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What is suspended sediment? 
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Suspended sediment is conventionally regarded as that sediment transported by a fluid that it 

is fine enough for turbulent eddies to outweigh settling of the particles through the fluid.  In 

rivers, this load is generally divided into suspended bed material and finer material 

introduced into the flow (particularly during storm runoff), termed the wash load (Figure 1). 

In the field of aeolian sediment transport, suspended sediment is simply classified based on 

residence time in the atmosphere (Tsoar and Pye, 1987; Figure 2).  Any such classifications, 

however, are secondary to the fundamental understanding of the mechanism by which 

suspension is achieved. Early work in the fluvial field (for a review see Graf (1971), and for 

the development of these ideas see Clifford (2008)) attributed suspension to turbulence, and 

led to the notion of a critical threshold for maintaining sediment in suspension. Specifically, 

this threshold was applied to the manner of transport of material entrained by the fluid from 

its bed, but in principle applies equally to the maintenance in suspension of material 

introduced into the fluid, for example by storm runoff into a river. Based upon qualitative 

reasoning from photographs (Prandtl, 1952), Bagnold (1966) postulated that sediment is 

maintained in suspension as a result of an asymmetry between upward and downward 

velocity components of shear turbulence that gives rise to a residual upward momentum flux.  

He argued that it is this residual upward momentum flux that resists the tendency of the 

particle to fall under gravity and supports the mass of suspended sediment.    He further 

argued that, since the movement of suspended sediment is unopposed, it travels with the same 

velocity as the fluid in which it is suspended. 

The critical condition for sediment of a particular size being maintained in suspension by a 

given fluid flow – expressed as the critical shear velocity – has been the subject of 

considerable research in the fluvial literature but rather less so in the aeolian literature.  The 

research has led to a variety of values for this critical condition (Figure 3). While for silt-

sized grains composed of quartz the differences are very small, for sand-sized grains the 
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differences in critical shear velocity range over an order of magnitude. Despite their 

numerical differences, however, all of these calculations for the critical conditions share a 

common characteristic: that they are based upon some ratio between a critical value of the 

time-averaged shear velocity u*c (m s
-1

) and a time-averaged downward particle velocity that 

is assumed to be equal to its settling velocity ws (m s
-1

).  The reasoning behind this 

assumption is that the fluid flowing around a bed particle induces a drag that is comparable to 

the resistance exerted by the fluid on a suspended particle as it settles. The use of u*c rather 

than the residual upward velocity component of shear turbulence for defining the critical 

conditions is justified by the fact that the latter varies with the former (Bagnold, 1966). In 

consequence, these equations predict that so long as the dimensionless critical threshold 

u*c/wc exceeds a critical value (k), under steady flow the sediment will remain in suspension. 

In the field of aeolian sediment transport, Owen (1964) proposed that the ratio of shear 

velocity to the particle’s weight could be used as the upper limit for parabolic saltation 

trajectories of particles in wind.  Bagnold (1966) tested the ratio u*c/wc for the critical 

conditions for suspension of particles by wind, and argued that the observed minimum size of 

dune sand provided support for the argument. Cooke et al. (1993) define k as equal to 1 for 

aeolian suspension. The situation for suspended sediment transport in air is further 

complicated by the greater range of particle densities that result from the greater degree of 

particle aggregation in air than water. 

Research on both turbulence structures and the interactions between suspended sediment and 

bedforms in rivers has shown a more complex story. Coherent turbulent flow structures, such 

as eddy-like, macro-turbulent structures (Roy et al., 2004) and smaller-scale bursting events 

such as sweeps and ejections (Grass, 1971), reveal a two-way vertical exchange of fluid 

momentum between the sediment bed and the water surface.  The advection and propagation 

of these turbulent flow structures results in this exchange being intermittent, of short duration 
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and high magnitude (Willmarth and Lu, 1972). Thus the movement of suspended particles is 

strongly governed by the dynamics of these structures (Clifford et al., 1993; Nezu and 

Nakagawa, 1993; Ashworth et al., 1996; Niño and García, 1996; Nikora and Goring, 2002; 

Cuthbertson and Ervine, 2007). Suspended particles are driven both towards and away from 

the bed by these coherent flow structures, often expressed at the water surface as “kolks” or 

“boils”. These periodic motions can cause order-of-magnitude variations in apparent 

suspended sediment concentration and are thought to be responsible for much of the vertical 

mixing in rivers (Lapointe, 1992; Kostaschuck and Church, 1993; Thorne et al., 1996; 

Babakaiff and Hickin, 1996).  Turbulence is responsible not only for the travel of suspended 

particles but also their entrainment and subsequent deposition (e.g. Bai et al., 2013). Thus the 

latter are not simply a function of the ratio between time-averaged shear velocity and settling 

velocity, as often assumed by earlier work. The further implication is that if turbulence causes 

suspended sediment to be repeatedly deposited and re-entrained then the sediment spends 

periods of time on the bed awaiting re-entrainment.  Consequently, it has a virtual velocity 

that is less than the velocity of the transporting medium.  

This body of research indicates that suspended sediment neither travels with the same 

velocity as the flow in which it is suspended (Breugem, 2012), nor is it likely to remain in 

suspension in perpetuity, even under conditions of steady flow or in unsteady flow the where 

dimensionless critical value of k is permanently exceeded.  Rather, like bedload (e.g. Hassan 

et al., 1991; Ferguson and Wathern, 1998), it travels in a series of hops, and is repeatedly 

deposited on the bed where it remains until it is re-entrained.  Is there, therefore, a qualitative 

difference between suspended and saltating sediment, or is it just a quantitative difference in 

the size of the jump length and the frequency of re-entrainment?  Van Rijn (1984) would 

appear to argue in favour of the latter definition inasmuch as he defined suspended sediment 

as that which does not touch the bottom for a streamwise distance of least one hundred 
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particle diameters.  Graf (1998: 384) begins the section on suspended-load transport with 

“transport of sediments in suspension is the mode of transport where the solid particles 

displace themselves by making large jumps, but remain (occasionally) in contact with the bed 

load and also with the bed”.  Van Rijn’s definition has been frequently used since it was first 

introduced but as Niño et al. (2003: 250) note “… the definition of the precise threshold level 

has only statistical significance. Actually, there is a transition range of increasing values of 

the shear stress in which the frequency of the entrainment events, and the number of particles 

entrained by those events, increases from a negligible value to a large value”.  Graf’s (1998) 

depiction of the path of suspended bed material (Figure 1) shows remarkable similarity to that 

of saltation in the aeolian literature in which there is also a recognition that the boundary 

between saltation and suspension is far from clear (Nickling and McKenna Neuman, 2009), 

and the term “modified saltation” has been used to denote the trajectories of saltating 

particles that are affected by turbulence (Tsoar and Pye, 1987, Figure 2). We would argue, 

therefore, that there is no inherent physical difference between so-called suspended sediment 

and bedload or saltating load, and that, in reality, all sediment transport lies along a 

continuum of hop lengths and virtual velocities. It is our contention that the distinction of 

suspension as a separate class of sediment transport is both arbitrary and an unhelpful 

anthropocentric artefact; and to an extent is one that has come about because of measurement 

techniques 

If such a position is accepted then our current knowledge of virtual velocities and hop lengths 

is limited to the coarse end of this continuum. There has been substantial research into the 

virtual velocity (Hassan et al., 1992; Ferguson and Wathen 1998; Haschenburger and Church 

1998; Ferguson et al., 2002) and hop length (Drake et al., 1988; Habersack 2002; Heays et 

al.,2010; Lajeunesse et al., 2010; Roseberry et al., 2012) of bedload in rivers.  Similarly, 

research on hop lengths (e.g. Nalpanis et al., 1993; Cheng et al., 2006; Zhang et al., 2007) 
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and velocities (e.g. Rasmussen and Sørensen 2005; Kang et al., 2008a,b) of saltating particles 

in air is well established. However, because neither concept has been thought relevant to so-

called suspended sediment, details of how fast suspended sediment moves in relation to the 

velocity of flow, either as virtual velocity including the periods of rest on the bed or as actual 

velocity during movement, is lacking. If we recognize that sediment transport is a continuum 

and applies to any fluid medium rather than split into different “processes” based on arbitrary 

thresholds and fluids, then recognizing the continuity will enable development of an holistic 

approach sediment transport, and thus sediment-transport models that are likely to be viable 

across a wider range of conditions than hitherto. 
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Figure 1 Modes of hydraulic sediment transport (adapted from Graf, 1998) 
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Figure 2 Modes of sediment transport in air (adapted from Tsoar and Pye, 1987) 
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Figure 3 Estimates of the critical shear velocity for suspended sediment motion for 

 grains of varying size. 


