relative importance of these low quality habitats 

will be over-weighted in models trained on presence-absence data (Brotons et al. 

2004).  A
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We also show a hump-shaped relationship between species prevalence and 

model predictive accuracy. A variety of hypotheses on the causal factor behind this 

association already exist in the literature (Segurado & Araújo 2004; Allouche, Tsoar 

& Kadmon 2006; Santika 2011). Here, however, the interacting effects of method 

and prevalence on model performance are of greater interest. The marginal 

interaction shows that models built using abundance data generally outperform those 

built with presence-absence data, particularly for species with low prevalence. This 

contrasts with expectations based on the positive relationship between range size 

and local abundance (Brown 1984), which suggest that model performance would 

converge at low prevalence, owing to the relative lack of differentiation between 

presence-absence and abundance data (Brotons et al. 2004). 

 

Our results suggest that models trained on abundance data are better able to 

identify the relative suitability of habitats, than those trained on presence-absence 

data. The question naturally arises: what biological explanations could underlie this 

finding? The relationship between environmental suitability and abundance has been 

widely discussed (Pearce & Ferrier 2001; Nielsen et al. 2005). Indeed, VanDerWal et 

al. (2009) demonstrated that spatial patterns of abundance could be predicted using 

habitat suitability inferred from models based on presence-absence data alone. 

Using models based on abundance data (rather than presence-absence data), the 

relative suitability of habitats can be modelled with even greater refinement. This is 

because information about the suitability of habitats is lost when treating all 

presences as equal, regardless of the abundance of individuals that the habitat 

supports. By considering abundance, presences - which are uninformative in 

presence-absence modelling - gain structure, improving the models’ ability to A
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discriminate between fine scale differences in habitat quality. This could be 

particularly pronounced in situations in which the presence of a species is 

determined by habitat features that occur at a finer scale than that at which the 

model is fitted (Brotons et al. 2004). For instance, microclimates within a cell may 

render small patches of that cell suitable for low numbers of individuals, even where 

the mean climate of the cell is unsuitable; presence-absence data alone would 

suggest that the mean climate of that cell is as suitable as that of a cell with suitable 

climate throughout. Additionally this increased level of model refinement and ability 

to discriminate between finer scale differences in habitat quality may prove beneficial 

when using the model to project across alternative regions or time periods.  

 

Our results suggest that even coarse scale abundance data can deliver large 

improvements in predicting spatial patterns of occurrence. With this in mind, why are 

spatial distribution modellers not driving the collection of abundance data? Gibbons 

et al. (2007), suggested that collecting abundance data for bird atlases is no more 

costly or resource demanding than collecting presence-absence data. Abundance 

data also provide valuable baselines against which to assess future changes 

(Cumming 2007). Changes in abundance will be much more rapidly apparent, and 

hence more rapidly detected, than changes in presence-absence patterns across 

ranges (which are dependent upon colonisation and extinction events) (Gregory et 

al. 2005). Furthermore, categorical abundance data allow for the use of new and 

more informative modelling techniques such as density structured models and 

dynamic range modelling (Keith et al. 2008; Zurell et al. 2012; Mieszkowska et al. 

2013). By integrating demographic data with range dynamics, these models aim to 

reduce bias in future range projections (Pagel & Schurr 2012; Schurr et al. 2012). A
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Additionally, existing methods for modelling ordinal data, such as proportional odds 

models, are being improved by integration with boosting approaches. These 

algorithms improve prediction accuracy and avoid the overfitting problems 

associated with a maximum-likelihood approach (Schmid et al. 2011; Häring et al. 

2013). By including population dynamics, dynamic SDMs allow for the temporal 

aspects of a species’ distribution to be investigated, including future abundance 

trends and species persistence. This in turn allows for a detailed assessment of the 

long term value of a site for species conservation. It is clear that not only can 

abundance data trained models predict the distribution of a species with a greater 

degree of accuracy, but that the information provided by these models is much richer 

than those predictions provided by distribution modelling.  

 

Currently, many global data sets already contain measures of the  local 

abundance of species (Robertson, Cumming & Erasmus 2010). Aside from periodic 

atlases, many of these provide annually repeated census data across a broad range 

of taxa including butterflies (Pollard & Yates 1994), birds (Sauer et al. 2012) , 

vascular plants (Preston, Pearman & Dines 2002) ,and plankton (Barnard et al. 

2004). Despite this array of data, species distribution modellers continue to use 

presence-absence data to train and test SDMs, choosing to focus on methodological 

development to enhance model performance (Guisan & Thuiller 2005; Araújo & 

Guisan 2006; Elith et al. 2006; Pearson et al. 2006; Higgins, O'Hara & Römermann 

2012). To our knowledge, only two papers have attempted to use these abundance 

data to model species’ abundance at a large scale (Renwick et al. 2011; Johnston et 

al. 2013), yet here we show that relatively slight increases in the information content 

of a training data set (the change from binary presence-absence data to a log-scaled A
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set of seven abundance categories) result in significant improvements in model 

performance. Given this improvement in model accuracy, combined with the creation 

of better baseline data sets, where existing abundance data are available, we 

advocate the use of abundance models as tools to predict the ecological 

consequences of environmental change. Where such data do not exist, we 

recommend that abundance data be collected alongside presence/absence data 

because, even if only relatively coarse numerical scales of recording are possible, 

the benefits are considerable. 
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