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ABSTRACT
We present a new algorithm which groups the subhaloes found in cosmological N-body
simulations by structure finders such as SUBFIND into dark matter haloes whose formation
histories are strictly hierarchical. One advantage of these ‘Dhaloes’ over the commonly used
friends-of-friends (FoF) haloes is that they retain their individual identity in the cases when
FoF haloes are artificially merged by tenuous bridges of particles or by an overlap of their outer
diffuse haloes. Dhaloes are thus well suited for modelling galaxy formation and their merger
trees form the basis of the Durham semi-analytic galaxy formation model, GALFORM. Applying
the Dhalo construction to the � cold dark matter Millennium II Simulation, we find that
approximately 90 per cent of Dhaloes have a one-to-one, bijective match with a corresponding
FoF halo. The remaining 10 per cent are typically secondary components of large FoF haloes.
Although the mass functions of both types of haloes are similar, the mass of Dhaloes correlates
much more tightly with the virial mass, M200, than FoF haloes. Approximately 80 per cent
of FoF and bijective and non-bijective Dhaloes are relaxed according to standard criteria. For
these relaxed haloes, all three types have similar concentration–M200 relations and, at fixed
mass, the concentration distributions are described accurately by log-normal distributions.
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1 IN T RO D U C T I O N

In hierarchical dark matter-dominated cosmologies, such as stan-
dard � cold dark matter (CDM), galaxy formation is believed to
be intimately linked to the formation and evolution of dark matter
haloes. Baryonic gas falls into dark matter haloes, cools and settles
into centrifugally supported star-forming discs (Binney 1977; Rees
& Ostriker 1977; White & Rees 1978; White & Frenk 1991; Kauff-
mann & White 1993; Cole et al. 1994; Somerville & Primack 1999;
Benson et al. 2003). Thus, the evolution of the galaxy population
is driven by the evolution of the population of dark matter haloes
which grow hierarchically via mergers and accretion. Therefore, to
model galaxy formation, one must first have an accurate model of
the evolution of dark matter haloes.

The formation and evolution of dark matter haloes from cosmo-
logical initial conditions in large representative volumes can now
be routinely and reliably simulated using a variety of N-body codes
(e.g. Springel 2005). In contrast, simulations of the evolution of the
baryonic component are much more uncertain with gross proper-
ties depending on the details of uncertain subgrid physics as well
as on the limitations of numerical hydrodynamics (Schaye et al.
2010; Creasey et al. 2011). Hence, a useful and complementary
approach is semi-analytic galaxy formation (e.g. Cole 1991; Lacey
& Silk 1991; White & Frenk 1991; Kauffmann & White 1993; Cole
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et al. 1994, 2000; Somerville & Primack 1999; Bower et al. 2006;
Somerville et al. 2008; Benson & Bower 2010) in which one starts
with the framework provided by the dark matter halo evolution and
uses analytic models to follow the processes of galaxy formation
that occur within these haloes. The key starting point for this ap-
proach is halo merger trees which quantify the hierarchical growth
of individual dark matter haloes.

In �CDM, the first self-bound objects to form are haloes with
masses of around an Earth mass corresponding to the small-scale
thermal cut-off in the CDM power spectrum (Green, Hofmann &
Schwarz 2004). In a cosmological N-body simulation, the mass
scale of the first generation of haloes is instead set by the mass res-
olution of the simulation. Subsequent generations of haloes form
by mergers of earlier generations of haloes plus some smoothly ac-
creted material. The merging process does not produce a completely
relaxed smooth halo, and the remnants of the earlier generation of
haloes are often detectable as self-bound substructures (subhaloes)
within the new halo. Thus, it is important to distinguish between
haloes and the subhaloes that they contain which are the remnants
of early generations of now merged haloes. A variety of algorithms
which can identify these subhaloes in N-body simulations have been
devised (Onions et al. 2012). These substructure finders are capable
of detecting arbitrary levels of nested subhaloes within subhaloes
and in most cases also identify the background mass distribution
in a halo as a subhalo. In this work, we refer to all of the groups
identified by such substructure finders as ‘subhaloes’ and merger
trees constructed by identifying a descendant for each subhalo as
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‘subhalo merger trees’. Srisawat et al. (2013) compare a range of
methods for the production of subhalo merger trees. The algorithm
we use to determine subhalo descendants in this paper is included
in the comparison under the name D-TREES.

To construct the halo merger trees needed by semi-analytic mod-
els, it is not sufficient to just track subhaloes between simulation
outputs (e.g. by tracking their constituent particles), but one also
needs to identify their host haloes. For instance, when a galaxy
cluster forms, it is normally assumed that while the galaxies re-
main in their individual subhaloes the diffuse gas surrounding them
and gas blown out of the galaxies by supernova (SN)-driven winds
are not retained by the individual subhaloes but instead join the
common intracluster medium of the surrounding halo of the galaxy
cluster. Another issue that has to be addressed when building merger
trees for use in galaxy formation models is that structure formation
for the collisionless material in N-body simulations is not strictly
hierarchical. Hence, occasionally when two haloes merge, the sub-
halo resulting from the smaller progenitor can pass straight through
the main halo and escape to beyond its virial radius. For the galaxy
formation process to be followed, it is necessary to retain the associ-
ation between these two separated subhaloes so that an appropriate
physical model can be applied to their diffuse collisional gas which
would not have separated after the merger. Merger trees that are
useful for galaxy formation modelling have to take account of these
considerations (Knebe et al. 2013). The Dhalo algorithm which we
present produces a set of haloes which is strictly hierarchical in the
sense that once a subhalo becomes a component of a Dhalo, it never
subsequently demerges.

It is now quite common for semi-analytic models to use halo
merger trees extracted directly from N-body simulations (Springel
et al. 2001; Hatton et al. 2003; Helly et al. 2003; Bower et al.
2006; Koposov et al. 2009; Muñoz et al. 2009; Busha et al. 2010;
Macciò et al. 2010; Guo et al. 2011). There are many choices to be
made both in defining the halo catalogues and in constructing the
links between haloes at different times. Knebe et al. (2011, 2013)
have found significant differences in even the most basic properties
(e.g. the halo mass function) of halo catalogues constructed with
different group finding codes. Additionally, these halo catalogues
can often be modified by the procedure of constructing the merger
trees as some of the algorithms break up or merge haloes together
in order to achieve a more consistent membership over time (Helly
et al. 2003; Behroozi et al. 2013). So, for example, even if one starts
with standard friends-of-friends (FoF) groups (Davis et al. 1985),
the process of building the merger trees can alter the abundance and
properties of the haloes.

Semi-analytic models such as GALFORM have the option of using
information extracted directly from an N-body simulation or us-
ing Monte Carlo methods (see Jiang & van den Bosch 2014 for a
comparison of different algorithms) which make use of statistical
descriptions of N-body results such as analytic halo mass func-
tions (e.g. Sheth & Tormen 1999; Jenkins et al. 2001; White 2001;
Evrard et al. 2002; Linder & Jenkins 2003; Reed et al. 2003, 2007;
Lokas, Bode & Hoffmann 2004; Heitmann et al. 2006; Warren et al.
2006; Tinker et al. 2008; Boylan-Kolchin et al. 2009; Lukic et al.
2009; Crocce et al. 2010; Bhattacharya et al. 2011; Courtin et al.
2011; Watson et al. 2013) and models for the distribution of the
concentrations of halo mass profiles (e.g. Navarro, Frenk & White
1995, 1996; Bullock et al. 2001; Eke, Navarro & Steinmetz 2001;
Macciò, Dutton & van den Bosch 2008). These statistical descrip-
tions are often based on the abundance and properties of FoF haloes
and so may not be directly applicable to the catalogues of haloes
that result from the application of a specific merger tree algorithm.

The internal structure of the dark matter haloes strongly influences
galaxy formation models. Often the gas density profiles within dark
matter haloes are assumed to be related to the dark matter profile,
e.g. through hydrostatic equilibrium and these influence the rate at
which gas cools on to the central galaxy. In addition, the central
potential of the dark matter halo affects the size and circular veloc-
ity of the central galaxy which in turn can have a strong effect on
the expulsion of gas from the galaxy via SN feedback. Hence, for
semi-analytic galaxy formation modelling, it is important to adopt
models of the individual haloes that are consistent with the haloes
that appear in the merger trees used by the semi-analytic model.

In this paper, we present a detailed description of the latest N-
body merger tree algorithm that has been developed for use with
the semi-analytic code GALFORM. The algorithm is an improvement
over the earlier version, described in Merson et al. (2013), which
was run on the Millennium Simulation (Springel 2005) and widely
exploited in a range of applications (Bower et al. 2006; Font et al.
2008; Kim et al. 2011; Merson et al. 2013). The resulting differ-
ences between the two algorithms are very small when applied to
relatively low resolution simulations such as the Millennium, but the
improvements in the new algorithm do a better job of tracking halo
descendants in high-resolution simulations such as the Millennium
II (MSII; Boylan-Kolchin et al. 2009) and Aquarius simulations
(Springel et al. 2008). The starting point for our merger trees is
FoF haloes that are decomposed into subhaloes, distinct self-bound
structures, by the substructure finder, SUBFIND (Springel et al. 2001).
Subhaloes are tracked between output times and agglomerated into
a new set of haloes, dubbed Dhaloes, that have consistent mem-
bership over time in the sense that once a subhalo is accreted by a
Dhalo it never demerges. In this process, we also split some FoF
haloes into two or more Dhaloes when SUBFIND substructures are
well separated and only linked into a single FoF halo by bridges of
low-density material.

Our paper is structured as follows. In Section 2, we briefly outline
the new merger tree algorithm (full details are given in Appendix A)
and its application to the MSII Simulation. In Section 3, we compare
and contrast the properties of the resulting Dhaloes with the more
commonly used FoF haloes (Davis et al. 1985). We show specific
rare examples where Dhaloes and their matched FoF counterparts
exhibit gross differences either one FoF halo being decomposed
into several Dhaloes or vice versa. We also examine the distribution
of mass ratios for matching Dhalo and FoF pairs. Then in Section 4
we compare statistical properties of halo populations including halo
mass functions and their concentration–mass relation. We conclude
in Section 5.

2 H A L O C ATA L O G U E S

Immediately below, Section 2.1, we summarize the specification
of the MSII Simulation which we use to test and illustrate the
application of our merger tree algorithm. We then give a brief outline
of the construction of the merger trees and their constituent haloes
with the complete specification detailed in Appendix A.

2.1 The MSII Simulation

The MSII Simulation1 (Boylan-Kolchin et al. 2009) was carried
out with the GADGET3 N-body code, which uses a ‘TreePM’ method

1 The MSII Simulation data will be available from a Structured Query
Language relational data base (Lemson 2006) that can be accessed at
http://galaxy-catalogue.dur.ac.uk:8080/Millennium.
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to calculate gravitational forces. The MSII is a cosmological sim-
ulation of the standard �CDM cosmology in a periodic box of
side Lbox = 100 h−1 Mpc containing N = 21603 particles of mass
6.95 × 106 h−1 M�. The cosmological parameters for the MSII are
�m = 0.25, �b = 0.045, h = 0.73, �� = 0.75, n = 1 and σ 8 = 0.9.
Here �m denotes the total matter density in units of the critical den-
sity, ρcrit = 3H 2

0 /(8πG). �b and �� denote the densities of baryons
and dark energy at the present day in units of the critical density. The
Hubble constant is H0 = 100 h km s−1 Mpc−1, n is the primordial
spectral index and σ 8 is the rms density fluctuation within a sphere
of radius 8 h−1Mpc extrapolated to z = 0 using linear theory. These
cosmological parameters are consistent with a combined analysis of
the 2dFGRS (Colless et al. 2001; Percival et al. 2001) and first year
Wilkinson Microwave Anisotropy Probe data (Spergel et al. 2003;
Sanchez et al. 2006).

2.2 Building merger trees

The first step in building our merger trees is the construction of
catalogues of both FoF haloes (Davis et al. 1985) and their inter-
nal self-bound substructures,2 subhaloes, as identified by SUBFIND

(Springel et al. 2001). The second step is to build SUBFIND merger
trees by tracking particles between output snapshots to determine
the descendant of each subhalo. Occasionally, SUBFIND fails to find a
substructure as it transits through the core of a larger halo. To avoid
this resulting in the premature merging of substructures, we have
developed an algorithm (Appendix A2) that looks several snapshots
ahead to robustly link progenitor and descendant subhaloes. A sim-
ilar approach was adopted by Behroozi et al. (2013) to construct
self-consistent merger trees for the Bolshoi simulations (Klypin,
Trujillo-Gomez & Primack 2011). The third step is to partition
these SUBFIND merger trees into discrete branches. A new branch
begins whenever a new subhalo forms and continues for as long
as the subhalo exists in the simulation. When a merger occurs, we
decide which of the progenitor subhaloes survives the merger by
determining which progenitor contributed the most bound part of
the descendant (see Appendix A2.1). The branch corresponding to
this progenitor continues, while the other progenitor’s branch ends.
The final step is to bundle these branches together to define the
composite Dhaloes and their merger trees. Here our algorithm (de-
scribed in full in Appendix A3) defines collections of subhaloes
embedded hierarchically within each other as a single Dhalo, but
excludes neighbouring subhaloes that may be part of the same FoF
group, but are only linked in by a bridge of low-density material or
subhaloes that are beginning the process of merging but have not
yet lost a significant amount of mass. Subhaloes are grouped into
Dhaloes in such a way that once a subhalo becomes part of a Dhalo,
it remains a component of that Dhalo’s descendants at all later times
at which the subhalo survives, even if it is a satellite component that

2 Here we identify the subhaloes using the SUBFIND algorithm (Springel et al.
2001). However, this is not the only option and there is now a large literature
(see Onions et al. 2012) on alternative methods of identifying self-bound
structures. Some of these are highly sophisticated and use full 6D phase space
information to disentangle spatial coincident subhaloes (Diemand, Kuhlen
& Madau 2006; Behroozi, Wechsler & Wu 2012). As an example, we have
experimented with building Dhaloes by applying the Dhalo algorithm from
Appendix A3 onwards but with SUBFIND subhalo merger trees replaced by
those defined by the Hierarchical Bound Tracing (HBT) algorithm of Han
et al. (2012). We find that the properties of the Dhalo merger trees and
the galaxies that result after they are processed by GALFORM are extremely
similar.

takes it temporarily outside the corresponding FoF halo. All of a
Dhalo’s subhaloes which survive at a later snapshot must belong to
the same Dhalo at that snapshot. We take this to be the descendant
of the Dhalo. This defines the Dhalo merger trees. The mass of a
Dhalo is simply the sum of the masses of its component subhaloes.3

3 C O M PA R I S O N O F F OF A N D D H A L O E S

3.1 Bijectively matched FoF and Dhaloes

The properties of FoF haloes, especially those defined by the con-
ventional linking length parameter of b = 0.2 (the linking length
is defined as b times the mean inter-particle separation), are well
documented in the literature (e.g. Huchra & Geller 1982; Press &
Davis 1982; Einasto et al. 1984; Davis et al. 1985; Frenk et al.
1988; Lacey & Cole 1994; Summers, Davis & Evrard 1995; Audit,
Teyssier & Alimi 1998; Klypin et al. 1999; Jenkins et al. 2001;
Eke et al. 2004; Warren et al. 2006; Gottlöber & Yepes 2007),
and such haloes are widely used as the starting point for relating
the dark matter and galaxy distributions (Peacock & Smith 2000;
Seljak 2000; Berlind & Weinberg 2002). Thus, as the semi-analytic
model GALFORM (Bower et al. 2006; Font et al. 2008, 2011; Lagos
et al. 2011) instead uses Dhaloes as its starting point, it is interesting
to contrast the properties of haloes defined by these two algorithms.

As described in Section 2, FoF haloes are decomposed by SUBFIND

into subhaloes and those are then regrouped into Dhaloes. Hence
for every FoF halo, we can find its matching Dhalo by finding which
Dhalo contains the most massive subhalo from the FoF group. We
can perform this matching the other way round by finding the FoF
halo containing the most massive subhalo from the Dhalo. In the
cases where the most massive subhalo of an FoF halo is also the
most massive subhalo of a Dhalo, these two matching procedures
produce identical associations. We refer to such cases as bijective
matches.

Before comparing the properties of this subset of bijectively
matched Dhaloes and FoF haloes, we first quantify how repre-
sentative they are by looking at the fraction of each set of haloes
that have these bijective matches. The two upper curves in Fig. 1
show the dependence of the bijective fraction of Dhaloes on Dhalo
mass and FoF haloes on FoF mass. The first thing to note is that the
fraction of bijectively matched Dhaloes is large, being 90 per cent
or greater over the full range from 108 to 1014 h−1 M� and so to
a first approximation there is a good correspondence between FoF
and Dhaloes. Above 3 × 1010 h−1 M�, about 10 per cent of the
Dhaloes do not have a bijective match which means they instead
represent secondary fragments of more massive FoF haloes that
the Dhalo algorithm has split into two or more subhaloes. Below
3 × 1010 h−1 M�, this non-bijective fraction drops indicating that
lower mass FoF haloes are less likely to be split into two or more
comparable mass Dhaloes. This behaviour is consistent with the
results of Lukic et al. (2009), who found that 15–20 per cent of FoF
haloes are irregular structures that have two or more major compo-
nents linked together by low-density bridges and that this fraction
is an increasing function of halo mass. This is also to be expected in
the hierarchical merging picture as the most massive haloes formed
most recently and so are the least dynamically relaxed.

3 As a subhalo can, by definition, only belong to one Dhalo and as particles
can only belong to one SUBFIND subhalo, this means that Dhaloes are exclusive
in the sense that no particles can belong to more than one Dhalo.
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Figure 1. The upper two curves, with bootstrap error bars, show the fraction
of Dhalo (red) and FoF haloes (blue) in the MSII catalogues that have a
bijective (a unique one-to-one) match as a function of their respective Dhalo
or FoF halo mass. The lower two curves show the fraction of FoF haloes
that do not contain a self-bound substructure (cyan) and the fraction whose
main subhaloes are remerged by the Dhalo algorithm to form part of a more
massive Dhalo (green).

For the FoF haloes with mass above 1012 h−1 M�, the bijectively
matched fraction is unity, indicating that the most massive subhalo
of such FoF haloes together with the subhaloes embedded within
it always gives rise to a Dhalo. Below 1012 h−1 M�, the bijective
fraction begins to decrease steadily with decreasing mass. This
happens because as the FoF mass decreases, there is an increasing
probability that the progenitor of this FoF halo has previously passed
through a more massive neighbouring halo and this results in the
Dhalo algorithm remerging the FoF halo with its more massive
neighbour. This fraction of FoF haloes that are remerged to form part
of a more massive Dhalo is shown by the green curve in Fig. 1. As
one approaches 108 h−1 M� (∼15 particles), the bijective fraction
plummets as at very low masses many of the FoF haloes are not
self-bound and so do not contain any subhaloes from which to build
a Dhalo. The fraction of FoF haloes which do not contain a self-
bound substructure is shown by the cyan curve in Fig. 1 and can be
seen to reach 50 per cent at an FoF mass of 20 particles.

3.1.1 Virial masses

It is conventional to define the virial mass, Mvir, and asso-
ciated virial radius, rvir, of a dark matter halo using a sim-

ple spherical overdensity criterion centred on the potential
minimum,

Mvir = 4

3
π� ρcrit r

3
vir, (1)

where ρcrit is the cosmological critical density and � is the speci-
fied overdensity. In applying this definition, we adopt � = 200 and
include all the particles inside this spherical volume, not only the
particles grouped by the FoF or Dhalo algorithm, to define the en-
closed mass, M200, and associated radius r200. This choice is largely
a matter of convention but has been shown to roughly correspond to
boundary at which the haloes are in approximate dynamical equi-
librium (e.g. Cole & Lacey 1996).

If the halo finding algorithm has succeeded in partitioning the
dark matter distribution into virialized haloes, we would expect to
see a good correspondence between the grouped mass of the halo
and M200. For instance, as FoF haloes are essentially bounded by
an isodensity contour, whose value is set by the linking parame-
ter (Davis et al. 1985), then if they have relaxed quasi-spherical
configuration a tight relation between Mhalo and M200 is inevitable.
The only way Mhalo � M200 is if the halo has multiple components
which have been spuriously linked together as illustrated in the typ-
ical example shown in the lower panels of Fig. 4.4 Mhalo � M200

could indicate the cases where the group finder has split a virialized
object into small fragments. Hence, it is interesting to look at the
distribution of Mhalo/M200 for both the FoF and Dhalo algorithms to
simply see how Mhalo compares to the conventional M200 definition
of halo mass and to give an indication of the frequency of over
linking and fragmentation.

The two panels of Fig. 2 quantify the distribution of Mhalo/M200

for both the standard FoF haloes and for haloes defined by the Dhalo
algorithm. We immediately see that the distribution is much tighter
for the Dhalo definition than for FoF haloes. For FoF haloes, 5
per cent of the haloes have MFOF/M200 � 2 and 1 per cent have
MFOF/M200 � 3. In contrast, for Dhaloes only 5 per cent have
MDhalo/M200 � 1.5 and less than 1 per cent have MDhalo/M200 > 2.
In the Dhalo panel, only Dhaloes that are bijectively matched with
FoF haloes are included. Since such pairs of haloes contain the
same most massive subhalo, the centres used for calculating M200

are identical and result in the same M200. Furthermore, since Fig. 1
indicates that all FoF haloes more massive than 1012 h−1 M�
have a bijectively matching Dhalo, then above 1012 h−1 M� we
are comparing the same population of haloes and using the same
values of M200. Consequently, the wider distribution of Mhalo/M200

for FoF is directly caused by the wider spread in MFoF masses. For
the cases where MFoF � M200, there is one or more substantial
components of the FoF halo that lies outside r200. We will see in
Fig. 4 that these are generally secondary mass concentrations that
are linked by tenuous bridges of quite diffuse material. The Dhaloes
have a tighter distribution of Mhalo/M200 as in this algorithm these
secondary concentrations are successfully split off and result in
separate distinct Dhaloes.

Our results for FoF haloes are consistent with earlier investiga-
tions. Harker et al. (2006), Evrard et al. (2008) and Lukic et al.
(2009) found that approximately 80–85 per cent of FoF haloes are
isolated haloes while 15–20 per cent of FoF haloes have irregular

4 These grossly non-virialized multicomponent systems are not always de-
tected by more often used relaxation criteria (Neto et al. 2007; Power, Knebe
& Knollmann 2012, and see Section 4.2), as such criteria focus on the mass
within r200 which can be in equilibrium even if diffusely linked to secondary
mass concentrations.
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Figure 2. The left-hand panel shows the median, 1, 5, 20, 80, 95 and 99 percentiles of the distribution of the mass ratios between FoF halo mass, MFoF, and
virial mass, M200, as a function of FoF halo mass for haloes identified using the FoF group finder. The right-hand panel shows the same percentiles for the
distribution of the mass ratio between Dhalo mass, MDhalo, and virial mass, M200, as a function of Dhalo mass for haloes identified using the Dhalo group
finder. The blue dashed line in both panels shows where MHalo/M200 = 2.0 and the black one MHalo/M200 = 3.0.

morphologies, most of which are described in Lukic et al. (2009)
as ‘bridged haloes’. The distribution of MFoF/M200 for ‘bridged
haloes’ given in fig. 7 of Lukic et al. (2009) is very similar to the 20
per cent tail of our distribution above MFoF/M200 = 1.5, while the
isolated haloes in Lukic et al. (2009) have a distribution similar to
the remaining 80 per cent of our distribution.

3.1.2 Mass scatter plots

We now turn to directly comparing the mass assigned to FoF haloes
and their corresponding Dhaloes. Fig. 3 compares the distributions
of these two masses and their ratio for bijectively matched FoF and
Dhaloes, i.e. haloes which contain the same most massive subhalo.
First, we see that the median of the distribution is very close to the
one-to-one line. Furthermore, on one side the distribution cuts off
very sharply with far fewer than 1 per cent of haloes having FoF
masses significantly lower than their corresponding Dhalo mass. In
principle, MDhalo > MFoF can occur as one aspect of the Dhalo al-
gorithm is that it includes satellite subhaloes that previously passed
through the main halo even if they are now sufficiently distant so
as not to be linked into the corresponding FoF halo. However, such
subhaloes are typically much less massive than the main subhalo and
the mass gained in this way is outweighed by other sources of mass
loss. On the other side of the distribution, there is a significant tail
of haloes for which MFoF > MDhalo. We see that approximately 5 per
cent have MFoF > 1.5MDhalo and 1 per cent have MFoF > 2MDhalo.
These fractions are largely independent of the Dhalo mass. The
main reason for this tail is the presence of FoF haloes that have a
significant secondary mass concentration, often linked by a low-
density bridge, that the Dhalo algorithm succeeds in splitting off.
For these bijectively matched haloes, MFoF is unlikely to signifi-

cantly exceed 2MDhalo as if a single secondary mass concentration
had a subhalo of mass greater than that of the most massive subhalo
in the Dhalo we would not have a bijective match. However, in rare
instances MFoF > 2MDhalo can occur when the FoF halo contains
several massive secondary mass concentrations.

To illustrate the relationship between FoF and Dhaloes, we show
three examples in Fig. 4 that have been chosen to be representative of
different points in the MFoF–MDhalo distribution. The halo shown in
the top row is representative of the majority of cases, namely those
with MFoF ≈ MDhalo. Here the only particles from the FoF halo
that are not included in the Dhalo are a diffuse cloud of unbound
particles and the particles in a couple of subhaloes whose centres lie
outside twice the half-mass radius of the main subhalo. We stress
that these small differences are what is typical for corresponding
FoF and Dhaloes.

The middle row of Fig. 4 shows an example where
MFoF/MDhalo = 1.5, which corresponds to the 95th percentile of
the distribution shown in Fig. 3. Here the FoF halo is split into three
well-separated Dhaloes. The main Dhalo is dominant, but there two
secondary Dhaloes, one a lot more massive than the other, lying out-
side the r200 of the main Dhalo. For the purposes of semi-analytic
galaxy formation models such as GALFORM, the three separate haloes
given by the Dhalo definition are clearly a better description than
the single FoF halo as one would not expect the gas reservoirs as-
sociated with these distinct haloes to have merged at this stage and
so each should be able to provide cooling gas to their respective
central galaxies.

The bottom row of Fig. 4 shows a rare example with MFoF/MDhalo

≈ 2, the 99th percentile of the distribution, in which a single FoF
halo is split into several substantial Dhaloes. In this and the previ-
ous example, the FoF halo is clearly far from spherical and a large
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Figure 3. In the top panel, the 1, 5, 20, 50, 80, 95 and 99 percentiles of
the distribution of FoF halo mass, MFoF, are plotted against MDhalo for the
bijectively matched pairs of haloes. In the bottom panel, the same percentiles
of the distribution of the mass ratio MFoF/MDhalo are plotted as a function
of Dhalo mass. The black dashed lines are where MFoF/MDhalo = 0.8, 1, 1.5
and 2.5.

proportion of the FoF halo mass lies outside the virial radius that is
defined by centring on the potential minimum of the most massive
substructure. Clearly, characterizing such haloes by an NFW profile
fit just to the mass within the virial radius would be an inadequate
description of the halo. In fact, in most studies of halo concentra-
tions, including our analysis present in Section 4.2, these haloes
would be deemed to be unrelaxed and excluded from subsequent
analysis. In contrast, the Dhaloes in each of the examples presented
are much closer to being spherical with only a small amount of mass
outside their respective virial radii. Each of the primary Dhaloes in
Fig. 4, including the one in the bottom panel, is sufficiently symmet-
rical and virialized to pass the relaxation criteria that we employ in
Section 4.2 even though the corresponding FoF haloes in the bottom
two panels are not.

In the example shown in the bottom row of Fig. 4, we also see
the case of a Dhalo that has two distinct components. Here the
two clumps of black points are a single Dhalo due to the fact that
they passed directly through each other at a redshift z = 0.89. This
extreme example must have been a high-speed encounter and so any
galaxies they contained would have been unlikely to merge, but their
extended hot gas distributions would have interacted and possibly
merged. It is for this reason that it is useful in the semi-analytic
models to associate them as a single halo.

The Dhalo algorithm quite frequently merges several FoF haloes
together into a single Dhalo as a consequence of the way it avoids

splitting up subhaloes which at an earlier timestep were in a single
Dhalo. However, unlike the extreme example we have just seen that
the typical masses of subhaloes which pass through a Dhalo and then
emerge to once again become a distinct FoF halo are much lower
than the mass of the main FoF halo. This is illustrated in Fig. 5,
where we show the particles of three typical Dhaloes of a range of
masses colour coded by their FoF halo membership. In each case,
we immediately see that the vast majority of the Dhalo particles also
belong to the (bijectively) matched FoF halo. However, in addition
there are isolated clumps of particles in the outskirts of each Dhalo
which belong to much smaller distinct FoF haloes. There are also
similar nearby clumps of particles which due to surrounding diffuse
material are linked into the main FoF halo. In all cases, each of
these clumps is typically less than 1 per cent of the mass of the
main halo. From the perspective of semi-analytic galaxy formation
models, it makes sense to treat each of these clumps equally. For
instance, they have all been within twice the half-mass radius of the
main Dhalo and could therefore have been ram pressure stripped
of their diffuse gaseous haloes. In GALFORM, satellite galaxies move
with the subhalo within which they formed (or if the descendant of
the subhalo drops below the 20 particle threshold with the particle
that was previously the potential minimum of its subhalo) and so
the satellite galaxy positions reflect the spatial distribution of these
subhaloes even if they move far from the halo with which they are
associated.

3.2 Non-bijective FoF and Dhalo matches

So far we have just compared FoF–Dhalo pairs which form a bijec-
tive match, that is their most massive subhaloes are identical. How-
ever, there other cases such as the examples of secondary Dhaloes
in Fig. 4 in which the main subhalo of the Dhalo is not the most
massive subhalo in the corresponding FoF halo and conversely ex-
amples such as the secondary FoF haloes in Fig. 5 in which the
main subhalo of the FoF halo is not the most massive subhalo in the
corresponding Dhalo. We will refer to the former set of matches as
Dhalo in FoF halo and the latter as FoF in Dhalo matches. Note that
the bijective matches are a subset of both of these sets, i.e. they are
the intersection of the two sets of matches. To have a complete cen-
sus of the correspondence between FoF and Dhaloes, it is important
that we include non-bijectively matched haloes in our comparison.
We compare the Dhalo to FoF halo masses for these two sets of
pairings in Figs 6 and 7.

The left-hand panels of Fig. 6 show for all Dhalo in FoF halo
matches the dependence of the mass, MDhalo, and the mass ratio,
MDhalo/MFoF, on the FoF halo mass. The right-hand panel shows the
same quantities but only for secondary Dhalo in FoF halo haloes,
i.e. excluding the bijective matches. Focusing first on the right-hand
panels, we see that the percentiles of the distribution of secondary
MDhalo values are all horizontal lines at high MFoF, indicating that in
this regime the distribution of MDhalo is independent of MFoF. This
suggests that the secondary Dhaloes that are linked into high-mass
FoF haloes by bridges of diffuse material are essentially drawn at
random from the Dhalo population. We note that in this way the
FoF halo can be hundreds or more times more massive than many
of the Dhaloes it contains. In these same panels, we see that at
lower masses the distribution of Dhalo masses is sharply truncated
at MDhalo = MFoF/2. This is essentially by construction as if a Dhalo
with mass greater than MFoF/2 were linked into the FoF halo, then
its most massive subhalo would very likely to be the most mas-
sive subhalo of the whole FoF halo and hence there would be a
bijective match and this pairing would be excluded from this plot.
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Hierarchical N-body dark matter haloes 2121

Figure 4. Three examples of the relationship between FoF haloes and Dhaloes. In each panel, all the points plotted are from a single FoF halo. First, all the
FoF particles were plotted in green and then subsets belonging to specific Dhaloes were overplotted. The magenta points are those belonging to the bijectively
matched Dhaloes. Other colours are used to indicate particles belonging to other non-bijective Dhaloes with a unique colour used for each separate Dhalo. Two
projections of each halo are shown. The left-hand panels show the X–Y and right the X–Z plane. The black circle marks r200 of the FoF halo and the cyan circle
marks twice the half-mass radius of the main subhalo of the FoF halo. The top row shows a typical case where MFoF ≈ MDhalo. Here MFoF = 2.6 × 1013 h−1 M�,
M200 = 1.9 × 1013 h−1 M� and r200 = 0.43 h−1 Mpc. The middle panel shows an example where the mass ratio MFoF/MDhalo = 1.5 with MFoF = 1.7 × 1013 h−1

M�, M200 = 1.2 × 1013 h−1 M� and r200 = 0.375 h−1 Mpc. The bottom row shows an extreme example where MFoF � MDhalo and the FoF halo is split into
many Dhaloes. Here MFoF = 1.4 × 1014 h−1 M�, M200 = 7.1 × 1013 h−1 M� and r200 = 0.67 h−1 Mpc.
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2122 L. Jiang et al.

Figure 5. Examples of three typical Dhaloes showing how a single Dhalo can be composed of more than one FoF halo. In each panel, all the points plotted
are from a single Dhalo. First, all the Dhalo particles were plotted in green and then subsets belonging to specific FoF haloes were overplotted. The magenta
points are those belonging to the bijectively matched FoF halo. Other colours are used to indicate particles belonging to other FoF haloes with a unique colour
used for each separate FoF halo. Two projections of each halo are shown. The left-hand panels show the X–Y and right the X–Z plane. From top to bottom,
the Dhalo masses of these examples are MDhalo = 4.2 × 1014 h−1 M�, MDhalo = 6.8 × 1013 h−1 M� and MDhalo = 5.4 × 1012 h−1 M�. In all cases, the
majority of the Dhalo mass is contained in the single bijectively matched FoF halo, and the secondary FoF haloes are typically 100 times less massive.
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Hierarchical N-body dark matter haloes 2123

Figure 6. In the left-hand panels, we plot the median, 1, 5, 20, 80, 95 and 99 percentiles of the distribution of Dhalo mass, MDhalo (upper), and mass ratio
MDhalo/MFoF (lower) against MFoF for all the Dhalo matches to each FoF halo. The black dashed lines in each panel mark where MDhalo/MFoF = 1. In the
right-hand panel, we plot the same quantities but only for secondary Dhaloes in each FoF halo.

Figure 7. As Fig. 6 but with the role of FoF and Dhalo reversed. In the left-hand panels, we plot the median, 1, 5, 20, 80, 95 and 99 percentiles of the
distribution of FoF halo mass, MFoF (upper), and mass ratio MFoF/MDhalo (lower) against MDhalo for all the FoF halo matches to each Dhalo. The black dashed
lines in each panel mark where MFoF/MDhalo = 1. In the right-hand panel, we plot the same quantities but only for secondary FoF in each Dhalo.
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The left-hand panels of Fig. 6, which includes the bijective matches,
show a more complex distribution. However, it can be easily under-
stood as resulting from the superposition of the distribution from the
right-hand panel with the distribution of bijective matches shown
in Fig. 3. At very low masses, most FoF haloes contain only a
single resolved subhalo and so the FoF halo cannot be split into
multiple Dhaloes and so the overall distribution is dominated by
the bijective matches resulting in a tight correlation between MDhalo

and MFoF. With increasing FoF mass, there are more and more sec-
ondary Dhaloes per FoF halo. They increasingly dominate over the
bijective matches and so the contours tend to their values in the
right-hand panel.

Fig. 7 shows the distribution of FoF halo mass for the FoF in
Dhalo matches. Again the right-hand panels show the distribution
for just the secondary matches while the left-hand panels also in-
clude the primary or bijective matches. Comparing the right-hand
panels of Figs 6 and 7, we see that the corresponding contours are
shifted to lower masses. Thus, it is rarer for a Dhalo to contain a
massive secondary FoF halo than it is for an FoF halo to contain
a massive secondary Dhalo. The secondary Dhaloes arise from the
remerging step in the Dhalo algorithm whereby two subhaloes that
have passed through each other (the smaller has come within twice
the half-mass radius of the larger) are deemed thereafter always to
be part (or satellite components) of the same Dhalo even if they
subsequently separate sufficiently to become distinct FoF haloes.
This occurs reasonably frequently, but as in the examples shown in
Fig. 4 the secondary FoF haloes are typically much less massive
than the primary and contribute little to the total mass of the halo.
Interestingly, the near-horizontal contours in the upper-right hand
panel Fig. 7 indicate that the mass distribution of this population of
secondary FoF haloes is approximately independent of MDhalo for
high Dhalo masses. As these FoF haloes are often heavily stripped
by their passage through the main Dhalo, this is not a trivial result.
The contours begin to dip at lower masses reflecting the fact it is
unlikely for a matched FoF halo to have a mass greater than about
one half of MDhalo without it being the primary or bijective match.
This expectation is violated for MDhalo < 109 h−1 M�, but this is
a resolution effect because at such low masses secondaries with
MFOF � MDhalo fall below the 20 particle limit of the catalogue and
so their absence biases the distribution towards higher ratios.

The left-hand panels of Fig. 7 are for all the matches of FoF in
Dhalo, including the bijective matches. These distributions can be
understood as a superposition of the distributions in the right-hand
panels with the distribution for bijective matches shown in Fig. 3. At
low masses, the bijective halo matches dominate whereas at large
MDhalo there are many FoF haloes matched to each Dhalo. Thus,
for example, at MDhalo ≈ 1010.5 h−1 M�, we transition from 50 per
cent of the matched FoF haloes being primary to 50 per cent of
them being much lower mass (MFoF ≈ 108.7 h−1 M�) secondary
FoF haloes.

In Section 3.1.1, we examined the distribution of the MDhalo/M200

ratio for the bijectively matched haloes. We are also interested in
this distribution for the non-bijective Dhaloes shown in Fig. 8. We
immediately notice that the distribution is shifted towards lower
values than the corresponding distribution for the bijective haloes
shown in Fig. 2. The origin of this shift can be understood by
reference to Fig. 9 which shows an example of an FoF halo which
is split into several Dhaloes. The Dhalo whose particles are plotted
in magenta is the bijective match of the FoF halo and the Dhaloes
plotted in other colours are non-bijective matches. The black circles
in Fig. 9 show the location of r200 for each of the Dhaloes, while
the other circles show the location of the half-mass radius of each

Figure 8. Like the right-hand panel of Fig. 2, but for non-bijective Dhaloes.
The curves show the median, 5, 20, 80, 95 and 99 percentiles of the ratio
between the Dhalo mass, MDhalo, and the virial mass, M200. The horizontal
dashed lines indicate MDhalo/M200 = 0.5, 1.0 and 2.0.

Dhalo. For bijectively matched Dhaloes, the majority of which are
isolated, r200 is typically slightly smaller than the half-mass radius.
In contrast, we see in Fig. 9 that for many of the non-bijectively
matched Dhaloes, the half-mass radius is much smaller than r200.
This is a consequence of the SUBFIND algorithm which determines
the extent of a subhalo by finding saddle points in the density
distribution (Springel et al. 2001). Hence, as a subhalo enters a
dense environment, the mass assigned to it by SUBFIND is decreased.
This environmentally dependent effect both lowers MDhalo relative
to M200 and increases the scatter in this relation.

4 STAT I S T I C A L P RO P E RT I E S O F D H A L O E S

Having thoroughly compared individual Dhaloes with their corre-
sponding FoF haloes, we now turn to the statistical properties of
the Dhaloes. We first look at the Dhalo mass function and then the
statistics of their density profiles as characterized by fitting NFW
profiles (Navarro et al. 1995, 1996; Navarro, Frenk & White 1997).

4.1 The Dhalo mass function

For many applications, it is extremely useful to have an analytic
description of the number density of haloes as a function of the
halo mass. A relevant example for us is when semi-analytic galaxy
formation models are constructed using Monte Carlo methods (Cole
et al. 2000; Parkinson, Cole & Helly 2008) of generating dark
matter merger trees. In this case, in order to construct predictions of
galaxy luminosity functions or any other volume-averaged quantity
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Figure 9. An example of one FoF halo split by the Dhalo algorithm into
several Dhaloes. All the points plotted are from a single FoF halo. First,
all the FoF particles are plotted in green and then subsets belonging to
specific Dhaloes are overplotted. The magenta points are those belonging to
the bijectively matched Dhalo. Other colours are used to indicate particles
belonging to other Dhaloes with a unique colour used for each separate
Dhalo. The black circle around the magenta points marks r200 of the FoF
halo and is also the r200 of the bijective Dhalo. The concentric cyan circle
marks twice the half-mass radius of this main subhalo. The other black circles
show r200 locations for the non-bijective Dhaloes, while the concentric blue
circles indicate twice the half-mass radius of the corresponding subhalo.

(Cole et al. 2000; Berlind et al. 2003; Baugh et al. 2005; Bundy,
Ellis & Conselice 2005; van den Bosch, Tormen & Giocoli 2005;
Giocoli, Pieri & Tormen 2008; Moreno, Giocoli & Sheth 2008;
Neistein & Dekel 2008), one needs knowledge of the halo mass
function in order to know how many of each type of tree one has
per unit volume. It has become common practice to assume that
the halo mass function is given by analytic fitting functions which
have been fitted to the abundance of haloes found by the FoF or
other group finding algorithms (Davis et al. 1985; Lacey & Cole
1994; Knollmann & Knebe 2009) in suites of cosmological N-body
simulations. Murray, Power & Robotham (2013a,b) compare all the
currently proposed fitting functions. In our semi-analytic modelling,
we would like to achieve consistent results when using Monte Carlo
merger trees or when using merger trees extracted directly from N-
body simulations using the Dhalo algorithm. Hence, it is important
to directly determine the Dhalo mass function and to compare it to
such fitting formulae.

We do this in Fig. 10 which compares the Dhalo and FoF mass
functions that we measure in the MSII simulations with various
analytic prescriptions (Jenkins et al. 2001; Sheth & Tormen 2002;
Warren et al. 2006; Reed et al. 2007; Tinker et al. 2008; Watson et al.
2013). The left-hand panel shows the number density of haloes per
unit logarithmic interval of mass from the nominal 20 particle mass
resolution of the simulation up to 1014 h−1 M� which is the mass
of the most massive haloes in the simulation. In constructing these
mass functions, the halo mass we use is simply the aggregated mass
of all the particles assigned to each halo. Thus, in the FoF case this
is all particles linked to the halo by the FoF algorithm while in the
Dhalo case it is the sum of the masses of the subhaloes that compose

an individual Dhalo. Also shown in this panel are the predictions
of various analytic prescriptions. To evaluate these, we use σ 2(M),
the variance of the density fluctuations as a function of mass (using
a top-hat filter), corresponding to the input power spectrum of the
MSII propagated to the output time of the simulation using linear
theory. They are all clearly very similar and so in the left-hand panel
we expand the dynamic range of the comparison by plotting each
mass function divided by the prediction of the Sheth & Tormen
(2002) model.

The first thing that we note is that despite the sometimes quite
large differences (see Section 3) in the masses of individual FoF
and Dhaloes, their two mass functions agree to within 5 per cent
for all masses greater than 1010 h−1 M�. In the range 1010 � Mhalo

� 1012.5 h−1 M�, the Dhalo abundance is approximately 5 per
cent higher than FoF haloes as roughly 5 per cent of Dhaloes are
secondary members of FoF haloes. In other words, the FoF halo
abundance has been suppressed relative to the Dhalo abundance
by a fraction of them being composed of two or more Dhaloes
that have been linked into one more massive FoF halo by diffuse
material or bridges. There is also a competing effect, FoF haloes
being remerged into single Dhaloes, which suppressed the Dhalo
abundance, but this is a much smaller effect.

Below 1010 h−1 M�, the abundance of FoF halo rises systemat-
ically above that of Dhaloes. Between 1010 and 8 × 108 h−1 M�,
this excess increases to about 10 per cent and is caused by FoF
haloes that are remerged to become secondary components of larger
Dhaloes (see Fig. 1). At lower masses (�100 particles), the sharp
upturn in the FoF mass function relative to that of Dhaloes is due
to an increasing fraction of the FoF haloes not containing a self-
bound subhalo and so having no corresponding Dhalo (see Fig. 1).
Thus, this portion of the mass function is strongly affected by the
resolution of the simulation.

The Jenkins et al. (2001) fitting formula is within 10 per cent
of both the FoF and Dhalo mass functions for masses above
2 × 1010 h−1 M�. However, below this mass it strongly under-
predicts the number density of low-mass haloes. Note that we only
plot this fit and that of Watson et al. (2013) over the mass ranges
used to constrain them in the original papers. The Watson et al.
(2013) mass function is only defined at very high masses where we
have poor statistics. It lies somewhat below but is still compatible
with our noisy estimates. The Warren et al. (2006) model has the
best agreement with our FoF mass function, fitting it well all the way
down to 40 particles, beyond which we expect our limited resolu-
tion means that our FoF mass function is contaminated by spurious
unbound chance groupings of particles. However, the Reed et al.
(2007) mass function does a better job of matching the low-mass
end of our Dhalo mass function. The Sheth & Tormen mass function
is intermediate at low masses between that of Warren et al. (2006)
and Reed et al. (2007), but systematically below the other models
and our FoF and Dhalo mass functions at high masses, though still
only at the 15 per cent level. The Tinker et al. (2008) mass function
predicts halo abundances that are about 5–10 per cent higher than
Warren et al. (2006) and our estimated FoF abundances.

In summary, the Dhalo and FoF mass functions are very similar
and only differ by more than 5 per cent below 1010 h−1 M�. As a
result, the established analytic mass function models fit the Dhalo
mass function almost as well as they do the standard FoF mass
function. The differences between the different analytic fitting for-
mulae are greater than the difference between the FoF and Dhalo
mass functions. The Reed et al. (2007) model is a slightly better
description of the Dhalo mass function due to it predicting a slightly
lower abundance at low masses.
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Figure 10. The left-hand panel shows the differential mass functions for both FoF (linking length b = 0.2) haloes (blue line) and Dhaloes (red points) in
the MSII simulation. We plot this down to ∼108 h−1 M�, the mass corresponding to 20 particles in the MSII simulation and we also plot the Sheth &
Tormen (2002) mass function as a comparison. To expand the dynamic range, the right-hand panel shows the corresponding prediction of various analytic mass
functions (Jenkins et al. 2001; Warren et al. 2006; Reed et al. 2007, Tinker et al. 2008, Watson et al. 2013) as indicated in the legend but now relative to the
Sheth & Tormen (2002) prediction. The FoF Dhalo data are now shown as the heavy blue and red lines.

4.2 Density profile fits

We now turn to the density profiles of the haloes as these are an im-
portant ingredient in semi-analytic models such as GALFORM where
they influence the rate at which gas cools and set the gravitational
potential well in which galaxies form. We choose to fit the halo
density profiles using NFW (Navarro et al. 1996, 1997) profiles

ρNFW(r)

ρcrit
= δc

r/rs(1 + r/rs)2
(r ≤ r200), (2)

where δc is the characteristic density contrast and rs is the scale
radius. We define the virial radius, r200, as the radius at which
the mean interior density equals 200 times the critical density,
ρcrit = 3H 2

0 /(8πG). The concentration is defined as c ≡ r200/rs.
The definition of r200 implies that δc and c must satisfy

δc = 200

3

c3

ln(1 + c) − c/(c + 1)
. (3)

Our choice of NFW profiles is motivated by their accuracy as a
model of CDM haloes (Navarro et al. 1996, 1997), their widespread
use and so that our results can be compared to those in Neto et al.
(2007), who studied the statistics of NFW concentrations for FoF
haloes identified in the Millennium Simulation (Springel 2005).
To allow us to compare directly with Neto et al. (2007), we have
followed their fitting procedure.

For each halo, we have computed a spherically averaged density
profile by binning the halo mass into 32 equally spaced bins in
log10(r) between the virial radius and log10(r/r200) = −2.5, centred

on the potential minimum. We fit the two free parameters, δc and
rs, by minimizing the mean square deviation

σ 2
fit = 1

Nbin − 1

Nbin∑
i

[log10 ρ(ri) − log10 ρNFW(ri |δc, rs)]
2 (4)

between the binned ρ(r) and the NFW profile. As in Neto et al.
(2007), we perform the fit over the radial range 0.05 < r/r200 < 1.
In order to be consistent with the original NFW work, we express
the results in terms of fitted virial mass, M200, and a concentration,
c200 ≡ r200/rs. We note that while the fitted value of M200 used here
and the directly measured M200 used earlier (e.g. in Fig. 2) are not
identical, they in general agree very accurately with an rms scatter
of less than 3 per cent.

Neto et al. (2007) distinguished relaxed haloes from haloes that
were not in dynamical equilibrium due to recent or ongoing merg-
ers. They found that relaxed haloes were well fitted by NFW pro-
files while the profiles of unrelaxed haloes were lumpier and yielded
poorer fits with systematically lower concentrations. Hence, to com-
pare to Neto et al. (2007), we use the following three objective cri-
teria to assess whether a halo has reached equilibrium (Neto et al.
2007; Gao et al. 2008; Power et al. 2012).

(i) The fraction of mass in resolved substructures whose centres
lie inside r200: fsub = ∑Nsub

i 
=0 Msub,i/M200. We require fsub < 0.1 for
relaxed haloes.

(ii) The centre of mass displacement, i.e. the difference between
the position of the potential minimum and the centre of mass,
s = |rc − rcm|/r200 (Thomas et al. 2001). Note that the centre of
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Figure 11. Density profiles, ρ(r), for each of the Dhaloes shown in Fig. 9.
The colour of the fitted NFW curve matches the colour coding of the indi-
vidual Dhaloes in Fig. 9. The two-parameter, δc and rs, NFW least-square
fits were performed over the radial range 0.05 < r/r200 < 1, shown by the
black circles in Fig. 9. The minimum fit radius r/r200 = 0.05 is always
larger than the convergence radius derived by Power et al. (2003), which we
indicate by the solid vertical line in each panel.

mass is calculated using all the particles within r200, not only those
belonging to the FoF or Dhalo. We require s < 0.07 for relaxed
haloes.

(iii) The virial ratio, 2T/|U|, where T is the total kinetic energy
of halo particles within r200 and U is their gravitational potential
self-energy. We require 2T/|U| < 1.35 for our relaxed haloes. (For
haloes with more than 5000 particles, we use a random subset of
5000 particles to estimate U.)

Fig. 9 shows a single FoF halo and its component Dhaloes which
we use to illustrate the application of these selection criteria and
ability of NFW profiles to fit secondary/non-bijective Dhaloes. The
spherically averaged density profiles and our NFW fits to each of
these Dhaloes are shown in Fig. 11 along with the values of the
three selection parameters fsub, s and 2T/|U|. The top-left panel
of Fig. 11 shows the density profile and NFW fit for the main
component of the FoF halo, which can be identified by the cyan
circle in Fig. 9 which marks twice the half-mass radius of the most
massive substructure in the FoF halo. In previous analyses of FoF
haloes, such as Neto et al. (2007), this would be the only density
profile fitted to the mass distribution shown in Fig. 9. The bijectively
matched Dhalo has the same centre as the FoF halo and the NFW fit
is performed on all the mass within r200 (indicated by the concentric

black circle); consequently, the density profile and NFW fit of the
bijectively matched Dhalo are necessarily identical to that of the
corresponding FoF halo. Examining this region in Fig. 9, we can
clearly see that the mass distribution is asymmetric and has several
distinct substructures indicative of a recent merger. This halo is not
relaxed according to the above selection criteria as it fails to satisfy
the cut on 2T/|U|. Also its value of the centre offset, s, comes close
to the threshold. The NFW fit to its density profile can be seen to
have significant deviations at both large and small radii.

We are also interested in whether NFW profiles provide accept-
able fits to the other Dhaloes found within this single FoF halo.
These are shown in the remaining panels of Fig. 11. According to
the selection criteria, three of these Dhaloes (those in the right-hand
column) are relaxed. These are the blue, red and black Dhaloes in
Fig. 9 and their density profiles are shown, respectively, in the top,
middle and bottom-right panels of Fig. 11. In all cases, we see that
the NFW fits provide a good description of the mass profile of these
relaxed Dhaloes. The remaining two Dhaloes fail one or other of
the selection criteria. The yellow Dhalo of Fig. 9, whose density
profile is shown in the middle-left panel of Fig. 11, marginally fails
the cut on 2T/|U|. The cyan Dhalo of Fig. 9, whose density pro-
file is shown in the bottom-left panel of Fig. 11, which strongly
exceeds the threshold on s, can be seen to be very poorly fitted by
the NFW profile and have a particularly low concentration. This
Dhalo is very close to being within twice the half-mass radius of
the most massive substructure of the FoF halo, marked by the cyan
circle in Fig. 9. This being the radius used by the Dhalo algorithm
as part of its criteria to determine whether two subhaloes should be
considered as two distinct haloes or components of the same halo.
It is this proximity to a merger that both creates the large offset, s,
between the potential minimum and the centre of mass within r200

and distorts the object’s density profile. We also note that this Dhalo
has the most extreme ratio of r200 to twice its half-mass radius. In
Fig. 4, we saw that for isolated haloes r200 and twice the half-mass
radius were very comparable, but in contrast we see in Fig. 9 that
the r200 of secondary Dhaloes can be significantly boosted by the
density of the surrounding environment.

This systematic difference in the ratio of Dhalo mass to M200 for
bijective and non-bijective Dhaloes is illustrated in Fig. 8 which
should be contrasted with the right-hand panel of Fig. 2. We see
that the scatter in the ratio of MDhalo/M200 is considerably larger
for the non-bijective Dhaloes than it is for bijective Dhaloes. For
bijective Dhaloes, the 5–95 per cent range of the distribution spans
only a 30 per cent range in the ratio MDhalo/M200, while this is in-
creased to approximately a factor of 2 for the non-bijective Dhaloes.
In addition, the median MDhalo/M200 ratio is reduced from 1.2 for
bijective Dhaloes to ≈0.95 for non-bijective Dhaloes. These dif-
ferences are principally caused by the way the SUBFIND algorithm
(Springel et al. 2001) is affected by the local environment. SUBFIND

locates the edge of a substructure by searching for a saddle point in
the density distribution. Hence, if the same substructure is placed in
a denser environment, this will move the saddle point in and reduce
the mass that SUBFIND associates with the substructure (see Muldrew,
Pearce & Power 2011 for a detailed discussion). As a Dhalo mass
is simply the sum of the masses of the subhaloes from which it is
composed, this in turn reduces the mass assigned to the Dhalo. This
systematic dependence of Dhalo mass on environment is one of the
reasons why instead of directly using the Dhalo mass as input to
GALFORM semi-analytic model we force the halo masses in the halo
merger trees to increase monotonically so that they do not artifi-
cially decrease, just prior to mergers, due to such environmental
effects.

MNRAS 440, 2115–2135 (2014)

 at D
urham

 U
niversity L

ibrary on A
pril 11, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


2128 L. Jiang et al.

Figure 12. The mass–concentration relation for relaxed FoF haloes in MSII
(top panel) and for all the FoF haloes (bottom panel). The boxes represent
the 25 per cent and 75 per cent centiles of the distribution, while the whiskers
show the 5 per cent and 95 per cent tails. The numbers on the top of each panel
indicate the number of haloes in each mass bin. The median concentration
as a function of mass is shown by the blue solid line and is well fitted by the
linear relations given in equations (5) and (6). The green lines in each panel
correspond to fits of Neto et al. (2007).

4.3 The mass–concentration relation

Here we compare the mass–concentration relation for FoF haloes
that we find in the high-resolution MSII simulation with that
found by Neto et al. (2007) in the lower resolution Millennium
Simulation.5 We then go on to compare this relation with the rela-
tion we find for the secondary/non-bijective Dhaloes. There is no
need to separately look at the bijective Dhaloes as their M200 and c
are necessarily the same as that of the corresponding FoF haloes as
they have the same centre and all the surrounding mass is used in
the fit. As in Neto et al. (2007), the mass we use in these relations
is the M200 of the NFW fit rather than the directly measured value.
Fig. 12 shows concentration as a function of mass for the range
1010.5 < M200/h−1 M� < 1013.75 for our catalogue of FoF haloes.
The top panel is for our relaxed FoF halo sample, while the bottom
panel shows results for all the FoF haloes, including systems that
do not meet our equilibrium criteria. In each case, we find a signif-
icant spread in concentration at fixed mass with a weak trend for
decreasing concentration with increasing mass. This is generally
interpreted (Navarro et al. 1995, 1996, 1997; Bullock et al. 2001;
Eke et al. 2001; Neto et al. 2007; Gao et al. 2008) as reflecting
the typical formation time of the halo with the lowest mass haloes
forming earliest and having high-density cores which reflect the

5 As a precise test of our methods, we first applied our analysis to FoF
haloes in the milli-MSII simulation, which has the same volume, initial
conditions and data format as MSII (Boylan-Kolchin et al. 2009), but lower
mass resolution, equal to that of the Millennium Simulation (Springel et al.
2005) analysed by Neto et al. (2007). We found precise agreement with the
mass–concentration relationship published in Neto et al. (2007).

density of the universe at the time they formed. The dependence of
the median concentration of FoF haloes on mass is well described
by the power-law fit

c200 = 5.45
(
M200/1014 h−1 M�

)−0.084
, (5)

for relaxed haloes and by

c200 = 5.01
(
M200/1014 h−1 M�

)−0.094
(6)

for all haloes. These fits were performed only over the mass range
1010.5 < M200/h−1 M� < 1013.75 due to poor statistics at higher
masses and are shown by the blue solid lines in Fig. 12. Also
shown in Fig. 12 is the fit for the median concentration for re-
laxed haloes found by Neto et al. (2007). We plot these green lines
only for M200 > 1012/h−1 M� corresponding to the resolution limit
of their study. We see that over the overlapping mass range, our
median concentrations agree very well with those of Neto et al.
(2007) indicating that the mass profiles over the fitted radial range,
−2.5 < log (r/r200) < 0, are not affected by mass resolution. Our fit
is also similar to the relation c200 = 5.6(M200/1014 h−1 M�)−0.098

found by Macciò et al. (2007) for relaxed haloes. The small differ-
ence could be because they fit the mean rather than median of the
relation or due to differences in the criteria used to select relaxed
haloes. Like us and Neto et al. (2007), Macciò et al. (2007) find that
unrelaxed haloes have systematically lower concentrations.

Having demonstrated that for FoF haloes we recover a mass–
concentration relation which is in very accurate agreement with
previous work (Macciò et al. 2007; Neto et al. 2007), we now want
to compare mass–concentration relations for our bijective and non-
bijective Dhaloes. The mass–concentration relation we find for the
bijective Dhaloes is practically identical to that of the FoF haloes
plotted in Fig. 12 and so we have chosen not to effectively re-
peat the same plot. The similarity is inevitable as Fig. 1 shows
that for masses greater than 1010.5 h−1 M�, for which we can mea-
sure concentrations, the fraction of FoF haloes that have bijective
matches with Dhaloes is greater than 95 per cent and these bijec-
tively matched haloes have identical centres and so identical fitted
NFW mass profiles.

In Fig. 13, we show the mass–concentration for relaxed and all
non-bijective Dhaloes. These haloes are all secondary fragments
of FoF haloes and so are a completely disjoint catalogue of haloes
to those represented in the FoF mass–concentration relations of
Fig. 12. To aid in comparing the two sets of relations, we plot the
power-law fits to the median mass–concentration relations of Fig. 12
as dashed lines in Fig. 13. It can be seen that these are very similar
to the power-law fits to the median relations

c200 = 4.90
(
M200/1014 h−1 M�

)−0.093
, (7)

for relaxed and

c200 = 5.01
(
M200/1014 h−1 M�

)−0.095
(8)

for all the non-bijective Dhaloes which are shown by the solid lines
in Fig. 13.

Comparison of the bars and whiskers in Figs 12 and 13 shows that
the not only do the median mass–concentration relations for FoF
and non-bijective Dhaloes agree very well, but the distributions of
concentrations about the medians are also quite similar. The large
number of haloes we have in the MII simulation enables us to
look at these distributions in more detail and in Fig. 14 we show
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Figure 13. The mass–concentration relation for relaxed non-bijective
Dhaloes in MSII (top panel) and for all the non-bijective Dhaloes (bot-
tom panel). The boxes represent the 25 per cent and 75 per cent centiles of
the distribution, while the whiskers show the 5 per cent and 95 per cent tails.
The numbers on the top of each panel indicate the number of haloes in each
mass bin. The median concentration as a function of mass is shown by the
blue solid line and is well fitted by the linear relations given in equations
(7) and (8). The blue dashed line in each panel repeats the fits to the median
mass–concentration relation for FoF haloes shown in Fig. 12.

histograms of the concentration, distributions along with log-normal
approximations

P (log10 c) = 1√
2π σ

exp

⎡
⎣−1

2

(
log10 c − 〈

log10 c
〉

σ

)2
⎤
⎦, (9)

for two mass bins centred on 1011 and 1012 h−1 M�. We see in all
cases that the non-bijective Dhaloes have a very similar distribu-
tion of concentrations as the distribution of the corresponding FoF
sample and that both are approximated accurately by log-normal
distributions. Note that in both cases we are binning haloes by the
M200 of their fitted NFW profile and so we are affected by the Dhalo
mass being perturbed and suppressed in non-bijective Dhaloes. We
recall that the FoF sample is essentially the same as the sample of
bijectively matched Dhaloes and so we conclude that concentration
distribution is essentially the same for both the primary Dhaloes
and those that are secondary fragments of FoF haloes. In all cases,
the concentration distributions for the relaxed samples have slightly
higher median concentrations and smaller dispersions than the cor-
responding complete mass selected samples.

Also of interest is the fraction of both FoF haloes and non-
bijective Dhaloes that satisfy the equilibrium criteria. From the
number of objects per mass bin given in the labels in Figs 12 and
13, this can be seen to be in the range of 80–85 per cent for both FoF
and Dhaloes. One might at first expect that many multinucleated FoF
haloes would fail both the threshold on the asymmetry, s, and the
fraction of mass in substructures, fsub. However, as these statistics
are evaluated only using the mass within r200 and not across the
whole FoF halo, �98 per cent of FoF haloes pass the substructure

threshold and �88 per cent the asymmetry threshold. The first of
these numbers is slightly lower for the non-bijective Dhaloes, i.e.
only �93 per cent pass the substructure threshold. However, those
passing the more stringent asymmetry threshold is more compara-
ble at �86 per cent, while for both FoF and non-bijective Dhaloes
�93 per cent pass the criterion that the virial ratio 2T/|U| < 1.35.
Consequently, the fraction of the non-bijective Dhaloes that pass
the relaxation criteria is very similar to that for the FoF or bijective
Dhaloes. Hence, in both cases the mass–concentration distributions
that we have quantified are representative of the vast majority of the
haloes.

5 C O N C L U S I O N S

We have used the high-resolution Millennium Simulation II cos-
mological N-body simulation to quantify the properties of haloes
defined by the Dhalo algorithm. This algorithm is designed to pro-
duce merger trees suitable for use with the semi-analytic galaxy
formation model, GALFORM. We have included a full description of
the Dhalo algorithm which produces a set of haloes, and the merger
trees that describe their hierarchical evolution, that are consistent
between subsequent snapshots of the N-body simulations. We have
presented the properties of the Dhaloes by comparing them with the
corresponding properties of the much more commonly used FoF
haloes (Davis et al. 1985).

We have shown that unlike the FoF algorithm the Dhalo algorithm
is successful in avoiding distinct masses and concentrations being
prematurely linked together into a single halo when their diffuse
outer haloes touch. We have also illustrated how some Dhaloes can
be composed of more than one FoF halo. This occurs as structure
formation in CDM models is not strictly hierarchical and occasion-
ally a halo, after falling into a more massive halo, may escape to
beyond the virial radius of the more massive halo. For the purposes
of the GALFORM semi-analytic model, it is convenient to consider
such haloes as remaining as satellites of the main halo. We find that
such remerged FoF haloes are not uncommon, but contribute very
little mass to the larger haloes to which they are (re)attached.

Despite the complex mapping between FoF and Dhaloes, which
results in a significant fraction of FoF haloes being broken up into
multiple Dhaloes while other FoF haloes get (re)merged into a single
Dhalo, we find that the overall mass functions of the two sets of
haloes are very similar. The mass functions of our Dhalo and FoF
halo catalogues are both reasonably well fitted over the mass range
of 108–1013.5 h−1 M� by currently popular analytic mass functions
such as those of Warren et al. (2006) and Reed et al. (2007).

Approximately 90 per cent of the Dhaloes have a unique one-to-
one, bijective, match with a corresponding FoF halo. For this subset
of haloes, the mass of the Dhalo, MDhalo, correlates much more
closely with the standard virial mass, M200, than does the FoF mass.
The median MFoF/M200 = 1.2 and 90 per cent of the distribution
of this mass ratio span a factor 1.9, while for the same Dhaloes
the median MDhalo/M200 = 1.15 and corresponding width of the
distribution span only a factor 1.3. The larger scatter in the FoF case
is often caused by secondary mass concentrations that lie outside
the r200 radius of the main substructure and are linked into the FoF
halo by particle bridges in overlapping diffuse haloes. The non-
bijective Dhaloes have a wider distribution, with 90 per cent of the
distribution spanning a factor 2.2 and with the median ratio reduced
to MDhalo/M200 = 0.95. This is due to the SUBFIND substructure
finder, which is part of the Dhalo algorithm, assigning less mass
to subhaloes when they move into overdense environments. When
utilized in GALFORM, this systematic loss of mass is not an issue
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Figure 14. The distribution of concentrations for haloes in the two mass bins 10.75 < log10M200/h−1M� < 11.25 and 11.75 < log10M200/h−1M� < 12.25.
The upper panels are for samples of relaxed haloes while the bottom panels are for all haloes whether or not they satisfy the relaxation criteria. In each panel,
the blue histogram is for FoF haloes and the red histogram is for Dhaloes that do not have bijective matches to FoF haloes. The smooth curves are log-normal
approximations with the same log10c and second moment, σ , as the measured distributions. The corresponding values of log10c and σ are given in the legend.

as the merger trees are preprocessed and mass is added back in to
ensure that the branches of the GALFORM merger trees always have
monotonically increasing masses.

The high resolution of the MSII Simulation has allowed us to
study the density profiles and concentrations of both FoF and
Dhaloes over a wide range of mass. To avoid contaminating our
samples with unrelaxed haloes for which fitting smooth spherically

symmetric profiles is inappropriate, we exclude unrelaxed haloes
using the relaxation criteria from Neto et al. (2007). We find that
80 per cent of both FoF and Dhaloes are relaxed according to
these criteria. For FoF haloes, we accurately reproduce the mass–
concentration distribution found by Neto et al. (2007) at high masses
and extend the distribution to much lower masses. Combining our
results with those of Macciò et al. (2007) and Neto et al. (2007),
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we find that a single power law reproduces the mass–concentration
relation for over five decades in mass. We also find that the mass–
concentration distributions for Dhaloes agree very accurately with
those for FoF haloes. This is true even for non-bijective Dhaloes
which are secondary components of FoF haloes. The properties of
such haloes have generally been overlooked in previous studies.
We show that the distributions of concentrations around the mean
mass–concentration relation are well described by log-normal dis-
tributions for both the FoF and Dhaloes.
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A P P E N D I X A : C O N S T RU C T I N G D H A L O
M E R G E R T R E E S

Here we describe in detail the algorithm used to produce the Dhalo
merger trees. These merger trees are intended to be used as input
to the GALFORM semi-analytic model of galaxy formation. The need
for consistency between the halo model used in the semi-analytic
calculation and the N-body simulation imposes some requirements
on the construction of the merger trees.

The GALFORM galaxy formation model makes the approximation
that mergers between haloes are instantaneous events and assumes
that haloes, once merged, do not fragment. However, in N-body
simulations halo mergers take a finite amount of time and it is not
uncommon for a halo falling into another, more massive halo to
escape to well beyond the virial radius after its initial infall (Gill,
Knebe & Gibson 2005; Ludlow et al. 2009). We therefore need
to choose when to consider N-body haloes to have merged in the
semi-analytic model and define our haloes such that they remain
merged at all later times. We also wish to define the haloes used
to construct the trees such that, as far as possible, they resemble
the spherically symmetric, virialized objects assumed in the galaxy
formation model. Quantifying the extent to which we have achieved
this is one of the main aims of this paper.

A1 Halo catalogues

The first step in building the merger trees is to use the FoF (Davis
et al. 1985) and SUBFIND algorithms (Springel et al. 2001) to identify
haloes and subhaloes in all of the simulation snapshots. The SUBFIND

algorithm decomposes each FoF halo into subhaloes by identifying

self-bound density maxima. Usually the most massive subhalo con-
tains most of the mass of the original FoF halo. Secondary density
maxima give rise to additional subhaloes. Compared to the FoF halo
the most massive subhalo does not include any of the mass assigned
to other subhaloes (a simulation particle can only belong to one
subhalo) nor does it include particles that are not gravitationally
bound to it. Some of the lowest mass FoF haloes have no self-
bound subhaloes and most FoF haloes have at least some ‘fuzz’ of
unbound particles which belong to no subhalo. FoF haloes with no
self-bound subhaloes are not used in the construction of the merger
trees.

A2 Building the subhalo merger trees

Before we can construct the Dhalo merger trees, it is necessary to
define subhalo merger trees by identifying the descendant of each
subhalo. The code we use to do this was included in the merger
trees comparison project carried out by Srisawat et al. (2013) under
the name D-TREES. The project concluded that it was a desirable
feature for a merger tree code to use particle IDs to match haloes
between snapshots and have the ability to search multiple snapshots
for descendants. The latter requirement was due to the tendency of
the Amiga’s Halo Finder (Knollmann & Knebe 2009) used in the
project to temporarily fail to detect substructures during mergers.

Since SUBFIND suffers from a similar problem, we allow for the
possibility that the descendant of a subhalo may be found more than
one snapshot later. Our approach is to devise an algorithm which
can identify the descendant of a halo at any single, later snapshot,
apply it to the next Nstep snapshots (where Nstep = 5) and pick one
of these Nstep possible descendants to use as the descendant of the
subhalo in the merger trees.

Alternative solutions to this problem include allowing the merger
tree code to modify the subhalo catalogue to ensure consistency of
subhalo properties between snapshots (CONSISTENTTREES; Behroozi
et al. 2013) and using information from previous snapshots to define
the subhalo catalogue (HBT; Han et al. 2012).

In common with all but one of the merger tree codes in the
comparison (JMERGE, which relies entirely on aggregate properties
of the haloes), we identify descendants by finding subhaloes at
different snapshots which have particles in common.

A2.1 Identifying a descendant at a single, later snapshot

To find the descendant at snapshot j, of a halo which exists at an
earlier snapshot, i, the following method is used. For each halo
containing Np particles, the Nlink most bound are identified, where
Nlink is given by

Nlink = min(Nlinkmax, max(ftraceNp,Nlinkmin)) (A1)

with Nlinkmin = 10, Nlinkmax = 100 and ftrace = 0.1.
For each of the haloes at snapshot i, descendant candidates are

found by locating all haloes at snapshot j which received at least one
particle from the earlier halo. Then, a single descendant is chosen
from these candidates as follows. If any of the descendant candidates
received a larger fraction of their Nlink most bound particles from the
progenitor halo than from any other halo at the earlier snapshot, then
the descendant is chosen from these candidates only and the halo
at snapshot i will be designated the main progenitor of the chosen
descendant; otherwise, all candidates are considered and the halo
will not be the main progenitor of its descendant. The descendant
of the halo at snapshot i is taken to be the remaining candidate
which received the largest fraction of the Nlink most bound of the
progenitor halo. For each halo at snapshot j, this method identifies
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zero or more progenitors of which at most one may be a main
progenitor. Note that it is not guaranteed that a main progenitor will
be found for every halo.

By following the most bound part of the subhalo, we ensure
that if the core of a subhalo survives at the later snapshot, it is
identified as the descendant irrespective of how much mass has
been lost. It also means that in the cases where an object at the later
snapshot has multiple progenitors, we can determine which one of
the progenitors contributed the largest fraction of the most bound
core of the descendant object. We consider this main progenitor to
have survived the merger while the other progenitors have merged
on to it and ceased to exist as independent objects.

Fig. A1 shows three examples of this linking procedure. In the
simplest case (left), a single, isolated subhalo B at snapshot j is
identified as the descendant of subhalo A which exists at the earlier
snapshot i. Since more of the most bound particles of subhalo B
come from subhalo A than from any other subhalo, we conclude
that A is the main progenitor of B. In the second case (centre),
two subhaloes A and B merge to form subhalo C at the later snap-
shot. Subhalo A is determined to be the main progenitor because it
contributed the largest fraction of the most bound particles of the
descendant, C. In the third example (right), a satellite subhalo A
exists within a more massive host halo. In this case, particles from
the subhalo A are split between subhalo B and the host halo C at the
later snapshot. While a large fraction (or even the vast majority) of
the particles from subhalo A may belong to the host halo at the later
snapshot, we choose subhalo B as the descendant because its most
bound part came from subhalo A.

A2.2 Searching multiple snapshots for descendants

If a subhalo is not found to be the main progenitor of its descendant,
this may indicate that the subhalo has merged with another subhalo
and no longer exists as an independent object. However, it is also

possible that the substructure finder has simply failed to identify the
object at the later snapshot because it is superimposed on the dense
central parts of a larger subhalo. Typically, this phase lasts for a
small fraction of the host halo dynamical time (Behroozi et al. 2013)
which in turn is much shorter than the usual interval between the
snapshots of cosmological N-body simulations. Hence, by looking
one snapshot ahead we will normally find the missed subhalo, but
one can be unlucky and catch it half an orbit later when again it is
hidden by the dense core of the more massive subhalo in which it
is orbiting. Hence, looking several snapshots ahead exponentially
suppresses this possibility. Thus, in order to distinguish between
subhalo mergers and subhaloes which are just temporarily lost, it is
necessary to search multiple snapshots for descendants.

In our algorithm for each snapshot i in the simulation, descendants
are identified at later snapshots in the range i + 1 to i + Nstep

using the method described in Section A2.1. For each subhalo at
snapshot i, this gives up to Nstep possible descendants. One of these
descendants is picked for use in the merger trees as follows: if
the subhalo at snapshot i is the main progenitor of one or more
of the descendants, the earliest of these descendants which does
not have a main progenitor at a snapshot later than i is chosen. If
no such descendant exists, the earliest descendant found is chosen
irrespective of main progenitor status.

Descendants more than one snapshot later are only chosen in the
cases where the earlier subhalo is the main progenitor – i.e. where
the group still survives as an independent object. If the subhalo
does not survive, we have no way to determine whether it merged
immediately or if SUBFIND failed to detect it for one more snapshot
prior to the merger, so we simply assume that the merger happened
between snapshots i and i + 1.

Fig. A2 shows a case where a descendant more than one snapshot
later is chosen. Subhalo A exists at snapshot i. Its descendant at
snapshot i + 1 is found to be subhalo D. However, the most bound
particles of D were not contributed by subhalo A, but by another

Figure A1. Schematic examples illustrating the method used to link SUBFIND subhaloes between pairs of snapshots i and j, where i < j. The green circles
represent SUBFIND subhaloes. The most bound Nlink particles in each subhalo at the later time are shown in red. From left to right are (a) a single, isolated
subhalo which still exists at the next snapshot, (b) a merger between subhaloes A and B where more of the most bound particles of the merged halo C come
from halo A than from any other halo and therefore halo A is considered to be the main progenitor of halo C, and (c) a satellite subhalo orbiting within a
background halo which loses a large fraction of its particles to its host halo at the next snapshot but is still identified by SUBFIND. Arrows between green circles
show the location of the majority of the particles in the subhalo at the later snapshot. Arrows starting from red circles show the location of the majority of the
most bound particles at the earlier snapshot.
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Figure A2. A schematic example of a case where the descendant of a
subhalo is found to be more than one snapshot later. The green circles
represent a satellite SUBFIND subhalo within a larger host halo which is
represented by the blue circles. Three consecutive snapshots are shown.

progenitor, subhalo C. This means that A is not the main progenitor
of its descendant at snapshot i + 1 and so it is necessary to consider
possible descendants at later snapshots. Two subhaloes at snapshot
i + 2 (B and E) receive particles from subhalo A. Since the most
bound particles of subhalo B came from subhalo A, A is the main
progenitor of B and subhalo B is taken to be the descendant of A.

A3 Constructing a halo catalogue

At this point we have a descendant for each subhalo. This is suffi-
cient to define merger trees for the subhaloes. These SUBFIND trees
can be split into ‘branches’ as follows. A new branch begins when-
ever a new subhalo forms (i.e. the subhalo has no progenitors). The
remaining subhaloes that make up the branch are found by follow-
ing the descendant pointers until either a subhalo is reached that is
not the main progenitor of its descendant, a subhalo is reached that
has no descendant or the final snapshot of the simulation is reached.
Each of these branches represents the lifetime of an independent
halo or subhalo in the simulation. We construct haloes and halo
merger trees by grouping together these branches of the subhalo
merger trees using methods which will be described below. We re-
fer to the resulting collections of subhaloes as ‘Dhaloes’. Fig. A3
shows an example of a Dhalo merger tree with the subhalo merger
tree branches marked. In this case, there are three branches. Branch
A is a single, massive halo which exists as an independent halo at all
four snapshots. Branch B is a smaller halo which becomes a satellite

Figure A3. An example of a Dhalo merger tree showing two less massive
haloes falling into another, more massive halo. Subhaloes are shown in
green. Red areas indicate subhaloes which belong to the same Dhalo. The
black arrows show branches of the subhalo merger tree.

subhalo within halo A, but continues to exist. Branch C is another
small halo which briefly becomes a satellite before merging with A.

For each subhalo in an FoF halo, we identify the least massive,
more massive ‘enclosing’ subhalo in the same FoF halo. Subhalo A
is said to enclose subhalo B if B’s centre lies within twice the half-
mass radius of A. A pointer to the enclosing subhalo is stored for
each subhalo that is enclosed. This produces a tree structure which
is intended to represent the hierarchy of haloes, subhaloes, sub-
subhaloes, etc. in the FoF halo. Any subhalo which is not enclosed
by any other becomes a new Dhalo. Any subhaloes enclosed by this
subhalo are assigned to the new Dhalo.

We then iterate through the snapshots from high redshift to low
redshift. For each subhalo, we find the maximum number of particles
it ever contained while it was the most massive subhalo in its parent
FoF halo. If a satellite subhalo in a Dhalo retains a fraction fsplit of
its maximum isolated mass, then it is split from its parent Dhalo and
becomes a new Dhalo. Any subhaloes enclosed by this subhalo are
assigned to the new Dhalo too. We usually set fsplit = 0.75, so that
when a halo falls into another, more massive halo, the two haloes
will only be considered to have merged into one once the smaller
halo has been stripped of some of its mass. This is to ensure that
haloes artificially linked by the FoF algorithm are still treated as
separate objects.

In some cases, a subhalo may escape from its parent halo. This
happens to halo B in Fig. A3. For the purposes of semi-analytic
galaxy formation modelling, we would like to continue to treat such
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subhaloes as satellites in the parent halo so that each infalling halo
contributes a single branch to the halo merger tree. This is done
by merging such objects back on to the Dhalo they escaped from;
the subhalo is recorded as a satellite within the original Dhalo at
all later times regardless of its spatial position. Any subhaloes it
encloses will also be considered to be part of this Dhalo.

In practice, the remerging is carried out in the following way. For
each Dhalo A, we identify a descendant Dhalo B by determining
which later Dhalo contains the descendant of the most massive
subhalo in A which survives at the next snapshot. In every case
where a subhalo in A survives, we assign the descendant of the
subhalo to Dhalo B. We repeat this process for all Dhaloes at each
snapshot in decreasing order of redshift. This ensures that if any two
subhaloes are in the same Dhalo at one snapshot, and both survive
at the next snapshot, they will both be in the same Dhalo at the next
snapshot.

This process produces a Dhalo catalogue for each snapshot. Each
Dhalo contains one or more subhaloes and each subhalo may have
a pointer to a descendant at some later snapshot. Any subhaloes in a
Dhalo which survive at the next snapshot are guaranteed to belong
to the same Dhalo at the next snapshot. This provides a simple
way to identify a descendant for each Dhalo and defines the Dhalo
merger trees. Fig. A3 shows an example of a Dhalo merger tree.
The two smaller haloes B and C merge with a larger halo A. Halo
C survives as a satellite for one snapshot before merging with the
descendant of A. Halo B also becomes a satellite subhalo and then
temporarily escapes from the parent halo before falling back in. At
all times after the initial infall, it is considered to be part of the
parent Dhalo.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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