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Abstract

This paper presents a new statistical inference method for classification. Instead of minimiz-
ing a loss function that solely takes residuals into account, it uses the Kolmogorov-Smirnov
bounds for the cumulative distribution function of the residuals, as such taking conserva-
tive bounds for the underlying probability distribution for the population of residuals into
account. The loss functions considered are based on the theory of support vector machines.
Parameters for the discriminant functions are computed using a minimax criterion and for
a wide range of popular loss functions the computations are shown to be feasible based on
new optimisation results presented in this paper. The method is illustrated in examples,
both with small simulated data sets and with real-world data.
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1. Introduction

A main goal of statistical machine learning is prediction of an unobserved output value
y based on an observed input vector x, which requires estimation of a predictor function
f from training data consisting of pairs (x, y). Two major topics in statistics which fit
into the statistical machine learning framework are regression analysis and classification.
In regression analysis, one typically aims at estimation of a real-valued function based on a
finite set of observations with random noise. In classification, the output variable is in one
of a finite number of classes1 and the main task is to classify the output y corresponding to
each input x into one of the classes by means of a discriminant function. Many methods have
been proposed for solving machine learning problems, but these are mostly based on rather
restrictive assumptions, for example assuming the availability of a large amount of training
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data, a known probability distribution for the random noise, or that all observations are
point-valued (‘precise’). Such assumptions are typically not fully satisfied in applications.
In this paper, a general framework for classification is presented that allows such important
aspects to be incorporated without additional assumptions, instead it uses the framework of
imprecise probability [4, 29] and it can be used for a wide variety of inferences, models and
real-world situations. The method presented is nonparametric and can deal with relatively
few training data. It combines the use of Kolmogorov-Smirnov bounds for the distribution
of residuals with the use of support vector machines. The method is only presented for
precise data, but in principle it can be extended to deal with imprecise data, this is a topic
of ongoing investigations and will be reported on elsewhere.

The novel approach for constructing a class of machine learning models and methods
proposed in this paper uses risk functionals as in [16] and sets of probability distributions
as in [32]. The starting point is a set of probability distributions related to the training
data, which can just be a small amount of data, and this set can be generated by a variety
of inferential methods and is assumed to be bounded by some lower and upper CDFs. Such
sets of probability distributions are also called p-boxes [6]. In the classification application
considered in this paper, these bounds for the set of probability distributions depend on
the unknown parameter of the discriminant function, because the sets of probability dis-
tributions considered are for the random residuals and as such they depend on the model
parameter. It should be noted that the considered set of distributions is not the set of
parametric distributions having the same parametric form as the bounding distributions,
but it is the set of all possible distributions restricted by the lower and upper bounds. This
is an important feature of the proposed approach in this paper.

Traditionally, machine learning methods have used a variety of simplifying assumptions
in order to maintain acceptable computational effort required for implementation. The
fact that the bounds for the set of probability distributions considered in the classification
problems depend on the model parameter makes it clear that any optimisation of risk
functionals over the whole set of probability distributions is likely to require an enormous
computational effort. In this paper it will be shown that, for a wide range of popular risk
functions, computation is feasible due to new results for the optimisation.

Generally, to fit a parametric classification model the value of the parameter is comput-
ed by minimising a risk functional defined by the combination of a certain loss function and
a probability distribution for the random noise [11, 28]. When using a set of probability
distributions instead of a precise distribution, we can choose a single distribution from this
set which maximises or minimises the risk functional; the probability distribution max-
imising (minimising) the risk functional corresponds to the minimax (minimin) strategy.
These cases can be called the ‘pessimistic’ and ‘optimistic’ decisions, respectively. The main
problem in finding these two (‘extreme’ or ‘optimal’) precise distributions is that, like the
bounds of the corresponding set of distributions, they depend on the unknown classification
model parameter which has to be computed. For the classification scenarios considered in
this paper, we restrict attention to the minimax strategy, which is often considered to be
appealing from decision-theoretic perspective. We will identify the optimal probability dis-
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tributions corresponding to the minimax strategy as functions of the unknown parameter
only, which enables us to substitute them into the expression for the risk functional and
to compute the optimal model parameter by minimising the risk measure over the set of
possible values for the parameter.

The sets of probability distributions can be constructed from training data by a variety
of statistical inference methods, including imprecise (‘generalized’) Bayesian inference mod-
els [14, 17, 29, 30], nonparametric predictive inference [1, 3] or belief functions [5, 6, 13, 21].
The approach has recently been used in regression modelling with precise statistical data us-
ing Kolmogorov-Smirnov (KS) confidence bounds [27] and also includes imprecise Bayesian
normal regression [25]. In this paper, we focus explicitly on the use of extended support
vector machines (SVMs) [11, 28] to construct sets of probability distributions, as SVMs are
popular tools in machine learning. It will be interesting to implement the general approach
presented here with a wide range of methods for constructing the sets of probability distri-
butions and to compare the resulting inferences, for example also with regard to the effect
of parameters such as the chosen confidence level if Kolmogorov-Smirnov bounds are used;
this is left as an important topic for future research.

Section 2 presents the standard classification problem considered in this paper, which is
extended by considering a set of probability distributions in Section 3. Kolmogorov-Smirnov
bounds are introduced in Section 4, where also their application in classification is present-
ed. Section 5 presents the important results on optimisation that make implementation of
the method possible, it is explicitly presented for the popular hinge loss function. Section
6 combines support vector machines and the use of the Kolmogorov-Smirnov bounds for
classification, which is illustrated in several examples, both with small simulated data sets
and real-world data, in Section 7. In Section 8 some concluding remarks are made.

2. The standard classification problem

Suppose we are given a training set

(x1, y1), (x2, y2), ..., (xn, yn) ∈ Rm × {−1,+1}. (1)

Here x1,x2, ...,xn is some nonempty set of the patterns or examples; y1, ..., yn are labels or
outputs representing the observations of classes y = −1 and y = 1. The binary-classification
problem is to derive a unique separating function that maximizes the margin between the
two classes.

It is supposed that the number of elements in the training set belonging to the class y
is ny and their indices form the set of indices N(y), so n−1 + n1 = n and

N(y) = {i : yi = y}.

The classification problem is usually characterized by an unknown cumulative distribu-
tion function (CDF) F0(x, y) on Rm×{−1,+1} defined by the training set or examples xi
and their corresponding class labels yi.
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The main problem is to find a decision function g(x) which accurately predicts the class
label y of any example x that may or may not belong to the training set. In other words, we
seek a function g that minimizes the classification error, which is given by the probability
that g(x) 6= y. One of the possible approaches for solving the problem is the discriminant
function approach which uses a real-valued function f(x), called the discriminant function,
whose sign determines the class label prediction: g(x) = sgn(f(x)). The discriminant
function f(x) may be parametrized with some parameters w = (w0, w), w = (w1, ..., wm),
that are determined from the training examples by means of a learning algorithm. In
particular, the function f(x) may be linear, i.e. f(x,w) = 〈w,x〉 + w0. We also introduce

the notation x
(k)
i for the i-th element of the vector xk.

Given the training data, the linear discriminant training problem is to minimize the
following risk measure [28]

R(w) =

∫
Rm×{−1,1}

L(f(x,w), y)dF0(x, y).

Here the loss function L(x, y) usually takes a positive value when the sign of the dis-
criminant function (the class label prediction) does not coincide with the class label y.
The minimization of the risk measure is carried out over the parametric class of functions
f(x,w). In other words, the optimisation process is aimed at finding the function f(x,w)
which provides the minimum of R(w) such that R(wopt) = minwR(w). We assume that
the vector of parameters w takes values from a set Λ.

3. The classification problem under a set of probability distributions and the
minimax strategy

The loss function depends on the separating function f(x,w) which is a function of the
random variable w and as such can be considered to be a random variable itself. In order
to be short, we will write f instead of f(x,w) in equations below. It is difficult to consider
the CDFs of many variables. Therefore, we do not construct the CDFs F0(x, y), y = 1, 2,
on the basis of the training set. Instead, we consider the CDFs F (f(x,w) | y), y = 1, 2,
which will be written as F (f, y) for ease of notation. The notation F (f(x,w) | y) does not
mean that the vector of parameters w is a random variable. It means that we consider the
CDF of the discriminant function under fixed parameters w.

If we replace the CDF F0(x, y) by the CDF F (f, y) and the loss function L(x, y) by the
loss function L(f, y), we can rewrite the risk functional as

R(w) =

∫
R×{−1,1}

L(f, y)dF (f, y).

Moreover, we represent the joint probability as F (f, y) = F (f |y) · P (y). If we assume for
simplicity that for every example x there exists a value f , then P (y) is the prior probability
that an arbitrary point x from Rm belongs to the class y.
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Let us rewrite the risk functional taking into account the two possible values of y,

R(w) = P (−1)R−1(w) + P (1)R+1(w).

Here

R−1(w) =

∫
R
L(f, y)dF (f | − 1),

R+1(w) =

∫
R
L(f, y)dF (f |1).

Suppose that the distributions F are unknown. However, we assume that some lower
and upper bounds for a set F(y) of the CDFs F (f |y) are known with some accuracy (e.g.
a pre-specified level of confidence), and they are F (f |y) and F (f |y), respectively. Let

F(y) = {F (f |y) | ∀f ∈ R, F (f |y) ≤ F (f |y) ≤ F (f |y)}.

In other words, there is an unknown precise “true” CDF F (f |y) ∈ F(y) for every
y ∈ {−1,+1}, but we do not know it and only know that, with the given level of accuracy
(or ‘confidence’), it belongs to the set F(y). As mentioned before, the set F(y) is not a set
of parametric distributions having the same parametric form as the bounding distributions,
but it is the set of all possible distributions restricted by the lower and upper bounds.

One of the possible ways to fit the classification model, that is to determine values
for the parameters of the discriminant function, is by using the minimax (pessimistic)
strategy. According to the minimax strategy, we select a probability distribution from the
set F(−1) and a probability distribution from the set F(+1) such that the risk measures
R−1(w) and R+1(w) achieve their maximum for every fixed w. It should be noted that the
“optimal” probability distributions may be different for different values of parameters w.
This implies that the corresponding “optimal” probability distributions depend on w. The
minimax strategy can be explained in a simple way. We do not know a precise probability
distribution F and every distribution from F can be selected. Therefore, we should take
the “worst” distribution providing the largest value of the risk functional2. The minimax
criterion can be interpreted as an insurance against the worst case because it aims at
minimizing the expected loss in the least favorable case [19].

Since the sets F(−1) and F(1) are obtained independently for y = −1 and y = 1,
respectively, the maximum value of the risk functional R(w) is

R(w) = P (−1) max
F (f |−1)∈F(−1)

R−1(w) + P (1) max
F (f |1)∈F(1)

R+1(w).

The minimax risk functional with respect to the minimax strategy is now of the form:

R(wopt) = min
w∈Λ

R(w).

2This criterion of decision making can be regarded as the well-known Γ-minimax [2, 10, 24]. However,
it is often given in terms of utilities and is usually called Γ-maximin.
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Let us consider in detail the first problem, that is maxF (f | −1)∈F(−1)R−1(w). Most
loss functions L(f,−1) applied in classification are increasing in f . This implies that the
upper bound for R−1(w), i.e. the maximum of R−1(w) over all distributions from F(−1)
is achieved at the distribution F (f |1) (see, for instance, [31]). Hence,

R−1(w) =

∫
R
L(f,−1)dF (f | − 1).

In the same way we can consider the second problem, maxF (f |1)∈F(1)R+1(w). Most loss
functions L(f, 1) are decreasing in f . Therefore, the upper bound for R+1(w) is achieved
at the distribution F (f |1). This implies that

R+1(w) =

∫
R
L(f, 1)dF (f |1).

So, restricting attention henceforth to loss functions L(f,−1) which are increasing in f and
L(f, 1) which are decreasing in f , the upper bound for the risk functional R(w) is of the
form

R(w) = P (−1)

∫
R
L(f,−1)dF (f | − 1) + P (1)

∫
R
L(f, 1)dF (f |1). (2)

It is important to define suitable CDFs F (f |y) and F (f |y) to define F(y) based on the
available information. We propose the use of the Kolmogorov-Smirnov bounds, as explained
in the following section. In addition to their appeal as generally valid nonparametric
bounds for the CDF, it will be shown in this paper that they can be implemented in our
approach as the optimisation problems involved can be solved without imposing substantial
computational difficulties.

4. Kolmogorov-Smirnov bounds and optimal lower and upper CDFs

The basic idea of nonparametric inference is to use data to infer an unknown quantity
while making as few assumptions as possible [33]. It is particularly attractive to allow the
class of admissible distributions for a statistical problem to be the class of all distribu-
tions, without assuming a specific functional form. Given an independent and identically
distributed (i.i.d.) sample Z1, ..., Zn with CDF F (z) = P (Z ≤ z) on the real line, we can
estimate F in the framework of nonparametric methods with the empirical distribution
function Fn as the CDF that puts mass 1/n at each data point Zi,

Fn(z) =
1

n

n∑
i=1

I(Zi ≤ z),

where

I(Zi ≤ z) =

{
1, Zi ≤ z,
0, Zi > z.
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According to well-known properties of the empirical CDF, such as the Glivenko-Cantelli
theorem and the Dvoretzky-Kiefer-Wolfowitz inequality, the empirical CDF converges to
the true CDF as n → ∞. Roughly speaking, this means that we can learn distributions
to any required level of accuracy just by collecting enough data. However, in practice the
amount of statistical data is often limited. One of the ways for taking into account the
scarcity of statistical data and for constructing bounds for the set of probability distribu-
tions is by using the Kolmogorov-Smirnov (KS) confidence limits for the CDF, which can
be regarded as distribution-free bounds around the empirical CDF. If we assume that F (z)
is some unknown true probability distribution of Z, then we can choose a critical value
of the test statistic dn,1−γ such that the band [Fn(z) − dn,1−γ, Fn(z) + dn,1−γ] will contain
F (z) entirely with probability 1−γ, which is to be interpreted as a confidence statement in
the frequentist statistical framework. Let k1−γ be the (1 − γ)-quantile of the Kolmogorov
distribution. Then we can write for large values of n

dn,1−γ ≈ k1−γ/
√
n.

The values of k1−γ for different γ can e.g. be found in [12]. If the values of n are rather
small (say n ≤ 10), then there is another expression for dn,1−γ [12]

dn,1−γ ≈ k1−γ

(√
n+ 0.12 +

0.11√
n

)−1

.

Denoting υ = dn,1−γ for short, we finally write the following bounds for some unknown
CDF F (z):

max(Fn(z)− υ, 0) ≤ F (z) ≤ min(Fn(z) + υ, 1). (3)

It can be seen from the above inequality that the left tail of the upper bound for the CDF
is υ for z = ζ → −∞. Similarly, the right tail of the lower bound for the CDF is 1− υ for
z = ξ → ∞. These tails reflect the lack of information beyond the minimal and maximal
observations in the data set, together with the fact that no further assumptions are made
for the CDF in the nonparametric framework. We introduce notations ζ and ξ indicating
some boundary points for the lower and upper distribution functions, respectively, in order
to consider the tails later in the paper. Allowing probability υ to be assigned to ζ, the
upper bound min(Fn(z)+υ, 1) can be considered to be a CDF itself, and similarly allowing
probability υ to be assigned to ξ enables the lower bound max(Fn(z)−υ, 0) to be considered
to be a CDF; this will be done henceforth in this paper. It is important to emphasize that
these introduced ζ and ξ, and indeed the probabilities assigned to them in this construction,
do not influence the inferences in this paper, as will be explained in Section 5.

We now consider the use of the KS bounds in classification, where we construct the KS
bounds for every class y. Denote the critical value of the KS statistic for class y by υy, then

F (f |y) = max(Fn(f)− υy, 0),

F (f |y) = min(Fn(f) + υy, 1).
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Figure 1: The empirical CDF and its Kolmogorov-Smirnov bounds

The corresponding lower and upper probability density functions (PDFs), p(f |y) and
p(f |y), respectively, are weighted sums of Dirac functions where the number of terms and
their weights are different and depend on υy. The following cases of υ can be considered.

Case 1 : If υy < 1/ny, υy < 1/2, then

p(f |y) =

(
1

ny
− υy

)
δ(f − f1) +

1

ny

∑
i∈N(y)\{1}

δ(f − fi) + υyδ(f − ξ),

p(f |y) = υyδ(f − ζ) +
1

ny

∑
i∈N(y)\{ny}

δ(f − fi) +

(
1

ny
− υy

)
δ(f − fny).

In this lower PDF the left-most point, denoted by f1, has a smaller weight than the other
points. In this upper PDF the right-most point, denoted by fny , has a smaller weight than
the other points.

Case 2 : If 1/ny ≤ υy < 2/ny, υy < 1/2, then

p(f | y) =

(
2

ny
− υy

)
δ(f − f2) +

1

ny

∑
i∈N(y)\{1,2}

δ(f − fi) + υyδ(f − ξ),

p(f | y) = υyδ(f − ζ) +
1

ny

∑
i∈N(y)\{ny ,ny−1}

δ(f − fi) +

(
2

ny
− υy

)
δ(f − fny−1).

This case is illustrated in Figure 1. Continuing in the same way, we get the further cases
which can be presented as follows.

Case by: If (by − 1)/ny ≤ υy < by/ny, υy < 1/2, then

p(f | y) =

(
by
ny
− υy

)
δ(f − fby) +

1

ny

∑
i∈N(y)\{1,2,...,by}

δ(f − fi) + υyδ(f − ξ),
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p(f | y) = υyδ(f − ζ) +
1

ny

∑
i∈N(y)\{ny ,ny−1,...,ny−by}

δ(f − fi) +

(
by
ny
− υy

)
δ(f − fny−by+1).

Here the KS band is as follows. The lower CDF has by− 1 jumps equal to 0, one jump (the
left one) equal to by/ny − υy and the other jumps all equal to 1/ny. The upper CDF also
has by − 1 jumps equal to 0, one jump (the right one) equal to by/ny − υy and all other
jumps equal to 1/ny. This is a very important peculiarity of the lower and upper CDFs,
which will be used later. Every considered case is defined by the relationship of the values
ny and υy. We can find the value by as a function of ny and υy, namely, by is an integer
satisfying the two-sided inequality

υyny ≤ by ≤ υyny + 1.

If we substitute the above PDFs into expression (2) for the risk measure, then we can
get the upper risk measure by the minimax strategy. However, the main difficulty in using
the above “optimal” PDFs for computing the upper risk functional is that we do not know
the order of points f1, ..., fn because every point depends on the unknown classification
parameters w. We know only the weights of all points, or the sizes of all jumps so to say.
Nevertheless, this is very useful information which will be used later.

5. Risk functional and extreme points

Suppose that we do not know the optimal CDFs for writing the upper risk measure.
However, we exactly know that this CDF is a step-function with jumps (possibly of size
0) at n points. Let T (k, y) be a subset of the index set N(y) consisting of k elements. If
every jump of the optimal CDF (so weight of the corresponding optimal PDF) for a given
y is of the size hi, then we can write the following constraints

max(k/ny − υy, 0) ≤
∑

i∈T (k,y)

hi ≤ min(k/ny + υy, 1),

∀T (k, y) ⊆ N(y), y ∈ {−1,+1}.

It follows from
∑

i∈N(y) hi = 1 that
∑

i∈T (k,y) hi ≤ 1 for all T (k, y) ⊆ N(y). This implies
that the above constraints can be rewritten as the following system of linear inequalities
for every y

k/ny − υy ≤
∑

i∈T (k,y)

hi ≤ k/ny + υy, (4)

∑
i∈T (k,y)

hi ≥ 0,
∑
i∈N(y)

hi = 1, k = 1, ..., ny. (5)

Denote h(y) = (hi, i ∈ N(y)) and suppose that the above constraints produce a set of
probability distributions H(y), that is every distribution h(y) from H(y) satisfies all the
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constraints (4)-(5). Then the upper bound for the risk functional can be found as a solution
to the following linear programming problem:

R(w) =
∑

y=−1,+1

P (y) max
h(y)∈H(y)

∑
i∈N(y)

hi · L(fi, y),

subject to h(y) ∈ H(y).
Hence, the optimal values of the parameter vector w are computed by minimizing the

upper bound R(w) over w, i.e.

R(wopt) = min
w∈Λ

 ∑
y=−1,+1

P (y) max
h(y)∈H(y)

∑
i∈N(y)

hi · L(fi, y)

 . (6)

It is very important here that constraints (4)-(5) do not depend on w. This peculiarity
allows us to reduce the set of optimisation problems to a single optimisation problem by
using the extreme points.

We introduce two optimisation variables

G(y) = max
h(y)∈H(y)

∑
i∈N(y)

hi · L(fi, y), y = −1,+1.

We rewrite problem (6) as

R(wopt) = min
w∈Λ
{P (−1)G(−1) + P (1)G(1)} , (7)

subject to

G(y) ≥
∑
i∈N(y)

hi · L(fi, y), ∀h(y) ∈ H(y), y = −1,+1.

The above optimisation problem contains infinitely many constraints, namely one con-
straint for every probability distribution h(y) ∈ H(y). In order to overcome this difficulty,
note that the set of distributionsH can be viewed as a simplex in a finite dimensional space.
According to well-known results from linear programming theory, the objective function
for a fixed value w attains its maximum at an extreme point of the unit simplex of the
dimension ny. Since the set E(H(y)) of extreme points is finite, this implies that the infinite
set of constraints is reduced to some finite set. Finally, we can rewrite the constraints as

G(y) ≥
∑
i∈N(y)

hi · L(fi, y), ∀h(y) ∈ E(H(y)), y = −1,+1. (8)

The next task is to find the set E(H(y)) of extreme points. This is also a hard problem.
However, we know from the form of the optimal CDFs or PDFs (see Case by) that the
probability distribution h(y) can be represented as a sum of sizes of jumps of CDFs (see
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the previous section), i.e. it has by− 1 zero-valued points, one point of the value by/ny− υy
and ny − by points of value 1/ny. The sum of all these values is 1− υy. It is not 1 because
there is a point ξ for the lower CDF or ζ for the upper CDF with the jump of size υy.
However, this point does not depend on the parameters w and can be removed from the
consideration. Indeed, let us write the constraints, for instance, for y = −1 as follows

G(−1) ≥ υ−1L(ξ,−1) +
∑
i∈N(y)

hiL(fi,−1).

We now introduce a new variable G∗(−1) = G(−1) − υ−1L(ξ,−1). By substituting it
into the objective function, we can see that the location of the optimal value R(wopt) is
not affected by the term −P (−1)υ−1L(ξ,−1), because this term does not depend on w.
Therefore, we can remove it from the optimisation problem.

The obtained distributions h(y) are just extreme points belonging to E∗(H) ⊂ E(H).
Other extreme points belonging to E(H)\E∗(H) are not interesting for us because they
definitely cannot provide larger values of

∑
i∈N(y) hi · L(fi, y).

So, we get an optimisation problem whose solution depends on the loss function L(fi, y).
For specific loss functions this argument can be developed further. We illustrate this for
the so-called hinge loss function, which is a popular and flexible loss function for SVMs
[28] and which is of the form

L(f,y) = max(0, 1− yf). (9)

The hinge loss function will be used in the examples in Section 7. After substituting the
hinge loss function into constraints (8) and by using the expression for the upper risk
functional (7), we get the optimisation problem

R(wopt) = min
w∈Λ
{P (−1)G(−1) + P (1)G(1)} , (10)

subject to

G(y) ≥
∑
i∈N(y)

hi max(0, 1− yfi), ∀h(y) ∈ E∗(H(y)), y = −1,+1. (11)

Let us introduce new non-negative variables ξi ≥ 0 such that ξi = 1 − yif(xi,w) if 1 −
yif(xi,w) ≥ 0, and ξi = 0 if 1− yif(xi,w) < 0. Then we can rewrite constraints (11) as

G(y) ≥
∑
i∈N(y)

hiξi, ∀h(y) ∈ E∗(H(y)), y = −1,+1, (12)

ξi ≥ 1− yif(xi,w), ξi ≥ 0, i = 1, ..., n, y = −1,+1. (13)

So we arrive at only a single optimisation problem with a finite number of constraints,
which shows that the method presented in this paper is computationally feasible for such
a loss function. Moreover, if the function f is linear, then we have a linear programming
problem.
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6. SVM for Kolmogorov-Smirnov classification

According to the method of classification modelling developed for the minimax strategy
using the Kolmogorov-Smirnov bounds, the optimal parameters wopt of the discrimant
function can be computed by solving the optimisation problem with objective function
(10) and constraints (12)-(13). The problem is easy to solve when the function f(x,w) is
linear. In order to consider possible non-linear cases of the function f , we study how to
apply the well-known SVM method for getting the optimal parameters wopt.

First, we assume that the function f is linear and of the form f(x,w) = 〈w,x〉 + w0.
Denote the k-th probability distribution h(y) from E∗(H(y)) by h(k)(y) and the total number
of the distributions in E∗(H(y)) by Ny. It should be noted that Ny depends only on two
parameters ny and υy. Let us add the standard Tikhonov regularization term 1

2
〈w,w〉 (this

is the most popular penalty or smoothness term) [23] to the objective function (10) and
the constant “cost” parameter C. The smoothness (Tikhonov) term can be regarded as
a constraint which enforces uniqueness by penalizing functions with wild oscillation and
effectively restricting the space of admissible solutions (we refer to [7] for a detailed analysis
of regularization methods). This leads to the quadratic programming problem

R(wopt) = min

(
1

2
〈w,w〉+ C · P (−1)G(−1) + C · P (1)G(1)

)
, (14)

subject to

G(y) ≥
∑
i∈N(y)

hiξi, ∀h(y) ∈ E∗(H(y)), y = −1, 1, (15)

ξi ≥ 1− yif(xi,w), i = 1, ..., n, y = −1, 1, (16)

ξi ≥ 0, i = 1, ..., n, y = −1, 1. (17)

Instead of minimizing the primary objective function (14), a dual objective function,
the so-called Lagrangian, can be formed of which the saddle point is the optimum. The
Lagrangian is

L =
1

2
〈w,w〉+ C · P (−1)G(−1) + C · P (1)G(1)−

n∑
i=1

ηiξi

−
n∑
i=1

ϕi (ξi − 1 + yi 〈w,xi〉+ yiw0)

−
∑

y=−1,+1

Ny∑
k=1

tk(y)

G(y)−
∑
i∈N(y)

h
(k)
i ξi

 .

Here ηi, ϕi, tk(y), i = 1, ..., n, k = 1, ..., Ny, y = −1, 1, are Lagrange multipliers. Hence, the
dual variables have to satisfy positivity constraints ηi ≥ 0, ϕi ≥ 0, tk(y) ≥ 0 for all i, k, and
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y. The saddle point can be found by setting the derivatives equal to zero

∂L/∂w0 =
n∑
i=1

ϕiyi = 0, (18)

∂L/∂wj = wj −
n∑
i=1

ϕiyix
(j)
i = 0, j = 1, ...,m, (19)

∂L/∂ξi = −ηi − ϕi +

N−1∑
k=1

tk(−1)h
(k)
i = 0, i ∈ N(−1), (20)

∂L/∂ξi = −ηi − ϕi +

N+1∑
k=1

tk(1)h
(k)
i = 0, i ∈ N(1), (21)

∂L/∂G(y) = C · P (y)−
Ny∑
k=1

tk(y) = 0, y ∈ {−1, 1}. (22)

It follows from (22) that

C · P (y)G(y)−G(y)

Ny∑
k=1

tk(y) = G(y)

(
C · P (y)−

Ny∑
k=1

tk(y)

)
= 0.

Using (18) we can now simplify the objective function as

L =
1

2
〈w,w〉 −

n∑
i=1

ηiξi −
n∑
i=1

ϕi (ξi − 1 + yi 〈w,xi〉) +
∑

y=−1,+1

Ny∑
k=1

tk(y)

 ∑
i∈N(y)

h
(k)
i ξi

 .

It follows from (20) and (21) that

L =
1

2
〈w,w〉 −

n∑
i=1

ξi

[
ηi + ϕi −

∑
y=−1,+1

Ny∑
k=1

tk(y)h
(k)
i

]
−

n∑
i=1

ϕi (yi 〈w,xi〉 − 1)

=
1

2
〈w,w〉+

n∑
i=1

ϕi (yi 〈w,xi〉 − 1) .

After substituting (19) into the Lagrangian, we finally get the dual optimisation problem:

maximize L = −1

2

n∑
i=1

n∑
j=1

yiyjϕiϕj 〈xi,xj〉+
n∑
i=1

ϕi,

subject to
n∑
i=1

ϕiyi = 0,

Ny∑
k=1

tk(y) = C · P (y), y ∈ {−1, 1},
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0 ≤ ϕi ≤
N−1∑
k=1

tk(−1)h
(k)
i , i ∈ N(−1),

0 ≤ ϕi ≤
N+1∑
k=1

tk(1)h
(k)
i , i ∈ N(1).

It is very interesting to note that the objective function does not differ from the objective
function obtained in the standard SVM with the empirical probability distribution for the
examples, i.e. by exploiting the empirical risk functional. However, the main difference is
in the constraints. Instead of the constant “cost” parameter C in the right sides of the
inequalities for the ϕi, we use the available information about the “extreme” probability
distributions h(k) from E(H(y)).

The function f(xi,w) can be rewritten in terms of Lagrange multipliers as

f =
n∑
i=1

yiϕi 〈xi,x〉+ w0.

This is the so-called support vector expansion, i.e. w can be completely described as a
linear combination of modified training data xi, i = 1, ..., n [22].

Let us consider how the above problem can be modified in the “precise” case when we
have one precise nonparametric probability distribution for every y and v = 0. In this case,
we write Ny = 1, t1(y) = C · P (y), h

(1)
i = 1/ny, if i ∈ N(y). Then the constraints for ϕi

and ϕ∗i become
0 ≤ ϕi ≤ C · P (y)/ny, i ∈ N(y).

If P (y) = ny/n, then the constraints are rewritten as

0 ≤ ϕi ≤ C/n, i = 1, ..., n.

This indeed gives the standard SVM. So, we get the SVM approach under the minimax
strategy taking into account the Kolmogorov-Smirnov bounds.

Before we illustrate our approach in several examples, we briefly consider the possibility
to deal with non-linear discriminant functions. It should be noted that the vectors xi only
appear in the dual optimisation problem via the dot product 〈xi,xj〉. This implies that we
can replace 〈xi,xj〉 by the so-called kernel K(xi,xj) = Φ(xi) · Φ(xj) which has to satisfy
some special properties. This is a direct way for incorporating the non-linearity into the
classification problem. In this case, the discriminant function is of the form

f =
n∑
i=1

yiϕiK(xi,xj) + w0.

We do not study the kernels and their use in classification problems in detail in this
paper, because their use does not directly depend on the Kolmogorov-Smirnov bounds

14



and there are a lot of books and papers devoted to this important topic, see for example
[15, 20, 34].

A main difficulty of the dual optimization problem is that it requires large memory which
strongly depends on the number of training examples, but does not significantly depend
on the number of features. The total number of “optimal” probability distributions in
E∗(H(y)) is

Ny = n ·
(
n

by

)
.

We have N(−1) +N(1) + 3 constraints, but the number of variables in every constraint is
n+N−1 +N+1. In order to overcome the above difficulty and to simplify the dual quadrat-
ic programming problem we prove next that it can be decomposed into N−1N+1 simple
optimization problems. Let us write some of the Karush-Kuhn-Tucker complementarity
conditions

tk(y)

G(y)−
∑
i∈N(y)

h
(k)
i ξi

 = 0.

It follows from the definition of G(y) that it takes the largest value of
∑

i∈N(y) h
(k)
i ξi.

If we assume that all points xi are different, then G(y) =
∑

i∈N(y) h
(k)
i ξi for some k = sy.

Hence, all values tk(y) are 0 except for the case k = sy. According to the condition∑Ny

k=1 tk(y) = C ·P (y), we conclude that tsy = C ·P (y). Returning to the constraints to the
dual optimization problem and using the fact that tk(y) = 0 for all k 6= sy and tk = C ·P (y)
for k = sy, we rewrite the problem as

maximize L(s−1, s+1) = −1

2

n∑
i=1

n∑
j=1

yiyjϕiϕj 〈xi,xj〉+
n∑
i=1

ϕi,

subject to
n∑
i=1

ϕiyi = 0,

0 ≤ ϕi ≤ C · P (−1)h
(s−1)
i , i ∈ N(−1),

0 ≤ ϕi ≤ C · P (+1)h
(s+1)
i , i ∈ N(1).

So, we get a simple optimization problem with the same objective function and simple
constraints. It has the form of the standard weighted SVM with weights h

(s−1)
i and h

(s+1)
i .

One can see that the number of variables is n, and the number of constraints is N(−1) +
N(1) + 1. However, we do not know the values s−1 and s+1. Therefore, we solve the
problem for every pair (s−1, s+1) such that sy = 1, ..., Ny. The largest value of L(s−1, s+1)
corresponds to optimal values of s−1 and s+1. By using the derived optimization problem,
we reduce the memory requirements, but increase the execution time for solving many
optimization problems.
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7. Examples

We illustrate the method proposed in this paper via several examples, all computations
have been performed using the statistical software R [18]. In all these examples the hinge
loss function (9) has been used, together with a linear separation function and KS bounds
corresponding to γ = 0.1. We investigate the performance of the proposed method and
compare it with the standard SVM approach by considering the accuracy (ACC), which
is the proportion of correctly classified cases on a sample of data and is often used to
quantify the predictive performance of classification methods. So, ACC is an estimate of
a classifier’s probability of a correct response, and it is an important statistical measure of
the performance of a binary classification test. ACC can formally be written as

ACC =
NT

N
,

where NT is the number of test data for which the predicted class for an example coincides
with its true class, and N is the total number of test data. We will denote the accuracy
measure for the proposed KS-bounds minimax strategy as ACCminimax and for the standard
SVM as ACCstandard.

Example 1
We first consider the performance of our method for a small example with simulated data.
We generated two subsets of examples corresponding to different classes such that the
number of examples of both classes are n−1 = n1 = 8. Every example is defined by
two features (m = 2). Values of features are generated in accordance with the normal
probability distribution with for class y = −1 mean values m1(−1) = m2(−1) = 5 and
for class y = 1 mean values m1(1) = m2(1) = 8, with the subscript indicating the specific
feature. The standard deviation is σi(y) = 2 for both classes and both features.

Using the minimax strategy presented in this paper, and assuming that the separating
function is linear, we get for γ = 0.1, k1−γ = 1.22 and vy = 0.408, the separation function
shown in Fig. 2, where the triangle markers correspond to examples from the class y = −1
and the crosses correspond to examples from the class y = 1. If instead we use the standard
SVM method for these data, we obtain the separation function shown in Fig. 3.

It should be remarked that the KS-bounds method with the minimax criterion, as
presented in this paper, explicitly takes the example values with largest residuals (hence
the misclassified examples which are furthest from the separating line) into account while
it may neglect some points close to the line, whereas the standard SVM method takes all
values of residuals of misclassified examples into account. So, the minimax method aims
at minimal total distance to the line of misclassified points furthest away from it, which
in this example leads to quite a different separating line than derived at by the standard
SVM method.

To investigate the predictive performance of these two separating functions, we gener-
ated 100 test examples from the same normal distributions with parameters mi(−1) = 5,
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Figure 2: The separation line by the minimax strategy (Example 1)

Figure 3: The separation line by the standard SVM (Example 1)
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Figure 4: Predictive performance of both methods (Example 1)

Figure 5: The separation line by the minimax strategy, σi = 4 (Example 1)

mi(1) = 8, σi(y) = 2, and we applied both separating functions to them. This resulted in
ACCminimax = 0.79 and ACCstandard = 0.66, so the newly proposed method performs better
in this case than the standard SVM, the data and separating lines are shown in Fig. 4.

We repeated this example with all inputs into the simulated values the same except
for increased standard deviations σi(y) = 4, leading to more overlap of the data from the
two groups. Figures 5 and 6 show again the initially simulated observations together with
the minimax and SVM based separating lines. The predictive results for this example
were ACCminimax = 0.80 and ACCstandard = 0.71, as illustrated by Figure 7. It is not
necessarily the fact that the minimax method again performs better that should be noted,
but particularly the fact that the standard method leads to a very different separating line
in both these cases while the minimax method leads to a separating line that seems pretty
robust and that more naturally separates the two groups.
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Figure 6: The separation line by the standard SVM, σi = 4 (Example 1)

Figure 7: Predictive performance of both methods, σi = 4 (Example 1)
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Example 2
We use “Haberman’s Survival Data Set” from the UCI Machine Learning Repository [8].
The data set contains cases from a study on the survival of patients who had undergone
surgery for breast cancer. The number of features (attributes) is three: age of patient at
time of operation (x1), patient’s year of operation (x2), and the number of positive axillary
nodes detected (x3). The classes are defined by the survival status of every patient (y = −1:
the patient survived 5 years or longer; y = 1: the patient died within 5 year). The total
number of examples is 306, of which the number of examples with y = −1 is 225.

First, we have randomly selected 16 examples (8 examples from each class). Using
this reduced data set, the two separating functions according to our minimax method and
the standard SVM approach are obtained and applied to the total data set to check their
predictive performance for classification. This led to the following measures of accuracy:
ACCminimax = 0.31 , ACCstandard = 0.29, hence their performance for this single case is
pretty similar with only a small advantage for the minimax method. We may want to
take into account the fact that numbers of examples in the two classes in this data set
are different. To do so, we have constructed two separating functions based on n−1 = 12
and n1 = 4 randomly selected patients, which reflects the proportions of examples in the
classes. Applying these two functions to the total data set led to ACCminimax = 0.75,
ACCstandard = 0.28, which suggests a far better result for the minimax method, but of
course that can be due to it being just a single application with small numbers of examples
used. To get a better insight into the comparative performances of these two methods, we
repeated this analysis, with the same numbers of examples but different random selections,
23 times. The results were mostly pretty close, with the averages of the ACCminimax values
equal to 0.54 and the average of the ACCstandard values equal to 0.50. Of the 23 repeats,
the performance of the minimax approach was best 17 times, while the standard SVM
approach was better 4 times and on two occasions both had the same numbers of correct
classifications.

Example 3
As a further example we applied both our minimax method and the standard SVM method
to the “Pima Indian Diabetes” data set, also from the UCI Machine Learning Repository
[8]. The Pima data set has eight features (m = 8), with 768 training instances (examples)
of which 500 are labeled as positive. Every example is characterized by numerical-valued
features. We aimed at keeping close to the proportion of examples in the data set and took
a total of 16 examples, with n−1 = 10 and n1 = 6. This led to two separating functions,
which applied to the total data set led to ACCminimax = 0.70, ACCstandard = 0.64. We also
repeated this to get a better insight into the performance of our method. We repeated this
example 36 times, taking different random selections from the total data with each time
n−1 = 10 and n1 = 6. The average of the ACCminimax values was 0.65 and the average of
the ACCstandard values was 0.62, with the minimax method having the better performance
in 25 cases and SVM performing better in 11 cases. Finally, we also applied these two
methods with the very small numbers of examples n−1 = 5 and n1 = 3, and we considered
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10 cases, with the examples used again selected randomly from the data. The average of
the ACCminimax values was 0.68 and the average of the ACCstandard values was 0.60, with
the minimax method having the better performance in 7 cases, SVM performing better
in 1 case and exactly the same number of correct classifications in 2 cases. This shows
in particular that the presented method can provide a reasonable performance even in
cases of very small amounts of data, which was one of the main reasons to consider the
nonparametric KS bounds method.

8. Concluding remarks

In this paper, a new method for constructing a classification model has been proposed,
which is based on KS bounds and capable to deal with a small amount of statistical data, as
frequently occurs in practice. This new method has several important features. First, it has
a clear explanation and justification in the framework of decision theory as it uses a formal
framework with the minimax criterion. Secondly, it allows a wide variety of inferential
methods for constructing the p-boxes based on other bands, for instance, one can explore
the use of Anderson-Darling bands [9]. Thirdly, the resulting statistical inferences are
similar to some well-known robust statistics methods by weighting observations differently,
hence the current approach provides novel formal justifications and interpretations for such
statistical methods in a decision theoretic framework. A further important strength of the
proposed method is the link with the SVM approach which has become very popular in
the machine learning community.

The small examples presented in this paper lead to careful optimism about the perfor-
mance of our novel method compared to the standard SVM approach, which suggests that
further investigation into this method, including the choice of the value of γ, and its applica-
tion in a variety of areas might be of interest. Indeed, such further investigation sets out an
important programme of research, where the proposed method is to be compared to many
competing methods for classification, from the literatures of classical statistics, imprecise
probability-based statistics and machine learning. Detailed investigation will mostly need
to be based on extensive simulations, considering a wide variety of scenarios with sample
sizes ranging from small to very large, and considering different means of comparing the
classification results. Particular care will have to be taken with regard to scenarios with
differing levels of agreement with assumptions underlying different methods, in particular
the extent to which the usual normality assumption for residuals fits with the data gener-
ation mechanisms. Of course, if this fit is close then the method presented in this paper
will be at a disadvantage, so main focus will be on how close its performance matches that
of methods based on assumptions which happen to be accurate. In scenarios where such
further assumptions underlying competing methods are not realistic, our method is expect-
ed to perform better yet detailed studies will be needed to reveal the actual difference in
performance related to sample sizes and specific aspects of underlying distributions. Of
course, in many practical situations the actual underlying scenario, in particular any suit-
able probability distributions, will typically be unknown, hence we would always suggest
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simultaneous use of a variety of classification methods in order to compare the results; if
these agree strongly then one can have confidence in the resulting inferences, while in the
event that these vary widely great care is required with regard to assumptions underlying
the methods used, where the method presented in this paper has the advantage of being
based on relatively weak assumptions. As mentioned, the fact that the method presented
in this paper has strong foundationgs and appears to perform well in the small examples
presented, justifies such a further research programme which we hope to undertake in the
near future.

It has been shown that the dual optimisation form for our method has the same objective
function as the standard SVM form, with the difference being the addition of further
constraints which are implicitly defined by the confidence level 1 − γ. A key feature of
SVMs is the use of kernels which are functions that transform the input data to a high-
dimensional space where the learning problem is solved. Such kernel functions can be linear
or nonlinear, which will allow us to significantly extend the class of discriminant functions
that can be used.

The main difficulty of implementing the method is a possibly large number of extreme
points E∗(H(y)) and, as a result, a large number of constraints in the primal or dual
optimisation problems. However, the method is explicitly aimed at cases where one only
has a small amount of statistical data, in which case the number of additional constraints
is limited and the optimisation problem does not lead to major computational difficulties.

It is not difficult to study another decision criterion, for example the minimin strategy,
which can be regarded as an optimistic criterion. For this criterion, the optimisation
problem is easier than for maximin because we do not need to introduce new variables
G(−1) and G(1). It is interesting to consider also so-called cautious decision making as a
linear combination of the minimax and minimin strategies. A method for cautious decision
making was proposed by Utkin and Augustin [26] and it can also be applied to classification
problems.

It is important to note that the training set is divided into two subsets which are
considered separately in the proposed classification model. We could divide the training
set into several subsets in the same way. This technique allows us to simply extend the
binary model to the multi-class classification.

As mentioned in the introduction to this paper, a further important problem in practical
classification problems is that data are often imperfect, with some missing entries or forms
of censoring. The generalization of the approach presented in this paper to deal with such
problems is a major research challenge to which imprecise methods may provide exciting
solutions.
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