
Rotationally invariant distortion resistant finite-elements

Tim Cowanb, William M. Coombsa

aSchool of Engineering and Computing Sciences, Durham University
Science Site, South Road, Durham, DH1 3LE, UK.

T: +44 (0) 191 334 2516, F: +44 (0) 191 334 2408, E: w.m.coombs@durham.ac.uk
bBAE systems, Bridge Road, Barrow-in-Furness, LA14 1AF, UK.

Abstract

The predictive capability of conventional iso-parametric finite-elements deteriorates
with mesh distortion. In the case of geometrically non-linear analysis, changes in geometry
causing severe distortion can result in negative Jacobian mapping between the local and
global systems resulting in numerical breakdown. This paper presents a finite-element for-
mulation that is resistant to irregular mesh geometries and large element distortions whilst
remaining invariant to rigid body motion. The predictive capabilites of the family of finite-
elements are demonstrated using a series of geometrically non-linear analyses including an
elastic cantilever beam and an elasto-plastic double notched specimen.
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1. Introduction

Three-dimensional iso-parametric hexahedral elements generally perform best when in
the form of right regular cubes. However, in practice, to reproduce irregular geometries
this is not possible. Further, it is well known that the accuracy of the finite element solu-
tion deteriorates as elements become distorted. Distortion typically occurs when meshing
complex curved geometries or when simulating large deformation processes like forging or
extrusion. Distorted elements can lead to not just inaccurate results but, in extreme cases,
breakdown of the numerical algorithm through a negative Jacobian mapping between the
local and global systems. At this point, one is forced down the computationally expen-
sive task of re-meshing and transferring the state variables and internal forces to the new
discretisation. The problem of mesh distortion sensitivity has been apparent since the sev-
enties (for example, see [5, 6] amongst others), however a complete solution to the problem
has yet to emerge.

Although there have been several alternative approaches to overcoming the distortion
sensitivity of finite-elements, such as the smoothed finite-element method [9] and meshless
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approaches (see Ullah [22] for an overview), the tremendous popularity of standard finite-
elements justifies continued research within this classical framework.

Perhaps the most promising method to produce distortion-immune finite elements was
introduced by Rajendran and his co-researchers. Rajendran and Liew [17] presented an
unsymmetric 8-noded quadrilateral element, reporting that this element could exhibit im-
munity to any kind of mesh distortion under a quadratic displacement field. They named
their new element the US-QUAD8 (unsymmetric quadrilateral element with eight nodes).
However, a disadvantage with this formulation is it produces an unsymmetric stiffness ma-
trix requiring an unsymmetric global solver. However, these elements were able to resist
mesh distortion and were capable of producing accurate results despite heavy mesh distor-
tion (under certain displacement fields). The element proposed by Ranjendran and Liew
is only distortion-immune when the underlying basis of the trial functions can exactly cap-
ture the displacement field. In this paper we will instead use the term ‘distortion-resistant’
rather then distortion immune.

Ooi et al [12] extended the idea of these distortion-resistant unsymmetric elements to
three dimensions, proposing an unysmmetric 20-noded hexahedral element (US-HEXA20).
Liew, et al. [8] introduced a two-dimensional, 6-noded triangular element based on the
same underlying formulation. Prathap, et al. [15] investigated the approach using the
best-fit paradigm. They observed that when an element was distorted, the isoparametric
shape functions (used as the test functions) helped satisfy continuity across the element’s
edge. Using metric shape functions for the trial basis ensured completeness across the
element, allowing exact reproduction of the appropriate order displacement field. This
observation explained why the unsymmetric formulation give excellent results for distorted
meshes. Another observation made in this paper was the lack of the determinant of the
Jacobian matrix in the stiffness integral. This allowed accurate calculations of the stiffness
integral, even when the determinant of the Jacobian went negative as a consequence of mesh
distortion. However, the Jacobian matrix does feature in the unsymmetric formulation,
albeit in an alternative guise.

Rajendran et al. [18] further investigated the mesh distortion immunity for the QUAD8
elements using constant, linear and quadratic strain field patch tests. In 2008, Ooi et al.
[14] highlighted two defects associated with the US-QUAD8. These were its rotational
frame dependence and interpolation failure under certain conditions.The remedy to its
rotational frame dependence proposed in that paper was given by as rotating the local
coordinate system to coincide with one of the element’s edges. Although this did produce
a formulation invariant to rigid body rotations, care must be taken to select an appropriate
edge. Furthermore, the extension to three-dimensions is not clear. Interpolation failure of
the metric shape functions is easy to identify, occurring when the functions do not sum to
unity. In cases when this occurred, a random small transformation of the coordinate system
was applied, the element constructed and the stiffness matrix was transformed back to its
original configuration. Rajendran’s 2010 paper [16] provided a comprehensive study into
the 8-noded quadrilateral unsymmetric element formulation. The work extended Prathap
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et al.’s [15] studies and investigated how the absence of the Jacobian matrix from the
stiffness integral may help reduce inaccuracy due to mesh distortion. The usymmetric
elements of Rajendran and co-workers have also recently been applied to the analysis of
finite deformation elastic problems using a total-Lagrangian framework [13].

An alternative to these unsymmetric formulations is the use of hybrid stress-function
(HSF) elements (see, for example [2] and the references contained within). HSF elements
are based on the principle of minimum complementary energy and their basis functions are
obtained from analytical solutions of the Airy stress function. They are able to withstand
high mesh distortion and are rotationally invariant. However, a number of points should
be noted about these HSF elements: (i) they require significantly higher Gauss-Lagrange
quadrature compared to conventional finite-elements and (ii) careful selection of an appro-
priate number of trial functions is essential to ensure that spurious energy modes do not
appear in the element stiffness matrix (this selection process is not yet fully understood
[2]). The greatest restriction of the HSF formulation is inherent in the use of Airy stress
function solutions, limiting the elements to elastic analyses.

A recent paper by Cen et al. [3] proposed an element that combined the unsymmetric
approach of Rajendran and co-workers [16, 17] with Cen et al.’s [2] HSF formulation.
The element overcame the rotational invariance and interpolation failure problems of the
unsymmetric formulation by replacing the metric shape function with basis functions from
the Airy stress function solution. However, as with the HSF approach, this restricts the
element to elastic analysis.

This short paper proposes a new distortion resistant family of finite-elements with a
polynomial test and a local convected metric trial basis. The use of a local trial function re-
sults in a rotationally invariant element with a clear, clean, implementation for one, two and
three-dimensional analysis. The paper also extends the application of these distortion re-
sistant elements to geometrically non-linear elasto-plastic analysis using a total-Lagrangian
formulation. For any element to be used in general finite-element analysis, especially in the
realm of finite deformation, it is essential that the formulation is invariant to the particular
frame of reference.

The layout of the paper is as follows. Section 2 presents the element formulation
and provides a clear three-dimensional numerical algorithm. The element is extended
to the case of elasto-plastic geometric non-linearity in Section 3. Section 4 presents
a series of numerical analyses, namely: (i) a linear elastic plane stress cantilever, (ii)
a three-dimensional patch test, (iii) a soft elastic cantilever beam, (iv) an eccentrically
loaded column and (v) an elasto-plastic double-notched plate. Finally, brief conclusions
are drawn in Section 5. The paper uses a tension positive notation and the equations are
mainly presented in matrix-vector format to aid numerical implementation.
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2. Element formulation

We restrict the scope of this paper to static stress analysis. The governing weak form
of equilibrium can be expressed as a summation of integrals over the problem domain, Ω,
and surface, S, as follows

{fe}︷ ︸︸ ︷∫
Ω
[BL]T [De][BR]dΩ︸ ︷︷ ︸

[ke]

{d} =

{f}︷ ︸︸ ︷∫
S
[N ]T {t}dS︸ ︷︷ ︸
{fext}

+

∫
Ω
[N ]T {fb}dΩ︸ ︷︷ ︸

{fb}

, (1)

where {f e} is the internal force vector, [ke] is the element stiffness matrix, {f ext} is the
external force vector, {f b} is a vector containing the nodal body forces and {f} is the
summation of these two force components. [BL] and [BR] are the strain-displacement
matrices containing the derivatives of the test and trial shape functions with respect to the
global coordinates, [N ] contains the test shape functions, {t} is the traction vector, {d}
the element nodal displacements and [De] is the elastic material stiffness matrix.

The element stiffness matrix, [ke], can be approximated through Gauss quadrature as

[ke] =

nGp∑
i=1

[BL
i ][D

e][BR
i ] det

(
[Ji]

)
wi, (2)

where nGp denotes the number of Gauss points, [J ] is the Jacobian matrix and wi is
the weight associated with the Gauss point’s location. In three-dimensions the strain-
displacement matrices have the following format

[B] =


N1,x 0 0 . . . Nn,x 0 0
0 N1,y 0 . . . 0 Nn,y 0
0 0 N1,z . . . 0 0 Nn,z

N1,y N1,x 0 . . . Nn,y Nn,x 0
0 N1,z N1,y . . . 0 Nn,z Nn,y

N1,z 0 N1,x . . . Nn,z 0 Nn,x

 , (3)

where Nj denotes the shape function associated with node j and (·),x denotes the derivative
of (·) with respect to x. The classical formulation uses isoparametric shape functions, N ,
for both the test and trial functions. These interpolation polynomials are formulated in
terms of a local coordinate system (ξ, η, ζ) with the requirements that they: (i) sum to
one throughout the element and (ii) they equal unity at their associated node and zero
at all other nodes. An alternative is to use shape functions that are based on the global
coordinates of the elements parent nodes. These metric functions can be constructed using
a Pascal pyramid, for example for the 20-noded hexahedral element, the metric shape
functions at any point within the element (x, y, z) are obtained through rearrangement of
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1 1 . . . 1
x1 x2 . . . x20
y1 y2 . . . y20
z1 z2 . . . z20
x21 x22 . . . x220
y21 y22 . . . y220
z21 z22 . . . z220
x1y1 x2y2 . . . x20y20
x1z1 x2z2 . . . x20z20
y1z1 y2z2 . . . y20z20
x21y1 x22y2 . . . x220y20
x21z1 x22z2 . . . x220z20
x1y

2
1 x2y

2
2 . . . x20y

2
20

y21z1 y22z2 . . . y220z20
x1z

2
1 x2z

2
2 . . . x20z

2
20

y1z
2
1 y2z

2
2 . . . y20z

2
20

x21y1z1 x22y2z2 . . . x220y20z20
x1y

2
1z1 x2y

2
2z2 . . . x20y

2
20z20

x1y1z
2
1 x2y2z

2
2 . . . x20y20z

2
20

x1y1z1 x2y2z2 . . . x20y20z20





M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
M13
M14
M15
M16
M17
M18
M19
M20



=



1
x
y
z
x2

y2

z2
xy
xz
yz
x2y
x2z
xy2

y2z
xz2

yz2

x2yz
xy2z
xyz2
xyz



, (4)

where the subscript denotes the node number. (4) can be more conveniently expressed as

[P ]{M} = {p}. (5)

The derivatives of these shape functions with respect to the global coordinates are obtained
simply through taking the derivative of {p} with respect to each of the coordinate axes
and pre-multiplying by the inverse of the element polynomial matrix, [P ]. For example,
the x-direction derivatives are given by

{M,x } = [P ]−1



0
1
0
0
2x
0
0
y
z
0

2xy
2xz
y2
0
z2
0

2xyz
y2z
yz2
yz



. (6)

These derivatives can replace those in (15) to form a metric test or trial strain-displacement
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matrix. The unsymmetric distortion resistant formulations proposed in the literature are
based on using a polynomial test and global metric trial basis [12, 16, 17, 18, 8].

However, it is well known that these global metric derivatives produce element formu-
lations that are dependent on the orientation of the element. In order to overcome this
limitation, Ooi et al. [14] proposed that the metric shape functions be reformulated based
on a two-dimensional local coordinate system centred on the local coordinate system ori-
gin and aligned with one of the element edges. Although this did produce a formulation
invariant to rigid body rotations, care must be taken to select an appropriate edge, and
the extension to three-dimensions is not clear.

In this paper we propose an alternative procedure where the metric shape functions are
based on a convected coordinate system. The derivatives of these local metric interpolation
functions are determined through the following procedure:

1. Calculate the position of the Gauss point in the global coordinate system, {xGp},
using the conventional polynomial shape functions evaluated at the local Gauss point
position, (ξ, η, ζ), that is

{xGp} =

nen∑
i=1

Ni(ξ, η, ζ){xi}, (7)

where nen is the number of element nodes and {xi} are the nodal coordinates.

2. Determine the rotation matrix between the orientations of the local and global coor-
dinate axes, given by

[T ] =


ērx ēsx ētx

ēry ēsy ēty

ērz ēsz ētz

 , (8)

where {ēr}, {ēs} and {ēt} are the normalised orientations of the local convected
coordinate axes in the global system. These directions are obtained through

{ēt} =
{x,ζ }
|{x,ζ }|2

, {ēr} =
{x,η } × {ēt}
|{x,η } × {ēt}|2

and {ēs} = {ēt} × {ēr}. (9)

|{·}|2 denotes the L2-norm of {·} and the derivatives of the global coordinates with
respect to the local system are obtained from the Jacobian matrix evaluated at the
current Gauss point position. That is

[J ]T =
[
{x,ξ } {x,η } {x,ζ }

]
, (10)

where the Jacobian matrix is obtained from the matrix product of the local coordinate
derivatives of the test functions with the global coordinates of the element nodes.
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3. Calculate the position of the element nodes, {x′i} in this translated and rotated
coordinate system, through

{x′i} =
{
{xi} − {xGp}

}
[T ]. (11)

4. Determine the derivatives of the metric shape functions with respect to the rotated
coordinates, {M ′,x }, using (6) with the translated and rotated nodal positions. Note
that the Gauss point is located at the origin of the translated and rotated coordinate
system, that is {x′Gp} = {0 0 0}T . This significantly simplifies the vector on the
right hand side of (6).

5. Transform the derivatives back into the original system using the rotation matrix
linking the global and local axes, through

{M,x } = {M ′,x }[T ]T . (12)

These derivatives are then used to formulate the strain-displacement matrix (15).

It is worth highlighting that in the proposed mixed formulation, the Jacobian matrix, [J ],
associated with the conventional parametric shape functions, must be evaluated at each
Gauss point position in order to determine the derivatives of the polynomial shape func-
tions with respect to the global coordinate system (in addition to its use in (2)). Therefore,
the additional overhead of the local convected metric formulation is associated with deter-
mining the global position of the Gauss point and transforming the nodal positions in-to
and out-of the local translated and rotated system.

3. Geometric non-linearity

Although the formulation presented in the preceding section provides an element that
allows mesh irregularity for linear analysis, a more attractive proposition is in the area of
geometrically non-linear analysis where improvements may reduce the need for the com-
putationally expensive task of re-meshing. In this section the key stiffness, internal force
and deformation gradient equations for a total-Lagrangian elasto-plastic finite deforma-
tion formulation are briefly outlined (for full details of the equivalent parametric updated-
Lagrangian formulation see Coombs [4]1). The formulation described in this paper is based
on a logarithmic strain-Kirchhoff stress approach which can be used for isotropic elasto-
plastic constitutive models. The use of a logarithmic strain-Kirchhoff stress relationship, in
conjunction with an implicit exponential map for the plastic flow equation, allows for the
implementation of standard small strain constitutive algorithms within the finite deforma-
tion framework without modification. These stress and strain measures provide the basis

1As noted (and demonstrated through numerical examples) by [1] “provided that the appropriate consti-
tutive relations are used, the [total and updated Lagrangian] equations yield identical solutions”.
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of the most successful, straightforward ways of implementing large strain elasto-plasticity
[7].

The element stiffness matrix for geometrically non-linear analysis can be approximated
through Gauss quadrature, as follows

[ke] =

nGp∑
i=1

[GL
i ]

T [A][GR
i ] det

(
[Ji]

)
wi, (13)

where [GL] and [GR] are the nine-component test and trial tensorial strain-displacement
matrices, [A] = [∂P/∂F ] is the unsymmetric consistent material tangent modulus, {P} is
the first Piola-Kirchhoff stress vector and [F ] is the deformation gradient. The element
internal force vector is given by

{f e} =

nGp∑
i=1

[GL
i ]

T {P} det
(
[Ji]

)
wi, (14)

where the derivatives of the test and trial functions contained within [GL] and [GR] are
evaluated in the original, undeformed configuration. The tensorial strain-displacement
matrices have the following format

[G] =



N1,x 0 0 . . . Nn,x 0 0
0 N1,y 0 . . . 0 Nn,y 0
0 0 N1,z . . . 0 0 Nn,z

N1,y 0 0 . . . Nn,y 0 0
0 N1,x 0 . . . 0 Nn,x 0
0 N1,z 0 . . . 0 Nn,z 0
0 0 N1,y . . . 0 0 Nn,y
0 0 N1,x . . . 0 0 Nn,x

N1,z 0 0 . . . Nn,z 0 0


. (15)

Within this geometrically non-linear framework, the deformation gradient provides the
fundamental link between the current and the reference configurations for a Lagrangian
description of motion

[F ] =

[
∂{x}
∂{X}

]
=

[
[I] +

∂{u}
∂{X}

]
,

(16)

where {x} and {X} are the coordinates of the same point in the current and reference
configurations, respectively, {u} is the displacement between the configurations and [I] is
the rank three identity matrix. A vector containing the derivatives of the displacement
with respect to the original global coordinate can be obtained numerically through{

∂{u}
∂{X}

}
= [GR]{d} (17)
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where {d} is a vector containing the nodal displacements and [GR] is evaluated at the point
of interest. These components can then be directed into the appropriate locations within
(16). The key point to notice from (17), is that the deformation gradient is evaluated
using the derivatives of the trial shape functions. The remainder of the finite deformation
framework follows the approach of Coombs [4], albeit with a total, rather than updated,
description of motion.

4. Numerical capability

This section presents three finite-deformation analyses to demonstrate the capabilities
of the proposed formulation. Four different element formulations were investigated, namely:

1. PP: where the classical polynomial shape functions are used for both the test and
trial functions;

2. MM: where the global metric shape functions are used for both the test and trial
functions;

3. PM: where the polynomial and global metric shape functions are used for the test
and trial functions respectively; and

4. PML: where the polynomial and local convected metric shape functions are used for
the test and trial functions respectively.

Before presenting the numerical results of this section, it is worth highlighting the
numerical results presented by Cen et al. [3]. That paper compares the unsymmetric
approach of Rajendran and co-workers [16, 17] and Cen et al.’s [2] HSF elements with their
combined approach through a series of linear analyses. In particular, Cen et al. [3] highlight
the PM’s rotational frame dependence, that has been overcome by the PML formulation,
as demonstrated in Sections 4.1 and 4.3 below.

4.1. Plane stress linear cantilever

The first analysis in this paper is a comparison of the approaches of Rajendran and
co-workers [16, 17] (PM), Cen et al. [2] (HSF-Q8-15β) and Cen et al. [3] (US-ATFQ8)
with the PML element proposed in this paper. This plane stress linear elastic cantilever
beam problem has been previously analysed by a number of authors [2, 3]. The beam, of
length l0 = 10m and depth d0 = 5m, had a Young’s modulus of 100Pa and a Poisson’s
ratio of 0.3. The cantilever was fully fixed at its root and loaded as shown in Figure 1 (i),
with P = 0.2N. Six different discretisations were considered (shown in Figures 1 (i) to (vi))
with ∆x2 = 0.5, ∆x3 = 3 and ∆x4 = 3.

The problem was analysed using the PP, PM and PML (fully integrated eight-noded)
formulations under two levels of global clockwise rotation (0◦ and 20◦). The percentage
error of the L2 norm of the displacement of node A compared with a reference displacement
of 0.054m [2, 3] for these elements, along with the published results of [2, 3], are presented
in Table 1.
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The PP, PML, HSF-Q8-15β and US-ATFQ8 formulations are invariant to rigid body
rotations whereas the PM element is not. The HSF-Q8-15β outperforms the other elements,
with the exception of mesh (iii) where the US-ATFQ8 has the lowest error. It should be
noted that the PML element was able to analyse mesh (vi) containing a concave element
whereas the PM element produces a singular stiffness matrix. Also, the results for mesh (v)
for the PML element are reported with a very small perturbation of δx = 1 × 10−12m of
two of the meshes nodes (as shown in Figure 1 (v). Although it is possible to analyse the
problem with the PML formulation with δx = 0, the stiffness matrix was near singular and
the error in the solution was 98.83%.

Although the HSF-Q8-15β and US-ATFQ8 elements are more accurate than the PML
formulation, they are currently limited to linear elastic stress analyses due to the use of
Airy stress functions. The rest of the analyses presented in this paper are geometrically
non-linear with elastic or elasto-plastic material behaviour.

4.2. Three-dimensional patch test

The first geometrically non-linear simulation is a three-dimensional patch test using the
four formulations. The material was taken to be isotropic with a linear elastic relationship
between logarithmic strain and Kirchhoff stress. The case of a simple shear deformation
field, where the stress throughout the material was constant and could be determined
analytically, was investigated, as shown in Figure 2 (i). Eight 20-noded hexahedral elements
were used to model the problem. The correct displacement field was imposed on the
boundary of the finite-elements, leaving 21 unconstrained degrees of freedom in the interior
of the unit cube.

The numerical simulation should result in a constant stress field. The simulations
using the four formulations were compared with the analytical solution (see Coombs [4] for
derivation of the analytical solution of the Cauchy stress response). As the top face sheared
distance ∆l increases, initially the shear stress, σzx, increases before reaching maximum
and then softening (as shown in Figure 2 (ii)). The normal stresses σxx and σzz are equal in
magnitude and opposite in sign with the stress response shown in Figure 2 (ii). Throughout
the deformation process σyy = σxy = σyz = 0.

For a 1m cube with its top face subsequently sheared by a unit amount in the x-
direction (that is ∆l = 1m) and with E = 1Pa and v = 0.2, the Cauchy stress throughout
the finite-elements should be {σ} = {0.179 0 −0.179 0 0 0.359}TPa. In the case of
a uniform finite-element mesh, all of the formulations agreed with the analytical solution.
The internal nodes of the mesh were distorted by rotating them about the centre of the
element, as shown in Figure 2 (iii) for the case of a rotation about the x-axis of θx = π/6.
Combinations of meshes distorted by θx ∈ [0, π], θy ∈ [0, π] and θz ∈ [0, π] were investigated.
The PP, PM and PML formulations produced results invariant to the level of mesh rotation.
However, the MM formulation failed the patch test for any amount of mesh rotation, giving
stress oscillations through the element.
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The case where the internal nodes were randomly displaced by ∈ [−0.25, 0.25]m in the
x, y and z directions was also investigated (as shown in Figure 2 (iv)). Again the PP, PM
and PML formulations produced results invariant to the level of mesh distortion, whereas
the MM formulation failed to produce the correct uniform stress field.

4.3. Two-dimensional elastic cantilever

This section presents a two-dimensional analysis of a horizontal elastic cantilever beam
subjected to a vertical mid-height point load on its free end. The large, moderately soft,
deep beam had an original length, l0, of 10m and a depth, d0, of 1m and was discretised
using 40 fully integrated eight-noded plane strain elements, as shown in the top left of
Figure 3. The isotropic elastic material had a Young’s modulus of 12MPa and a Poisson’s
ratio of 0.2. The vertical load of 100kN was applied in 50 equal load steps. The end
mid-height node force versus normalised displacement response for the undistorted mesh is
shown in Figure 3. The final (unexaggerated) deformed configuration is shown in the top
left of Figure 3, demonstrating the analysis’ large displacements. Reasonable agreement
is seen between the numerical simulation and the analytical solution provided by Molstad
[10] for both the horizontal and vertical displacements. The four formulations give the
same load-displacement response for the undistorted analysis.

In order to test how the formulations performed when elements were distorted, mesh
variations were introduced by rotating nodes around a central node at various positions in
the mesh. Examples of this distortion are shown in Figure 4, where the degree of rotation
is given to the left of the five discretisations. The force versus normalised displacement
responses for varying degrees of mesh distortion for the classical PP formulation are shown
in Figure 5. Increasing the mesh distortion causes a progressive stiffening, also seen in
Table 2. The PP formulation failed to converge at rotations above 5π/12. This was due to
overlapping element geometries creating a singular global stiffness matrix. Figure 6 shows
the force versus normalised displacement response for the MM formulation. A softening
response is observed with increasing levels of mesh distortion. This is also seen in Table 2
. However, the formulation was able to withstand significantly more distortion compared
to the PP approach; failing at rotations above 9π/12.

The results for the unsymmetric PM formulation show close agreement with the ana-
lytical solution for mesh distortions less than 11π/12. The vertical tip displacement was
8.252m for an undistorted mesh and only increased to 8.256m for a mesh distortion of 4π/6,
so a slight relaxation of the element was observed. All of the PM load versus normalised
displacement responses are indistinguishable from that shown in Figure 3. The local un-
symmetric formulation ceased to converge past a mesh distortion rotation of 10π/12. For a
mesh distortion of 4π/6 the local unsymmetric formulation had an end mid-node displace-
ment error (in both directions) of less than 0.1% compared with the undistorted PP result
(for example, a end mid-node vertical displacement of 8.251m compared with 8.252m). The
local unsymmetric element displayed very similar load versus displacement characteristics
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to that of the global PM formulation, again indistinguishable from that shown in Fig-
ure 3. However, we now globally rotate the 2π/6 distorted discretisation and re-examine
the results.

In these rotated analyses the mesh, boundary conditions and external forces were ro-
tated about the global coordinate origin by an angle of between 0 and π/2 in increments of
π/12. Table 3 presents the normalised vertical and horizontal end, mid-node displacements
rotated back into the original coordinate system. It is clear from Table 3 that the PML
and PP formulations are frame invariant whereas the displacements obtained from the
MM and PM elements are dependent on the frame of reference. The major shortcoming
of the metric shape functions has been overcome by recasting them in a convected local
coordinate system whilst maintaining the distortion-resistant nature of the antisymmetric
element formulation.

4.4. Eccentrically loaded column

This section presents a numerical analysis of an elastic column, of height l0 = 10m
and width b0 = 1m, fully fixed at its base and subjected to an eccentric compressive
vertical load, P . The geometrically non-linear unit-depth plane strain analysis assumed
a Young’s modulus of 1MPa and a Poisson’s ratio of 0. The column was loaded to four
times the critical buckling load pcr = π2EI/4l20 where I is the second moment of area of
the square section. Five fully integrated eight-noded quadrilaterals were used to model
the column, as shown in Figures 7 (iii) and (iv) for the uniform and distorted meshes
respectively. This problem was initially presented by Ooi et al. [13] and was used to
compare their unsymmetric (PM) formulation with the conventional 8-noded quadrilateral
finite-element.

The normalised force versus vertical and horizontal displacement response of the PML
and PP formulations are shown in Figures 7 (i) and (ii). Ooi et al.’s results for a distorted
mesh with ∆y = 0.5 for the PP (circles) and PM (squares) are also shown. Good agreement
is observed between the PP results of Ooi et al. and those generated in this paper.

With zero mesh distortion the PP and PML results coincide. However, the PP results
are highly dependent on the level of mesh distortion. Analyses undertaken using the PML
elements shown significantly less mesh-distortion dependence.

4.5. Elasto-plastic double-notched plate

The final analysis is of the stretching of a double-notched plate using the PP, MM
and PML formulations. The problem was initially presented by Nagtegaal et al. [11] for
small strain plasticity to demonstrate the spurious response of standard finite-elements
and was subsequently re-analysed in a number of papers [20, 21, 19]. The plate had
a Young’s modulus of 206.9GPa, Poisson’s ratio of 0.29 and was modelled using an exact
implementation of the elastic-perfectly plastic Prandtl-Reuss constitutive model [23]. The

12



yield function for the associated flow model can be expressed as

f = ρ2 − ρ2y0, (18)

where ρy is the yield stress (ρy = 0.45GPa in this example) and the deviatoric stress, ρ, is
given by

ρ =
√

2J2, J2 =
1

2
tr
(
[s][s]

)
where [s] = [σ]− I1

3
[I] and I1 = tr

(
[σ]

)
.

tr
(
[·]
)
denotes the trace of [·] and [I] is a three by three identity matrix. In principal stress

space, this yield criterion defines an open-ended cylinder with a yield radius of ρy and its
major axis aligned with the hydrostatic axis (the line where σ1 = σ2 = σ3). See Coombs
[4] for a full description of the adopted the elasto-plastic finite deformation framework.

Nagtegaal et al. [11] provided the small strain analytical limit load, controlled by a
limiting stress at the notch of σlim ≈ 2.97σy. The specimen modelled had a total height and
width of 30mm and 10mm respectively, with a 2mm unit linking ligament at mid height.
For this geometry, the small strain limit load is Flim ≈ 2.673kN. Due to symmetry, only one
quarter of the specimen was discretised using seventy-five 20-noded hexahedral elements
with a unit thickness, as shown in Figure 8. A displacement of v = 0.2mm was applied in
40 equal displacement-controlled increments. The through-thickness faces of the elements
were constrained perpendicular to the elevation shown in Figure 8. Note, that although
this is a plane-strain situation, a three-dimensional analysis was performed to allow for
more interesting mesh distortion to be applied.

The external load (total edge reaction) versus displacement response is shown by the
black line in Figure 8 using an undistorted mesh of 20-noded elements with reduced 8
point quadrature. Note that full integration of the classical polynomial element produces
an over-stiff response and fails to capture the presence of a limit load (for example, see [4]
and the references contained therein). The predicted limit load is lower than that of the
analytical small strain solution. This is due to the thickness of the ligament reducing as
the deformation proceeds. This reduction in width concentrates the stress in the ligament,
resulting in a lower peak force and a post-peak softening response not predicted by the small
strain analysis. The three formulations gave indistinguishable results for the undistorted
mesh, with a peak load of 2.397kN, as shown by the solid black line in Figure 8.

The finite-element mesh was distorted by translating each node not located on the x
or y limits of the domain randomly by ∈ [−0.2, 0.2]mm in both the x and y directions.
A two-dimensional elevation of the distorted mesh is shown on the right of Figure 8 and
three-dimensional wire-frame is shown inset on the load versus displacement curve. The
distortion caused the volume associated with each of the Gauss points within the elements
to vary between 0.036 and 0.274mm3, compared with a uniform constant of 0.125mm3 in
the undistorted mesh.

As with the previous analysis on an elastic cantilever, distorting the mesh caused a
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stiffening and softening of the PP and MM formulations, respectively. The PP simulation
had a peak load of 2.463kN whereas the MM analysis peaked at 2.311kN. This variation
is shown in Figure 8 by the dashed grey lines. The load versus displacement response of
the PML formulation is indistinguishable from the undistorted curves and the maximum
force exhibited only a 0.03% difference from the undistorted analysis maximum. This
three-dimensional elasto-plastic finite deformation simulation demonstrates the ability of
the PML formulation to provide mesh distortion resistant results compared to the classical
PP and MM approaches.

5. Conclusion

This paper has proposed a new distortion resistant element formulation based on con-
ventional polynominal test functions combined with novel local metric trial functions using
a local convected coordinate system. The use of this local coordinate system has rendered
the element rotationally invariant, overcoming one of the major inadequacies of the pre-
vious distortion immune formulations. The element was cast within a finite deformation
framework. Its numerical performance has been demonstrated using a series of analyses,
namely: (i) a linear elastic plane stress cantilever, (ii) a three-dimensional finite deforma-
tion patch test, (iii) a soft elastic cantilever beam, (iv) an eccentrically loaded column and
(v) an elasto-plastic double-notched plate. The proposed element was shown to be rotation-
ally invariant and have similar distortion resistance to existing unsymmetric formulations
[12, 14, 16, 17, 18]. Although element formulations based on Airy stress functions [2, 3]
have been shown to have superior distortion resistance, they can only be applied to a
limited class of problems (currently, linear isotropic elasticity).

Previously, the unsymmetric nature of these distortion resistant elements has been criti-
cised. However, setting the elements within a geometrically non-linear formulation removes
this criticism due to the unsymmetric nature of the consistent material stiffness matrix.
That is, even when the same test and trial functions are used the element stiffness matrix
remains unsymmetric. These elements have the potential to perform well in simulating
processes involving significant mesh distortion, helping delay the computationally expen-
sive task of re-meshing. For any element to be used in general finite-element analysis,
especially in the realm of finite deformation, it is essential that the formulation is invariant
to the particular frame of reference. Therefore, the family of elements proposed in this
paper provide an important step in overcoming the problem of mesh distortion sensitivity.
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Figure 1: Plane stress linear elastic cantilever beam discretisations.

Figure 2: Simple shear patch test: (i) deformation, (ii) stress versus displacement response, (iii) rotational
and (iv) random mesh distortion.
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Figure 3: Two-dimensional elastic cantilever: force versus normalised displacement response for all element
formulations and original/deformed undistorted discretisations and for the PM and PML distorted meshes.

Figure 4: Two-dimensional elastic cantilever: mesh configurations.
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Figure 5: Two-dimensional elastic cantilever: force versus normalised displacement response for the PP
formulation.

Figure 6: Two-dimensional elastic cantilever: force versus normalised displacement response for the MM
formulation.
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Figure 7: Buckling of a column under an eccentric load: normalised load versus (i) normalised vertical
displacement and (ii) normalised horizontal displacement, (iii) uniform discretisation and (iv) distorted
discretisation.
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Figure 8: Finite deformation analysis of a double notched plate: (i) load versus displacement response, (ii)
specimen dimensions and uniform discretisation and (iii) distorted mesh elevation.
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mesh rotation PP PM PML US-ATFQ8 HSF-Q8-15β

(i) 0◦ -2.11 -2.11 -2.11 1.30 0.01

20◦ -2.11 -2.07 -2.11 1.30 0.01

(ii) 0◦ -3.20 -0.50 0.32 1.54 0.20

20◦ -3.20 -0.65 0.32 1.54 0.20

(iii) 0◦ -43.81 -9.78 -10.37 -4.14 -6.48

20◦ -43.81 -9.81 -10.37 -4.14 -6.48

(iv) 0◦ -3.80 -2.13 -2.14 1.43 0.01

20◦ -3.80 -2.07 -2.14 1.43 0.01

(v) 0◦ - - 6.70† 1.95 0.10

20◦ - - 6.70† 1.95 0.10

(vi) 0◦ - - 37.81 1.71 -0.06

20◦ - - 37.81 1.71 -0.06

Table 1: Plane stress linear elastic cantilever beam: displacement errors. † denotes a perturbed mesh result.

rotation
PML PP MM PM

u/l0 v/l0 u/l0 v/l0 u/l0 v/l0 u/l0 v/l0

0 -0.554 -0.826 -0.554 -0.826 -0.554 -0.826 -0.554 -0.826

π/6 -0.552 -0.825 -0.532 -0.814 -0.559 -0.828 -0.553 -0.825

2π/6 -0.554 -0.826 -0.484 -0.789 -0.587 -0.841 -0.553 -0.825

3π/6 -0.554 -0.825 - - -0.615 -0.855 -0.553 -0.825

4π/6 -0.554 -0.825 - - -0.615 -0.856 -0.554 -0.826

Table 2: Two-dimensional elastic cantilever: normalised horizontal and vertical displacement with mesh
distortion
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global PML PP MM PM

rotation u/l0 v/l0 u/l0 v/l0 u/l0 v/l0 u/l0 v/l0

0 -0.554 -0.826 -0.484 -0.789 -0.587 -0.841 -0.553 -0.825

π/12 -0.554 -0.826 -0.484 -0.789 -0.579 -0.839 -0.552 -0.825

2π/12 -0.554 -0.826 -0.484 -0.789 -0.558 -0.828 -0.553 -0.826

3π/12 -0.554 -0.826 -0.484 -0.789 -0.577 -0.838 -0.556 -0.826

4π/12 -0.554 -0.826 -0.484 -0.789 -0.591 -0.845 -0.555 -0.827

5π/12 -0.554 -0.826 -0.484 -0.789 -0.594 -0.845 -0.553 -0.826

6π/12 -0.554 -0.826 -0.484 -0.789 -0.587 -0.841 -0.553 -0.825

Table 3: Two-dimensional elastic cantilever: normalised horizontal and vertical displacement with global
mesh rotation with 2π/6 mesh distortion
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