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This very enjoyable article by Thomas Kneib looks at (semiparametric) regres-

sion from a very wide perspective, allowing us to model a wide range of features in

the response distribution. Specifically, the features under study are quantiles and

expectiles, which give access to almost any aspect of the response distribution that

one may possibly be interested in, and which include mean and median regression as

special cases. In the conclusion of his manuscript, the author mentions that modal

regression has purposely been left out of this presentation. The main objective of

this discussion will be to provide some hopefully useful contribution in this respect.

I will begin with discussing (weighted) modal regression in general (and investigate

whether it makes sense to define “modiles”), and proceed with some thoughts on the

feasibility of semiparametric modal regression. I will finish this commentary with

some general remarks on other aspects of the paper.

Modes and “Modiles”. For a pair of real random variables (X,Y ), conditional

quantiles and expectiles of Y at X = x are theoretically obtained as solutions of the

minimization problem

arg min
q

E (wτ (Y, q)l(Y − q)|X = x) (1)

where wτ (Y, q) is defined as in Section 5 of the main paper, and loss functions ℓ(·) = |·|

and ℓ(·) = (·)2 for quantiles and expectiles, respectively. In order to extract the

conditional mode, Matzner-Løber et al. (1998) proposed using a “non-convex loss

function with a unique minimizer l(u) = 0 when u = 0 and l(u) = 1 otherwise”.

Equivalently, and slightly more elegantly, this can be formulated as

l(·) = −δ(·)

where δ(·) is the delta function, i.e. it takes the value 0 for each input except 0, and
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it integrates to 1. Plugging this loss function tentatively into (1), one obtains

arg min
q

E (wτ (Y, q){−δ(Y − q)}|X = x) =

= arg max
q

E (wτ (Y, q)δ(Y − q)|X = x)

= arg max
q

∫

wτ (y, q)δ(y − q)f(y|x) dy

= arg max
q

wτ (q, q)f(q|x) (2)

Interestingly, this expression features the weight wτ (q, q), the definition of which

is “basically arbitrary” (Section 5) for expectile and quantile regression, and which

is set equal to 0 in the paper under discussion. In the context of modal regression,

we see that this would be an unfortunate choice, as in this case the entire argument

of the minimization problem vanishes! Hence, for the sake of a flexible use of the

weights wτ over a wider range of loss functions, I would recommend to settle on a

different convention, say wτ (q, q) = 1/2, or wτ (q, q) = τ as in Schulze Waltrup et al.

(2013).

We see that all choices of wτ (q, q) ≡ c, for some constant c > 0, will lead to the

same result (the overall mode, or the overall modes, if there are several values of y|x

which simultaneously achieve the density maximum). So, in this sense the addition

of asymmetric weights for modal regression is rather pointless, as they do not lead

to new information; or, to put it in other words: all modiles are equal to the overall

mode(s).

Beside the overall mode m = arg maxq f(q|x), a conditional density f(y|x) may

have further local modes, associated with smaller densities than f(m|x). An example

is given, for the Munich rental data, in Figure 1a. Perhaps slightly disappointingly,

we have seen that modiles are not a suitable tool to identify these directly. In the

absence of strong overall trends, one may still be able to extract these local modes

through a variant of the above approach, by defining weights

Wτ (q) ≡ wτ (q, q)
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which not only depend on τ but also indeed on q. For instance, the choice Wτ (q) =

1{q≥0} would provide the conditional mode of all Y ≥ 0|x. This way, the local modes

could be found by examining the response distribution separately and successively

in several vertical layers. This idea is in spirit somewhat similar to having several

(vertically spread) starting points for the conditional mean shift procedure for modal

regression, as explained in Einbeck & Tutz (2006).

Figure 1 provides some examples for modal regression in the context of the Mu-

nich rental data (which were used in the discussed paper), where, as in Figure

1 (left) of the main paper, x =‘living area’ is the only predictor, and y =‘rent’

is the response variable. The left top panel shows estimated conditional densities

f̂(y|x) = f̂h,b(x, y)/f̂h(x) for the rent data, where f̂h(x) is a univariate kernel density

estimator with bandwidth h, and f̂h,b is a bivariate (product) kernel density estima-

tor with bandwidths h and b in horizontal and vertical direction, respectively (using

Gaussian kernels in each case). Using firstly the bandwidths h = 8 and b = 50

(these are automatic bandwidths as suggested by Bashtannyk and Hyndman’s (2001)

hybrid rule), the conditional densities, computed for x = 20, 40, . . . , 160, show clear

multimodality for x ≥ 120. Starting the mean shift procedure from the bottom of

the data range, the smallest of the conditional modes is identified, which corresponds

to the overall mode up to x ≈ 120 (Fig. 1c). The other conditional modes could

be detected by using different starting points for the mean shift procedure, but the

resulting modal curves are not provided for the sake of clarity of the graphical repre-

sentation. The modal smoother is compared with a local median smoother (see e.g.

Fried et al, 2007) and a local constant mean (Nadaraya–Watson) smoother, using in

either case the same horizontal bandwidth h = 8.

We see that, due to the skewness of the conditional response distribution, we

have the ordering mean ≥ median ≥ mode also over the range where the conditional

density is in fact unimodal. If we increase the vertical bandwidths to b = 150, we

see that the multimodalities disappear and the modal estimator becomes generally
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closer to the mean and the median smoother (Fig. 1b, 1d). In fact, if b −→ ∞, then

the solid line will fall onto the dotted line; or, in other words, for infinite vertical

bandwidth, the mean–shift–based modal regression estimator becomes equivalent to

the Nadaraya–Watson–estimator (Taylor, 2012).

Modal smoothing beyond the scatterplot? As the author states fully cor-

rectly, modal smoothing is yet restricted to simple scenarios such as bivariate scat-

terplot smoothing. While simple extensions have been attempted, such as modal

smoothing with bivariate or multivariate predictors (Taylor and Einbeck, 2011), there

is still a long way to go to fit semiparametric models even of simple type as, say,

mode(Y |x, z) = η = x
T β + f(z), (3)

with a univariate covariate z. Before attempting this, it should be clarified whether

there is actually a necessity to go this way. There are two possible reasons why

one may want to do this: Firstly, as the author suggests, this may be useful in sit-

uations where the response distribution is multimodal (and, hence, a multi–valued

“function” f needs to be estimated). From a statistical modelling point of view, it

should be noted here that a multimodal response distribution will often be a sign

that “something is wrong”, for instance that an important predictor has been omit-

ted from the model, or that the experiment during which the data was collected was

not sufficiently controlled and, hence, led to the creation of multiple latent regimes

in the response distribution. While I do not want to exclude the case that in some

situations a semiparametric model with multimodal response distribution could jus-

tifiably be fitted, it seems to me that it is another property of the mode which could

make modal semiparametric regression indeed attractive: its robustness and edge–

preserving properties. So, for instance, in cases where one explicitly wants to identify

sudden changes or ‘breakpoints’ in the behavior of the system, (uni–!) modal regres-

sion may be an attractive choice as it will not smooth over the edges. How could such

a model then be fitted? In the context of penalized regression, one approach would

be to formulate the analogue of Kneib’s expression (6) but with l(·) replaced by an
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Figure 1: Munich rent data: Conditional densities (top), and localized mean–,

median–, and modal smoothers (bottom), using horizontal bandwidths h = 8, and

vertical bandwidths b = 50 (left) and b = 150 (right).
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approximated version of the delta-function, say

l(·) = −
1

a
K(·/a),

where K is a kernel function and a a small “bandwidth”. The penalized minimization

problem corresponding to model (3) then takes the shape

−

n
∑

i=1

K

(

yi − ηi

a

)

+ λpen(f), (4)

(where weights have been omitted given the considerations in the first part of this

discussion, and the irrelevant constant 1/a has been omitted too). If K is chosen to

be a Gaussian kernel function, then this fulfils the “twice continuously differentiable”

condition mentioned in Section 3. Using an appropriate quadratic penalty pen(f),

optimization problem (4) could then in principle be solved using penalized Fisher

scoring, as well as functional gradient descent boosting, as discussed later in the

same section of Kneib’s paper.

Further comments. One issue that I would like to raise is the behavior of the

discussed techniques for extreme choices of τ , such as τ −→ 1 or τ −→ 0. To motivate

this point, observe that for the “100% expectile”, with τ = 1, one clearly has

min
e

n
∑

i=1

w1(yi, e)(yi − e)2 = min
e

n
∑

i=1

1{yi>e}(yi − e)2 = 0, (5)

which is solved for all e ≥ max{yi, i = 1, . . . , n}. Obviously, this is a conceptual

characteristic of expectiles (as well as quantiles) and not an issue of expectile regression

as such. While Schulze Waltrup et al. (2013) look into the question of extreme

quantiles and expectiles from a theoretical point of view, I am interested in the more

practical question of whether the techniques provided in this paper – and particularly

the boosting approach – still work at or close to this limit, and whether they provide

stable and meaningful results? More specifically, I wonder whether some additional

structure or model assumptions are necessary to perform expectile regression at or

close to this limit? In this context, I would like to point to a publication by Hall & van
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Keilegom (2009), who consider nonparametric regression for data Y = a(X)+ǫ where

errors are anchored at the “endpoints” of the error distribution, i.e. P (ǫ > 0) = 1

(this corresponds to our τ = 0) or P (ǫ > 0) = 0 (τ = 1). Estimation (in the first case)

is carried out locally as the maximum intercept over all lines which lie underneath

all data points in a window centered at the target point (with several additional

technicalities needed to deal with existence and identifiability issues).

My next remark concerns the existence of features in expectile curves. Comparing

the 90% quantile and expectile curves for the year of construction, which are provided

in Kneib’s paper in figures 3 (bottom right) and 5 (bottom right), respectively, we

observe that the quantile curve gives a strong indication for a dip at about 1950 (which

appears to be backed up by the pointwise credible intervals), while the expectile curve

does not identify this dip clearly. This, of course, raises the question of “whether

this dip is really there”? In the context of mean regression, this question has been

discussed by Chauduri & Marron (1999), who argue that, for a dip being “really

there”, the derivative of the curve must make a “significant” crossing of 0 (from

negative to positive, in this case). A certain dip is declared as significant if the

simultaneous confidence band crosses, in its full width, the zero line at the location

of the dip. This procedure is then repeated over all bandwidths, and the results are

visualized in 2D maps, indicating, at a glance, whether there does exist any degree of

resolution for which the dip is significant. Of course, the same can be done analogously

to test for the existence of peaks.

The interesting question is then whether an “expectile SiZer” could be devel-

oped, where one tests for significant zero crossings of derivatives of expectile curves?

Clearly, this would require the ability to estimate derivatives of expectile curves, as

well as (simultaneous) confidence bands for these estimates. The former should be

relatively straightforward under the propagated setup, since simply the derivative of

the basis function expansion could be calculated. Confidence intervals for expectile

regression are now well developed (Sobotka et al, 2013), which I would trust to be
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straightforwardly extendible to derivatives of expectiles. However, the extension from

pointwise to the required simultaneous confidence bands (i.e., a band containing the

entire expectile curve with some level of confidence) may still pose some challenges. A

simulation–based approach to this problem, in the context of penalized spline (mean)

regression, is provided in Ruppert, Wand, and Carroll (2003), pp 142ff.

Finally, I wish to thank the author for the healthy attitude of putting the estima-

tion problem and the modelling aspects in the foreground, and considering Bayesian

and frequentist estimation strategies with equal weight, and without philosophical

burden, next to each other. This allows to focus attention on the actual inferen-

tial problem, and to get a comprehensive and unbiased view on the strengths and

weaknesses of the individual methods. It would be desirable if this broader view on

statistical inference were adapted by more authors in the future.
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