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1 Introduction

Instantons have long provided a fertile testing ground for exploring aspects of Yang-Mills

theory [1], and can play an important role in determining the behaviour of non-perturbative

effects in supersymmetric Yang-Mills theory [2–4]. In comparison with other solitons,

however, little is known about their dynamics. In particular, when compared to monopoles,

this paucity of information is most apparent.

Instantons naturally arise in the study of 4-dimensional Euclidean Yang-Mills, in which

there exists no dynamical structure. However, it is also possible to embed such solutions

in higher-dimensional Yang-Mills theories, in which a time component can be explicitly

considered. The study of 5d SYM is of great interest, as in this context the instantons

appear as particles of the theory. Indeed, the instantons appear as 1/2-BPS states which,

in the low-energy limit of the theory, correspond to D0-branes dissolved in a system of
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D4s [5]. The previously considered 4-dimensional Euclidean instantons may be lifted to

this 4 + 1 dimensional theory by identifying them with the static solutions of theory.

There are further motivations for the study of instanton systems. It has been conjec-

tured that the theory of coincident D4-branes is dual to the compactified theory of coin-

cident M5-branes on R4,1 × S1, and is UV complete with the addition of instantons [6, 7].

Instantons play a key role in matching the BPS spectrum of these theories, where the in-

stanton charge corresponds to the Kaluza-Klein momentum associated to the compactified

M-theory. The index of the degenerate BPS states can be calculated from localisation

techniques as in [8], and the same results were obtained for the N = 8 QM theory from

the moduli space of a single U(N) instanton in [9].

There are also a large number of identifications that can be made between instantons

and other solitonic solutions in reduced dimensions. It is known that noncommutative

instantons in SU(2N) displaying SO(3) invariance can produce a class of non-Abelian

vortices [10, 11]; by considering instantons whose ADHM data has circle invariance, one

can obtain monopoles in hyperbolic space with platonic symmetries [12, 13]; and it is

believed that a more general class of vortices coupled non-trivially to a gauge field can be

obtained by considering a dimensional reduction of noncommutative dyonic instantons [14].

As an extension, a large body of material is dedicated to the study of vortex systems with

impurities, thus providing an entry point into problems considered in condensed matter

physics: see, for example, [15].

It is not straightforward to gain a deep understanding of the dynamics of instantons on

the full field theory. Instead, it proves fruitful to employ an observation due to Manton [16]

and study the motion of instantons as geodesics on the moduli space of solutions. The

moduli space is a 4kN -dimensional space made up of all instanton solutions for a given

gauge field SU(N) and topological charge k. Configurations within this moduli space can

be seen as minimum energy solutions of the field theory and, should we perturb such a

solution by a small velocity, we expect that it will remain in (or energetically close to)

the moduli space. It transpires that it is possible to view the dynamics of slow-moving

instantons as geodesic motion on this moduli space endowed with a suitable hyperKähler

metric, and it then becomes feasible to consider low-energy scattering and evolution of the

field theory.

Recall that in the D4-brane theory we have 5 transverse scalar fields, valued in the

adjoint of the gauge group SU(N), which describe the positions of the branes in the space

transverse to the worldvolume. If we choose to separate the branes, and give any of

these scalars a non-zero expectation value, then we introduce a non-zero scalar field into

the instanton equations. The minimum-energy solutions become 1/4-BPS and the A0

component of the gauge field becomes proportional to this non-zero Higgs field [3, 17].

This imbues the instantons with an electric charge which balances the effect of the Higgs

field. In terms of the moduli space, this addition produces a non-zero potential [17, 18].

From the point of view of the underlying string theory, these dyonic instantons form a

bound state of fundamental strings and D0-branes.

The moduli space of instantons constructed contains singularities arising from instan-

tons of zero size. Such “small” instantons have a dual picture in the string theory of a
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transition between the Higgs and Coulomb branches of the D0 theory [4]. The Coulomb

branch of the theory corresponds to D0 branes separated from the D4s: the moduli de-

scribe the positions of the D0s transverse to the D4s. The Higgs branch corresponds to the

D0s ‘dissolved’ in the D4s, and their moduli are precisely the moduli of instantons in the

Yang-Mills theory. The singularity in the metric of this moduli space, attained when the

instantons hit zero-size, then corresponds to the transition point between the two branches.

To circumvent this problem, it is possible to use a noncommutative framework in which a

minimum bound is placed on the instantons’ size via the introduction of a Fayet-Iliopoulos

term [19]. This modification to the theory smooths out the moduli space singularities, and

it has been seen explicitly that the metric takes Eguchi-Hanson form in the case of a single

U(1) instanton [20]. The ADHM procedure applied to a noncommutative system returns

the expected results: namely, solutions are self-dual and maintain integer charge [21].

The dynamics of the commutative dyonic instanton with gauge group SU(2) have

been studied for a single instanton and two well-separated instantons. The (super-)metric

of the moduli space of 2 commutative instantons in the absence of a potential was studied

via the hyperKähler construction in [22] and with the addition of a potential in [18].

More recently an extensive analysis of the dynamics have been studied for two instantons

with arbitrary separation [23]. A free single instanton may evolve into a configuration

where its size ρ and hence its angular momentum ρ2θ̇ can vanish, resulting in the small

instanton. The introduction of a potential term guarantees that this singular point can

not be reached for a single instanton that starts with a non-zero angular momentum and a

bounded, non-zero, size. Specifically, it will remain in a stable orbit with conserved angular

momentum. In the case of multiple instantons, however, this may not hold: the instantons

may trade angular momentum with each other, allowing one instanton to grow in size at

the expense of its counterpart, approaching the zero-size singularity in finite time. This

was shown in [23]. The zero-size singularity still exists, therefore, for more than a single

dyonic instanton; we must consider a noncommutative deformation to the space in order

to remove the singularity.

The outline of this paper is as follows. In section 2, we review the construction of

instanton solutions as solutions to the self-dual Yang-Mills field equations. A consideration

of solitonic solutions, via the Bogomolny argument, leads one naturally to an algebraic

formulation of instantons for a given topological charge, k. The results extend to noncom-

mutative spaces; we summarise the connection between noncommutative function space

and the quantum mechanical analogue. Having constructed solutions, we consider the

parameter space of the charge k instantons as furnishing a moduli space of allowed config-

urations, and may derive an algebraic formalism for determining the metric on this moduli

space. This allows us to analyse the dynamics of two instantons via the Manton approx-

imation [16]. Finally, we consider the effect of introducing a non-zero electric charge, or

potential, on the moduli space.

In section 3, we proceed to explicitly derive the solutions for 2 U(2) instantons in

both the commutative and noncommutative frameworks. The presence of noncommuta-

tivity perturbs the known solutions in a non-trivial manner, and by finding an expedient

parametrisation for this perturbation we may calculate the metric of the noncommutative
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2-instanton system. Due to the induced complexity of solutions, it is not easy to find a

description of the full, 16-dimensional moduli space. However, we may make use of some

global symmetries of the system to consider a geodesic submanifold of this space. With

this reduction, explicit results may be obtained. We consider the results and, as expected,

we find that the manifold generated is in fact smooth and singularity-free, unlike in the

commutative case. This is indicative of the results gained in [20] where the single instan-

ton moduli space was seen to correspond to the Eguchi-Hanson metric, which contains no

orbifold singularities.

In section 4, we use the results gained to consider dynamics, and in particular scatter-

ing, of the two noncommutative instantons. The presence of a non-zero Fayet-Iliopoulos

term in the overarching field theory has profound consequences for the results gained: most

strikingly, right-angled scattering (a distinguishing feature of most soliton dynamics) is no

longer the natural behaviour, even for a vanishing Higgs field. In fact, a wide range of

behaviours are present, of which scattering at π/2 is only one possible outcome.

In section 5, we extend the analysis of the previous section to the dyonic instantons.

The results obtained herein suggest that one may consider the noncommutativity to func-

tion as an ersatz effective potential on the moduli space of commutative instantons. The

dynamics of two commutative instantons admits orbiting solutions, where the attractive

force of the potential is balanced by the natural repulsive force of the instantons. In the

noncommutative picture, we find an analogous result, with some interesting modifications:

previously stable orbiting configurations can become unstable in finite time, demonstrating

scattering or attraction, with varying noncommutative strength.

Finally, in section 6 we summarise our results and consider extensions to the

present work.

2 The construction of instantons

In this section, we review instantons in (4 + 1)-dimensional Yang-Mills theory. This will

encompass both ‘free’, 1/2-BPS, instantons and their dyonic 1/4-BPS counterparts. We

briefly outline the ADHM construction for such a field theory, and the connection between

the free parameters therein with collective coordinates on a moduli space. We proceed to

consider the key differences between the commutative and noncommutative formulations.

2.1 Instantons in 5d Yang-Mills

We first consider the underlying string theoretical interpretation of Yang-Mills theory.

The low-energy dynamics of a stack of N coincident D4-branes may be identified with a

U(N) super-Yang-Mills field theory [24]. Such a system preserves one half of the super-

charges, and is thus described by an N = 2 SUSY theory in five dimensions. Open strings

stretched between the D4-branes give rise to a U(N) world-volume gauge symmetry, with

associated gauge field Aµ, µ = 0, 1, . . . , 4. The theory also contains 5 adjoint scalars XI ,

I = 5, 6, . . . , 9, describing the branes’ relative positions in the transverse directions. By

factoring out the centre of mass from the theory we obtain 5-dimensional super-Yang-Mills.
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For the purposes of considering instantons, we henceforth consider only the bosonic

sector of the theory, with (for convenience) gauge coupling set to one. The associated

action is

S = −
∫

d5xTr

(
1

4
FµνF

µν +
1

2
DµX

IDµXI +
1

4
[XI , XJ ]2

)
, (2.1)

where the covariant derivative is given in standard form

DµX
I = ∂µX

I − i[Aµ, XI ]

and the field strength is

Fµν = ∂[µAν] − i[Aµ, Aν ].

While the construction of instantons is valid for all choices of gauge group U(N), the

calculational complexity vastly increases with larger gauge groups. We consider only a

stack of two D4-branes, so that the gauge group is U(2). In the commutative case, the U(1)

factor decouples from the theory; as we will discuss, this is not true in the noncommutative

picture. As well as the world-volume and transverse indices outlined above, we will also

use the indices i, j to denote the purely spatial directions of the 5d theory.

We may assume that just one of the transverse scalar fields X5 ≡ φ is non-zero.

The induced Higgs VEV, 〈φ〉, will correspond to the separation of the branes in the X5

direction. This is equivalent to any other choice of transverse brane separation up to some

SO(5) rotation of the XI , and in choosing a particular direction we break the R-symmetry

of the full Yang-Mills theory. However, this does not affect the validity of the analysis

(and, in fact, is crucial in certain identifications with lower-dimensional solitonic theories).

The energy of the system is

E =

∫
d4xTr

(
1

2
Fi0Fi0 +

1

4
FijFij +

1

2
D0φD0φ+

1

2
DiφDiφ

)
. (2.2)

In order to obtain solitonic solutions, we seek to find minimum energy solutions. The re-

quirement for finite energy solutions is satisfied by demanding that the gauge field becomes

pure gauge at spatial infinity: that is

Ai = −∂ig∞(g∞)−1

as |x| → ∞. The map g∞ : S3
∞ → U(2) defines a winding number from the sphere at

infinity to the gauge group, the degree of which is given by the second Chern number

c2 ∈ Z. We define, for identification, the following quantities:

k ≡ − 1

8π2

∫
d4xεijklTr(FijFkl),

QE ≡
∫

d4xTr(DiφFi0).

These are to be interpreted as the topological charge and electric charge, respectively, of

the theory. The topological charge is equivalent to the winding number, and so for a given

k ∈ Z we may consider the family of all instantons with winding k. Such solutions may
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smoothly deform into one another, but must remain in this k-sector of the theory. Hence, in

the instanton description, each successive value of k decouples from all others and this will

allow us to consider evolution and scattering of k-instanton solutions for a particular k [23].

Employing the standard Bogomolny argument [25] to bound the energy, we find

E =

∫
d4xTr

(
1

4
(Fij ± ?Fij)2 ∓ 1

2
Fij ? Fij

+
1

2
(Fi0 ±Diφ)2 ∓ Fi0Diφ+

1

2
D0φ

2

)
,

where ?Fij ≡ 1
2εijklFijkl is the Hodge dual of the field strength. The choices of sign in this

expression are correlated within each line, but independent between the two lines. Then

the energy is bounded by

E ≥ 2π2|k|+ |QE |,

and this Bogomolny bound is saturated when

Fij = ± ? Fij ,
Fi0 = ±Diφ,

D0φ = 0.

(2.3)

These are the BPS equations for dyonic U(2) instantons. The first equation requires that

the field strength be (anti-)self-dual, and the second and third are satisfied when the fields

are static and A0 = ±φ. Since each k-sector decouples from all others we need only consider

either the self-dual or anti-self-dual case, which we denote as instantons or anti-instantons

respectively. We henceforth consider only the self-dual case, yielding k-instantons. It will

still be necessary to satisfy the background field equations for the scalar field, namely

D2φ = 0. (2.4)

This requirement will be important in the consideration of dyonic instantons.

The Bogomolny equations, while simpler than those of the full Yang-Mills theory,

do not trivially admit analytic solutions. Fortunately, the ADHM construction [26] relates

these differential constraints on the gauge field to purely algebraic ones. This will allow us to

explicitly construct classes of self-dual instantons whose induced gauge field automatically

satisfies the Bogomolny equations (2.3). Before we apply the ADHM construction, however,

we consider the noncommutative analogue.

2.2 Noncommutative R4

As described above, the study of instantons allows us to find non-trivial solutions to the

Yang-Mills field equations in (static) Euclidean R4 that would otherwise be occluded. In

the previous section, the spatial R4 (consisting of xi, i = 1, . . . , 4) admits trivial commu-

tation relations between each direction. For reasons that shall become apparent, we may

introduce an underlying noncommutative geometry to the theory by making some, or all, of
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these commutation relations non-zero. This is equivalent to choosing a preferred complex

structure on the space. We stipulate the following commutation relations:

[xi, xj ] = iθij (2.5)

where θij is a real, antisymmetric matrix. Without loss of generality, we may break the

underlying SO(4) symmetry of the space and express θ in a simpler form [20]

(θij) =


0 −θ1 0 0

θ1 0 0 0

0 0 0 −θ2

0 0 θ2 0

 (2.6)

for θ1 and θ2 real. Classically, if both of the θi are non-zero then we may scale the two

coordinate directions corresponding to, say, θ1 such that the noncommutative parameters

have equal magnitude. The condition that θij is self- or anti-self-dual is equivalent to

requiring that θ1 − θ2 = 0 or θ1 + θ2 = 0, respectively. We shall examine the difference

between the two cases shortly.

From the perspective of the Yang-Mills field theory, the introduction of a noncommu-

tative background induces a deformation in the notion of multiplication: one now must

consider functions multiplied using the Moyal-? product. For functions f(x) and g(x)

valued in R4
NC, we have

f ? g(x) = exp

(
i

2
θij∂i∂

′
j

)
f(x)g(x′)

∣∣∣∣
x′=x

. (2.7)

This gives an expansion in powers of θ:

f ? g(x) = f(x)g(x) +
i

2
θij∂if(x)∂jg(x) +O(θ2).

In this noncommutative framework, the gauge field Ai transforms as

Ai 7→ g−1 ? Ai ? g + g−1 ? ∂ig,

where g takes values in U(N). The field strength is correspondingly adjusted as

Fij = ∂[iAj] − i[Ai, Aj ]?,

where we denote the commutator with ? to emphasise the non-standard multiplica-

tion therein.

From the point of view of finding solutions to the Bogomolny equations (2.3), working

in the noncommutative framework allows for a greater range of instanton configurations,

circumventing Derrick’s theorem due to the additional length scale [θi] = length2. However,

with the above formalism, one would have to calculate such solutions to all orders in

θ which (with the exception of the simplest cases) is severely non-trivial and prevents

any meaningful analysis. We may proceed due to an isomorphism between the algebra

of functions with the ?-product and the algebra of operators on some Hilbert space, as
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demonstrated in [27]. This identification will allow us to utilise the ADHM procedure in

the noncommutative framework.

Consider, for simplicity, a noncommutative theory in R2, giving a single non-trivial

spatial commutation relation [x1, x2] = iθ12. Then for a generic function on this space,

we have the associated operator on the space of Hilbert functions of the analogous quan-

tum system

Ôf (x̂1, x̂2) =
1

(2π)2

∫
d2αU(α1, α2)f̃(α1, α2) (2.8)

where f̃(α1, α2) is the Fourier transform of f(x̂1, x̂2), and U(α1, α2) =

exp (−i(α1x̂1 + α2x̂2)). We may now seek an expression for Ôf Ôg: using Baker-

Campbell-Hausdorff and a suitable change of variables, we find

Ôf Ôg =
1

(2π)2

∫
d2γ U(γ1, γ2)f̃ ? g(γ1, γ2)

= Ôf?g.

This shows that the Moyal ?-composition of two functions on a commutative space has

a direct analogue in the composition of operators in a Hilbert space. Given this corre-

spondence, we may derive spatial commutation relations of functions on R2
NC as operator

relations on a Hilbert space of operators, and vice versa. This correspondence is key to a

consistent definition of the ADHM operators in noncommutative scenarios.

With these considerations, the ADHM procedure can be seen to follow in precisely

the same manner as the commutative analogue but for the fact that the underlying gauge

group of the gauge field is U(2), rather than SU(2) (the term A4
i 12 can be considered in

the commutative case, but decouples from the theory and therefore has no impact on the

analysis). This stems from the fact that the ‘simpler’ gauge group SU(2) is not closed

under the Moyal ?-product multiplication [28]. Explicitly, we have

Ai = Aai
σa

2
+A4

i

12

2
,

where σa provide the normal Pauli matrix representation of SU(2). This iso-

morphism validates the use of the ADHM toolbox, to which we now turn, in a

noncommutative framework.

2.3 The ADHM construction

The ADHM construction allows a class of algebraic constraints to be explcitly formulated

for a given instanton number k and gauge group U(N). The subject is well-documented

(see, for example [23, 26, 29]), and we will not reiterate the details. Formally, the data

∆ is a (2k +N)× 2k complex-valued matrix, up to some constraints, whose free parame-

ters form a 4kN -dimensional moduli space of allowed instanton configurations. Given the

ADHM requirement

∆†∆ = 12 ⊗ f−1(x) (2.9)
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for f−1(x) invertible and ∆ in ‘canonical form’:

∆(x) = a− bx ≡

(
L

M

)
− x

(
0

12k

)
then the ADHM constraints on the moduli space parameters are

L†L+M †M + x̄x = 12 ⊗ f̃−1(x). (2.10)

Having solved these constraints, one may define a normalisable vector U in the null space of

∆, and derive the gauge field Ai = iU †∂iU . This procedure will guarantee a (anti-)self-dual

field strength tensor Fij . Up to local gauge transformations of the ADHM data, one may

use this result to find a metric on the moduli space of charge k U(N) instantons. Denoting

the free parameters in the ADHM data as zr, for r = 1, 2, . . . , 4kN , we obtain

S =
1

2

∫
dt grsż

rżs

where

grs =

∫
d4xTr(δrAiδsAi)

and δrAi are the zero modes of the space, namely gauge-invariant variations of the field Ai
in a direction that does not change the energy of the field configuration. This procedure

corresponds, from the perspective of the D-branes, to gauge-fixing away the local U(N)

gauge transfomations, which do not act on physical states. Explicitly, the zero-modes may

be written as

δrAi = ∂rAi −Diεr,

where εr is chosen such that Gauss’ law is satisfied and DiδrAi = 0. Geodesic motion on

this space, provided the velocity of the instantons is suitably small [16], can be seen as

equivalent to evolution of instanton configurations of a given charge k. This metric can

be calculated via an explicit derivation and classification of the allowed zero-modes [4],

or via the ADHM data itself [30]. In the same manner, a potential can be introduced to

the space (representing a Higgs VEV separating the D-branes in the string theory picture)

whose derivation in terms of the moduli space proceeds in a similar spirit to the ‘free’

metric [9, 23] with the additional requirement of satisfying the Yang-Mills background

field equation, D2Φ = 0.

There are a number of difficulties to overcome in moving to the noncommutative pic-

ture. As mentioned earlier, the choice of noncommutative background affects the solutions

we may obtain: as shown in [21], should one choose a background with the ‘same’ duality

as the Yang-Mills solutions, the completeness relation ∆f∆† + UU † = 14 will not hold.

Concretely, a search for solutions to Fij = ?Fij in R4
NC where θ1 = θ2 will either result in

solutions for ∆ and a non-normalisable U , or a normalised U with inconsistent ∆. Conse-

quently, we limit our search to self-dual instantons, that is those with topological charge

k > 0, and work in anti-self-dual RNC such that θ1 = −θ2 ≡ ζ for ζ > 0. Note that we

need not worry about this restriction as the choice is equivalent, from the point of view of

the Yang-Mills theory, to considering anti-instantons on a self-dual R4
NC.

– 9 –
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Secondly, the ADHM constraints themselves are no longer as simple. Representing ∆

as matrix of quaternions, then the term x̄x in (2.10) is automatically proportional to the

identity in the commutative case and so does not have an effect on the solution for L and

M . In the noncommutative case, using the commutation relations (2.5) with z1 = x2 + ix1

and z2 = x4 + ix3, the relevant expression is instead

x̄x =

(
z̄2 −z1

z̄1 z2

)(
z2 z1

−z̄1 z̄2

)

= (z̄1z1 + z̄2z2)12 +

(
−2ζ 0

0 2ζ

)
,

(2.11)

where the first term on the final line is the commutative result. The additional piece must

be absorbed into the solution for L and M in a suitable manner.

Finally, we remarked in section 2.2 that the introduction of noncommutativity forces

us to consider the full U(2) gauge group, as the U(1) piece is no longer frozen out. This

modifies the construction of the metric on the moduli space in a non-trivial manner, via

the global symmetries of ∆. This, too, is surmountable, as shall become clear.

3 Noncommutative U(2) instantons

In this section, we turn our attention to finding explicit solutions to the noncommutative

ADHM constraints for two U(2) instantons. This will allow us to generate the moduli

space metric, consider scattering, and analyse the symmetries of the data. While to con-

sider geodesics on the moduli space of the full data (comprising 16 free parameters) is

computationally expensive, we may use the symmetries inherent in the metric to consider

geodesic submanifolds of the moduli space.

3.1 The commutative k = 2 data

We first record, for comparison, the commutative k = 2 data presented in [23]. The blocks

of ∆ are written explicitly in terms of quaternions as

L =
(
v1 v2

)
,

M =

(
τ σ

σ −τ

)
,

which satisfy the symmetry requirements of the ADHM constraints

∆†∆ = 12 ⊗ f−1(x).

The remainder of the ADHM constraints, namely a†a = µ−112, split into two parts. The

diagonal elements yield |v1|2+|τ |2+|σ|2+|x|2 and |v2|2+|τ |2+|σ|2+|x|2 respectively, where

we define |q|2 ≡ q̄q = q2
i 12. These are, therefore, trivially satisfied in the commutative case.

The off-diagonal constraints give us

v̄1v2 + τ̄σ − σ̄τ = 0
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and its conjugate. These constraints may be combined as v̄1v2 − v̄2v1 = 2(σ̄τ − τ̄σ) and

solved, in general, by [30]

σ =
τ

4|τ |2
(v̄2v1 − v̄1v2) + λτ (3.1)

for λ ∈ R arbitrary. The parameter λ arises from the residual symmetry of the data, given

by a transformation of ∆ as

∆→

(
q 0

0 R

)
∆R−1, (3.2)

for R ∈ O(2) and q ∈ SU(2) a unit quaternion. We may choose to break this symmetry to

a discrete subgroup thereof by setting λ = 0.

Heuristically, then, our ADHM data contains only three independent quaternion terms

and some centre of mass coordinates (suppressed inside τ), which will furnish the full 16-

dimensional space.

The metric for such data has already been calculated in [23] and we will not revisit it

in detail here. The salient points of the analysis are that the metric splits into two parts:

a ‘flat’ and an ‘interacting’ part:

ds2

8π2
= Tr

(
ds2

flat + ds2
int

)
= Tr

((
dv2

1 + dv2
2 + dτ2 + dσ2

)
− dk2

NA

)
,

(3.3)

where

dk = v̄1dv2 − v̄2dv1 + 2 (τ̄dσ − σ̄dτ) ,

NA = |v1|2 + |v2|2 + 4
(
|τ |2 + |σ|2

)
and dq2 ≡ dq · dq = 1

2Tr(dq̄dq). This may be further simplified by explicitly writing

σ = σ(v1, v2, τ) and application of a series of quaternion trace identities. Unfortunately,

the noncommutative case is not so clear.

With this commutative data, one may consider scattering. Unlike in the single in-

stanton case (where geodesic motion can avoid the singularity at zero-size by starting with

non-zero angular momentum) the interactions between the two instantons can, and do,

allow one instanton to shrink to zero-size in finite time. In the single instanton case, the

singularity can be smoothed out by considering noncommutativity on the space, and the

resulting moduli space is Eguchi-Hanson [20]. We wish to achieve the same smoothing in

the two instanton case.

3.2 The noncommutative deformation

Given the above, it is natural to wonder if one could deform the commutative data to

encompass the effect of the noncommutativity. This is reinforced by various expected limits

of the noncommutative metric: the singularity at v1, v2, τ → 0 should be resolved; it should

reduce smoothly to the singular, commutative, metric as we reduce the noncommutativity

parameter to zero; and in the limit of large separation (that is, in the zero interaction limit)
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the metric should reduce to two distinct single noncommutative instanton Eguchi-Hanson

metrics. Given these considerations, we deform the commutative data as follows.

To temporarily avoid confusion with the ‘vanilla’ data above, we begin by writing the

unconstrained ADHM data in the form

L =
(
w1 w2

)
M =

(
t s

s −t

)
.

As remarked in section 2.3, the diagonal terms in the ADHM constraint ∆†∆ ∝ 12 will

no longer be automatically proportional to the identity but instead receive a term from

x̄x. The off-diagonal terms, having no x-dependence, remain the same. Hence we may still

express s in a similar form to the expression for σ in (3.1):

s =
t

4t†t

(
w†2w1 − w†1w2

)
. (3.4)

We use the † notation to reinforce that the entries in ∆ need no longer be quaternionic.

The solution of these new constraints now results in a choice of how to perturb the

quaternion parts of the commutative data ∆comm. The most expedient choice is to re-

tain the quaternionic nature of t, which we will return to labelling as τ , and absorb the

noncommutativity into the wa as follows:

wa = vaMa,

Ma =
1√
|va|2

(√
|va|2 + αζ 0

0
√
|va|2 − αζ

)
,

(3.5)

where α = α(τ, v1, v2) is some function of the commutative parameters to be determined.

One notes that the expression for s is also no longer quaternionic, due to its form in (3.4).

The constraint on α is given by requiring that the non-identity proportional parts of the

nonquaternionic data, (
w†awa + s†s

)
−

(
2ζ 0

0 −2ζ

)
∝ 12 (3.6)

for a = 1, 2 and the solution, while non-trivial, is given by

α =
32|τ |2|v1|2|v2|2

16|τ |2|v1|2|v2|2 + |v̄2v1 − v̄1v2|2 (|v1|2 + |v2|2)
. (3.7)

It is clear at this stage why the calculation of the noncommutative metric is so much more

computationally expensive than that of the commutative case. Even something as simple as

the ‘flat’ dw2
a is a non-trivial multi-term expansion of all of the moduli space parameters. In

practice, however, we can avoid some of the complications inherent in the noncommutative

metric by treating α as a parameter in its own right and deriving a geodesic equation for

α, containing no genuine dynamical content, whose satisfaction must be guaranteed. For

later reference, this corresponds in the numerical derivation of results to introducing an
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additional ‘free’ coordinate in the moduli space, along with an additional constraint in the

form of a geodesic equation for α.

Even with this simplification, calculating the metric for noncommutative instantons is

not easy. Consider first the ‘flat’ term dw2
1. The derivative is given by

dw1 = dv1M1 + v1
v̄1 · dv1

|v1|2
(M−1

1 −M1).

Even in the free sector of the metric, we obtain additional terms proportional to Ma.

These will have minimal impact for small noncommutativity or large instantons, but in

the regime where ζ ∼ |va| the additional noncommutative effects will be dominant. This

complexity of the deformation, even for the ‘free’ metric terms, prevents us in all but

the most simple cases from using properties of quaternion products and quaternion trace

identities, as employed in [23]. A possible avenue of exploration in order to utilise such

identities may be to consider the commutation relations between the quaternions and the

noncommutative deformations Ma. Note that

[Ma, eβ ] = iPaεβγeγ for β, γ = 1, 2,

[Ma, ei] = 0 otherwise,

where

Pa =
√
|va|2 + αζ −

√
|va|2 − αζ.

We may write these commutation relations schematically as

[Ma, ei] = iPaεijej , (3.8)

where it is understood that ε3i = ε4i = δ3i = δ4i = 0. Then we may use (3.8) to collect

together the factors of Ma in the derived s in (3.4). The result is

s = σM1M2 +
τ

4|τ |2
(v̄2v1)i

|v1||v2|
(i(|v2|P2M1 + |v1|P1M2)εij − 2P1P2δij) ej .

While this does make clearer the additional factors introduced into s as a result of the

noncommutativity (and indeed was used when deriving (3.7)), it does not seem to provide

a clear path to an explicit form for the metric without choosing a definite parametrisation.

3.3 The moduli space and gauge transformations

Before we select a relevant parametrisation for the metric, we first examine the effect that

gauge transformations have on the derivation of the noncommutative metric for two in-

stantons. Recall that the noncommutative ADHM data is defined up to some U(2) gauge

equivalence, described by (3.2). This ‘redundancy’ corresponds to local gauge transforma-

tions of the data, and as such these transformations must be quotiented out in order to

uniquely describe each point of the induced moduli space in terms of ADHM data.1 The

1Any global (large) gauge transformations correspond, in the D-brane picture, to the SU(2) flavour

symmetry, and we implicitly include those in the ADHM parameters, zr.
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gauge fixing condition that removes these redundant U(2) transformations is tantamount

to finding the unique, time-dependent, solution to the ADHM data that satisfies the Gauss’

law constraint

DiFi0 = 0.

One can achieve this by an explicit recourse to zero modes of the data (see, for example, [4]).

We instead follow the method of [30], where the zero-mode requirement degenerates to an

algebraic constraint on the metric data.

To begin, we consider the metric derivation presented in [23]. We may write the metric

in terms of the ADHM data as

grs = 2π2Tr
(
∂ra
†(1 + P∞)∂sa−

(
a†∂ra− (a†∂ra)T

)
δsR

)
, (3.9)

where P∞ is the projector at infinity, given in our case by diag(1, 0, 0), and the variation

δR, where R is the gauge transformation in (3.2), is determined by the symmetry of the

theory and the derived ‘zero-mode’ constraint

a†δa− (a†δa)T = a†bδRb†a− b†aδRa†b+ µ−1δR+ δRµ−1. (3.10)

We now consider the deformation of each term under the introduction of noncommutativity.

The redundancy (3.2) now requires q ∈ U(2), rather than SU(2). The ‘flat’ terms possess

no redundancy, and need no modification, under the SU(2) piece of the U(2), as in the

commutative case, but there is an isometry corresponding to the additional U(1) factor

that needs to be gauged away. Generically, we have a transformation

wa → wae
iξ , dwa → (dwa + idξwa)e

iξ,

for ξ ∈ R. In computing dw†adwa, we must identify the conjugate momentum, pξ, associated

to this isometry and set it to zero (this method was applied in [9] to obtain the metric of a

single noncommutative instanton: one may instead define a covariant derivative acting on

the ADHM data and define ds2 = DzrDz̄r). For arbitrary data wa, after completing the

square we obtain

dw2
a = dw̄adwa + |wa|2

(
dξ +

κ

2|wa|2

)2

− κ2

4|wa|2
, (3.11)

where κ = dw̄awa− w̄adwa. The second term is equivalent to |wa|2p2
ξ , and so must vanish.

The additional U(1) factor has nevertheless induced an additional factor in the flat instan-

ton pieces. We note, at this stage, that in the limit of large separation, only the flat part

of the metric contributes and s vanishes. We then find that an explicit parameterisation

of the wa,

wa =

√ρ2
i + αζua1 −

√
ρ2
i − αζūa2√

ρ2
i + αζua2

√
ρ2
i − αζūa1

 ,

for ua1 = cos θae
i(ψa+φa) and u2a = sin θae

i(ψa−φa), results in two copies of the Eguchi-

Hanson metric using the result in (3.11), as expected. In the commutative case, the ex-

pression κ vanishes in the final metric due to the vanishing of the deformation and the

presence of the trace in the metric calculation.
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In the ‘interacting’ part, the redundancy symmetries in (3.2) to be parametrised by

δR now lie in U(2) rather than O(2), as explained in [30]. The constraint (3.10) is then

modified accordingly. In the commutative case, the multiplicative factors around δR were

proportional to the identity, and therefore δR ∝ a†δa− (a†δa)T naturally followed. In the

noncommutative case, this no longer occurs. A solution is still obtainable, however: one

may use the explicit wa and τ dependence of the data a and b to (anti-)commute them

through δR and explicitly multiply by the inverse of the matrix multiplicative factor. For

the sake of completeness, symbolically we have

δR =
(
w†1dw2 − w†2dw1 + 2(τ̄ds− s†dτ)

)(
w†1w1 + w†2w2 + 4(τ̄ τ + s†s)

)−1
,

and so the interacting part of the metric follows trivially:

ds2
int = −Tr

((
w†1dw2 − w†2dw1 + 2(τ̄ds− s†dτ)

)2 (
w†1w1 + w†2w2 + 4(τ̄ τ + s†s)

)−1
)
.

It is possible, at this point, to expand s in terms of wa and τ and calculate the inverse but

the resulting expression is not illuminating. Instead, we now exploit the symmetries of the

metric to obtain tractable results.

3.4 Complexification of the moduli space

The noncommutative framework causes a number of complications in determining a useful

form of the metric. Taking a generic parametrisation of w1, w2 and τ via, for example,

Euler angles or complex matrices would be the easiest way to generate a full metric for

the instantons, but this has proven to be computationally expensive. We may, instead,

consider whether any valid geodesic submanifolds of the data exist that admit a sensible

parametrisation and tractable metric calculation. Such a submanifold can be generated by

certain fixed points of a symmetry of the metric. Consider the unexpanded form of ds2:

ds2 = Tr
(

dw†1dw1 + dw†2dw2 + dτ̄dτ + ds†ds−N−1
A dk2

)
, (3.12)

where NA is the multiplicative factor defined in [23]. The key symmetry that we wish to

consider is conjugation of the data by a unit quaternion, p:

w1 → pw1p̄, w2 → pw2p̄, τ → pτ p̄.

In the commutative picture, the invariance of the metric under such a transformation was

guaranteed as the corresponding transformation rule for σ, that is σ → pσp̄, is naturally

respected. It is not as simple in the noncommutative case, due to the commutation rela-

tions (3.8). In order to apply the same analysis, we may only consider conjugation symme-

tries whose direction commutes with the direction of the noncommutativity. Clearly, then,

this symmetry is valid only for p = e3 in the noncommutative picture; the choice of non-

commutativity has removed some of the underlying symmetries of the space, as would be

anticipated. Our valid geodesic submanifold, then, is composed of τ, v1, v2 ∈ Span{e3, 12}.
Note that this complexification is in agreement with the arguments put forward in [11],

– 15 –



J
H
E
P
0
6
(
2
0
1
5
)
0
3
6

where the e3-e4 plane is chosen in order to break the correct subgroup of the ADHM

symmetries (we will examine this in more detail in section 4.3).

We thus consider an explicit complex parametrisation of the form

va = ρa(cos θa12 + sin θae3),

τ = ω(cosχ12 + sinχe3).

Due to the commuting nature of the deformation in this submanifold, then, we obtain

s = σM1M2 = M1M2σ,

and in this parametrisation the noncommutative deformation function α takes on a sim-

pler form:

α =
8ω2

4ω2 + sinφ(ρ2
1 + ρ2

2)
,

where we now define φ ≡ θ1 − θ2 to be the relative gauge angle on the moduli space. We

also define Θ ≡ θ1 + θ2, corresponding to the total gauge angle.

It is now possible to calculate the metric on this 6-dimensional submanifold. Defining,

for convenience, the following quantities:

ρ2
i± ≡ ρ2

i ± αζ,

Pi ≡ ρ4
i − α2ζ2,

Ω± ≡ ρ2
1ρ

2
2 ± α2ζ2,

N± ≡ 4ω2 + ρ2
1 + ρ2

2 ± 2αζ +
1

ω2
ρ1±ρ2± sin2 φ,

we find the flat part to be

ds2
flat =

1

P1

(
ρ4

1 +
ρ2

1Ω− sin2 φ

4ω2

)
dρ2

1 +
1

P2

(
ρ4

2 +
ρ2

2Ω− sin2 φ

4ω2

)
dρ2

2

+ (dω2 + ω2dχ2)

(
1 +

Ω+ sin2 φ

4ω4

)
+

1

4

(
ρ2

1 + ρ2
2 −

1

2
α2ζ2

)
(dΘ2 + dφ2)

+
1

2
(ρ2

1 − ρ2
2)dΘdφ+

Ω+ cos2 φ

4ω2
dφ2 − Ω+ sin 2φ

4ω4
ωdωdφ

+
ρ1ρ2 sin2 φ

2ω4

(
ω2dρ1dρ2 − ωdω(ρ1dρ2 + ρ2dρ1)

)
+
ρ1ρ2 sin 2φ

4ω2
(ρ2dρ1 − ρ1dρ2)dφ

+ αdαζ2

(
ρ1dρ1

P1

(
(ρ2

1 − ρ2
2) sin2 φ

4ω2
− 1

)
+
ρ2dρ2

P2

(
(ρ2

2 − ρ2
1) sin2 φ

4ω2
− 1

)
− 1

4ω2
(2ωdω sin2 φ− ω2 sin 2φdφ)

)
+

dα2ζ2 sin2 φ

16ω2P1P2

(
Ω−(ρ2

1 + ρ2
2)− 2α2ζ2(ρ4

1 − 2α2ζ2 + ρ4
2) + 4ζ2ω2Ω−(ρ2

1 + ρ2
2)
)
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and the interacting part, similarly, is

ds2
int =

(cosφ (ρ1−dρ2− − ρ2−dρ1−)− 2ρ1−ρ2− sinφ(dΘ− 2dχ))2

8ρ1−ρ2−N−

+
(cosφ (ρ1+dρ2+ − ρ2+dρ1+)− 2ρ1+ρ2+ sinφ(dΘ− 2dχ))2

8ρ1+ρ2+N+
.

The form of the metric is perhaps not particularly simple, but one can verify the anticipated

properties. In the limit of ζ → 0, we see that Ω± → ρ2
1ρ

2
2, Pi → ρ4

i , ρ
2
i± → ρ2

i and so

N± → NA, where NA is the multiplicative factor defined in [23]. With the vanishing of the

final three lines in dsflat, it is then easy to see that one recovers the commutative metric

of two instantons in this limit.

We may also verify the expected result at the large separation limit: as ω becomes

large, the interacting term is subleading and α → 2 ⇒ dα → 0. Ignoring the flat space

dω2 + ω2dχ2 term, we obtain

ds2
sep =

dρ2
1

1− 4ζ2/ρ4
1

+

(
1− 4ζ2

ρ4
1

)
ρ2

1dθ2
1 +

dρ2
2

1− 4ζ2/ρ4
2

+

(
1− 4ζ2

ρ4
2

)
ρ2

2dθ2
2.

This is two copies of the Eguchi-Hanson metric restricted to the complex subspace, which

was demonstrated to be the metric of a single instanton in U(N) gauge groups [9, 11].

Finally, before examining the symmetries of the metric in more detail, we note that

the noncommutative metric still permits the Killing vectors ∂Θ and ∂χ. The second vector

corresponds to the overall SO(2) symmetry of the flat (ω, χ) space geometry which, under

the addition of a VEV, will remain unbroken. The vector ∂Θ, as justified in [9], will

contribute to the potential as

V =
1

2
grsG

rGs =
v2

2
gΘΘ, (3.13)

where v is the strength of the potential. Hence, for later reference, we may read off the

potential term for the complexified noncommutative metric:

V =
1

2
v2gΘΘ

=
1

4
v2

(
ρ2

1 + ρ2
2 −

1

2
α2ζ2 − 4ω2

+
2ω2(ρ2

1 + ρ2
2 + 4ω2 − 2αζ)

N−
+

2ω2(ρ2
1 + ρ2

2 + 4ω2 + 2αζ)

N+

)
.

(3.14)

We note that, in the limit as ζ → 0, this agrees with the 2-instanton commutative com-

plexified potential given in [23], and in the single instanton limit we obtain agreement with

the complexified version of the U(1) potential obtained in [9]. We may similarly derive the

angular momentum, L, of the instantons, given by gΘiż
i, which we expect to be conserved

in any subsequent geodesic motion:

L =
2

v2
V Θ̇ +

1

4
(ρ2

1 − ρ2
2)φ̇+ sin2 φ

(
ρ2

1+ρ
2
2+

N+
+
ρ2

1−ρ
2
2−

N−

)
χ̇

+
1

4
sin(2φ)

((
ρ2

2+

N+
+
ρ2

2−
N−

)
ρ1ρ̇1 +

(
ρ2

1+

N+
+
ρ2

1−
N−

)
ρ2ρ̇2

)
.

(3.15)

We will explicitly verify in the following that this is a conserved quantity.

– 17 –



J
H
E
P
0
6
(
2
0
1
5
)
0
3
6

3.5 Symmetries of the noncommutative metric

We conclude this section with a brief analysis of the symmetries of the noncommutative

moduli space. The solution for s in the ADHM constraints allowed some freedom over a

choice of constant τ term; explicitly we found

s =
τ

4|τ |2
(w†2w1 − w†1w2) + λτ, (3.16)

for λ ∈ C. A particular choice of λ breaks the U(2) gauge symmetry, represented by the

ADHM transformation ∆ → Q∆R−1, down to a discrete subgroup. These discrete sym-

metries are quotiented when considering the moduli space metric: the fixed points of these

symmetries will, upon quotienting, give rise to orbifold singularities in the moduli space.

Indeed, in the commutative case, it can be seen that the zero-size singularity corresponds

to such fixed points. We must consider the nature of such symmetries to ensure that the

noncommutative moduli space is singularity-free, and the resulting manifold smooth.

The residual symmetries generated by R may be considered as reflections or rotations

of the ADHM data. We therefore have the following ADHM-invariant transformations of

the data:

w̃1 = w1 cos θ ∓ w2 sin θ,

w̃2 = w1 sin θ ± w2 cos θ,

τ̃ = (cos2 θ − sin2 θ)τ ∓ 2 cos θ sin θs,

s̃ = ±(cos2 θ − sin2 θ)s+ 2 cos θ sin θτ.

Such transformations clearly leave the expression w̃†2w̃1 − w̃†1w̃2 invariant. However, to

leave λ = 0 invariant we must have either cos2 θ − sin2 θ = 0 or cos θ sin θ = 0. Hence,

the remaining discrete symmetries of R are described as rotations or reflections of ∆ with

θ = nπ/4, n = 0, 1, . . . , 7, namely the elements of the dihedral group D4.

Now we consider each group of transformations in turn, and its action on the

ADHM data.

• cos θ = ±1, sin θ = 0. These transformations preserve τ and s, and preserve or negate

the signs of w1 and w2. The fixed point of the non-trivial symmetry occurs when

wi = −wi, that is when wi = 0. This is the conical singularity encountered in the

commutative case. Note that in the noncommutative picture, for generic ζ 6= 0 this

fixed point no longer lies on the moduli space of instantons, as the noncommutative

parameter bounds the instanton size from below as |wi| ≥
√
αζ.2 The action of

this symmetry, therefore, does not give rise to a singularity under quotienting in the

noncommutative picture, as anticipated.

• cos θ = 0, sin θ = ±1. Such transformations again preserve τ , swap the roles of w1

and w2 (potentially with a sign change), and may negate s. This corresponds to the

2Note that as ω → 0, α → 0 and it would appear that the instantons may attain zero-size. In this

limit, however, s is the dominant term describing in the metric and the instanton sizes are more correctly

described by |w1 ± w2|2/2, which remain bounded.
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indistinguishability of the two instantons on the moduli space. We may reinterpret

this as a simple invariance under the relabelling of instantons 1 ↔ 2, and obtain the

previous case. The fixed points of these symmetries are, for this reason, the same

zero-size instanton points as above, and may be safely ignored for the same reasons.

• cos θ = ± 1√
2
, sin θ = ± 1√

2
. This is equivalent to swapping τ and s, and redefining the

wi as some linear combination of each other. The only fixed point of this symmetry

is the ‘trivial’ fixed point, w1 = w2 = τ = s = 0. As we will see in section 4.1, this

fixed point has a geometric interpretation on the moduli space, and the ‘singularity’

obtained has no effect on the smoothness of the underlying metric.

We may now justify the claim that noncommutativity ‘smooths out’ the moduli space:

the orbifold singularities present as a result of quotienting global gauge transformations of

the ADHM data no longer appear in the noncommutative moduli space due to the new,

ζ-dependent, form of the wi. This is exactly what one expects [31]. From the D4-D0

perspective, a commutative solution describes D0s dissolved in D4s; the “small instanton”

singularities arise from the transition between the (dissolved) Higgs branch, describing

Yang-Mills theory, and (separated) Coulomb branches of the D-brane theory. In the non-

commutative framework, the Coulomb branch is frozen out of the worldvolume field theory,

and the ζ 6= 0 theory allows one to describe both dissolved and separated D0 branes without

passing through the so-called ‘small instanton’ singularity.

This concludes the derivation and analysis of the noncommutative instanton moduli

space. Via a deformation of the ADHM data, solutions to the noncommutative instanton

field theory can be generated, and shown to behave as expected. While it has not been

possible to find a concise, explicit form for the full 16-dimensional metric for 2 instantons,

nevertheless a geodesic submanifold of the metric still exists and one may reliably consider

the evolution and behaviour of instantons on this reduced, 6-dimensional, space. The zero-

size singularity is no longer a feature of this moduli space, achieving correspondence with

the overarching D-brane picture. We may now turn to more interesting aspects of this

instanton solution: evolution and scattering.

4 Noncommutative instanton dynamics

In this section, we examine the geodesic motion of two noncommutative instantons on

the induced moduli space. While the metric, and induced geodesic equations, on the

complexified moduli space obtained in the previous section do not admit analytic solutions

in all but the simplest considerations, a numerical approach may be taken to simulate

scattering, orbiting and general behaviour of the two instantons. We first consider the

case where 〈φ〉 = 0 before looking at the dyonic extension to the moduli space in section 5.

The noncommutative framework admits some surprising results, particularly with regard to

stable configurations of the instantons. Finally, we briefly discuss our results in the context

of the non-Abelian vortex picture and find agreement with the results described in [32].
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4.1 Instanton scattering

In order to consider the effect of scattering, we first turn to the common observation of

soliton dynamics [23, 29], two solitons colliding head-on at small velocities often results

in right-angled scattering. We note that in the metric presented in the previous section,

the parameter ω admits a natural interpretation as the instanton separation. However, it

is not unique in this respect. In particular, the gauge transformations that leave ADHM

data ∆ invariant admit an equivalent ADHM solution of the form

∆′ =


1√
2
(w1 + w2) 1√

2
(w1 − w2)

s τ

τ −s

 .

Hence, we may state that s has equal claim to describing the separation of the instantons.

This statement is further motivated by the structure of s. For large τ , the magnitude of

s is small and so in this regime the separation is adequately described by the parameter

ω. Conversely, for small τ it is the s term that will dominate. In the case where the

two parameters are of similar size, neither interpretation truly holds. More formally, the

separation of the instantons is given by the eigenvalues of the lower block, M , of ∆:

λ± = ±
√
τ2 + s2. (4.1)

Note that the terms in the square root are not equivalent to q†q. We interpret these

as follows. For τ large, the eigenvalues are approximately ±τ and so we identify the

configuration as that of two instantons whose centres are at ±|τ |. As τ reduces, the size

of s is less suppressed, until we approach the point where τ and s are of equal magnitude.

At this point, we note that the separation (4.1) vanishes since τ and s are related by an

imaginary phase in the commutative case. Passing beyond this point, as we reduce τ further

then s becomes the dominant parameter controlling separation. Right-angled scattering

arises due to this interchange between τ and s, coupled with the imaginary multiplicative

factor which causes a phase difference of π/2 between the τ -dominated and s-dominated

regimes of parameter space. In the noncommutative picture, this is not as clear. The

presence of the parameter α in the expression for s makes the zero-eigenvalue requirement

more complicated, and the results are dependent on the magnitude of ζ.

The scattering scenario is shown in figure 1. Using the complexified metric derived

previously, we identify ρi with the size of the i-th instanton. The angle χ defines the angle

of incidence of scattering relative to the axis (so that an angle of χ = 0 represents head-

on scattering) and ω the initial separation. Due to the discontinuous jump that occurs

at zero separation (representing the symmetry between w1 and w2), a naive numerical

simulation breaks down at the point of collision. We thus follow [23] and reparametrise the

variables in τ as ω =
√
x2 + b2 and χ = arctan(b/x). Then we may interpret x as the initial

separation along the axis and b as an impact parameter. A head-on collision will occur

when the impact parameter goes to 0 but can be approximately observed for sufficiently

small, non-zero, b.
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Figure 1. The relevant parameter set-up for scattering simulations. The general separation of the

instantons is described by 1/
√

2(|τ |2 + |s|2), and this is what the “x” and “y” axes describe. In

subsequent plots, where it is helpful, we plot the sizes of the instantons at regular t-intervals to

demonstrate size evolution and instanton speed.

4.2 Head-on collisions

We first consider the results of such a ‘head-on’ collision in both the commutative (ζ = 0)

and noncommutative (ζ = 0.1) systems, as shown in figure 2. The presence of right-angled

scattering is perhaps heartening, as this agrees with the expected soliton behaviours. The

key point, however, lies in the size plots. While in the commutative framework the in-

stanton sizes reach the zero-size singularity, no such problem exists in the noncommutative

analogue. This is as expected, since one anticipated that the noncommutativity would

smooth out the singular point encountered in the commutative picture. It can be veri-

fied that the minimum of the size is attained just after collision, and with the parameters

evaluated, this minimum is precisely
√
αζ. This agrees with our expectations: the non-

commutative deformation to the metric took the form ρ2
i ρ

2
j −α2ζ2 for i = 1, 2 and j = 1, 2

so the singularities at ρi = 0 are replaced by a circle around the ρi parameter spaces of size√
αζ. This trend is shown in figure 3. Finally, we note that angular momentum (3.15) is

conserved: the period of greatest volatility is around the point of collision. In this regime,

the difference between initial angular momentum and that of the scattering configuration

varies only slightly, and well within expected numerical error. The “change” in angular

momentum is shown in figure 4.

We may also move away from the head-on limit of scattering and consider a non-

negligible impact parameter. In the commutative case, this allows the instantons to deviate

away from π/2 scattering: in the noncommutative case, this effect is even more pronounced.

This behaviour is shown in figure 5.

The above demonstrates that the ‘attractiveness’ of the noncommutative bound state

displays a large sensitivity to the value of the impact parameter, b. As one varies the
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Figure 2. A comparison of commutative (left) and noncommutative (right) instanton scattering

and sizes for given initial conditions φ = π/2, b = 0.001, x = 30 and ρ1 = ρ2 = 1. Right-angled

scattering is still a valid behaviour in the noncommutative case for small impact parameter. We

note that, as anticipated, the instanton sizes do not vanish at the point of collision, thus avoiding

the moduli space singularity attained in the commutative case.

impact away from head-on, we obtain scattering, although the presence of ζ 6= 0 deforms

the scattering solutions away from the commutative scattering angle. This behaviour

under introduction of noncommutativity appears to be a generic feature of all soliton

systems which arise from reductions of noncommutative instantons: in considerations of

non-Abelian vortices (where a Fayet-Iliopoulos parameter serves to couple the Abelian U(1)

non-trivially to the rest of the gauge group), this attractive behaviour is also manifest [33].

It is natural to ask whether such an attractive force on the moduli space could be interpreted

as an induced potential on the space, even for the free instanton moduli space. This is a

question that we will revisit in due course.

Given the modifications to the scattering behaviour under the introduction of a non-

zero ζ, it is instructive to examine the scattering angles obtained. The results are shown

in figure 6 for equal size instantons (since this provides right-angled scattering in the
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Figure 3. Minimum instanton size achieved via head-on scattering with varying ζ.

Figure 4. The variation in angular momentum of the system around the point of collision. The

difference between the initial angular momentum and that of the evolved configuration never ex-

ceeds O(10−6), well within numerical error. Outside of the scattering region, the difference drops

to O(10−8).

Figure 5. Commutative and noncommutative scattering for b = 0.25.
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(a) (b)

Figure 6. Scattering with varying b and ζ = 0.1. A ‘critical’ point in configuration space exists at

b ∼ 0.21, where the instantons temporarily orbit before scattering.

Figure 7. Contour plot of final scattering angle with varying ζ and b. The region bounded by the

countour χ = π contains configurations with the unstable orbit characteristics.

commutative case) and ζ = 0.1. We note that as we vary the impact parameter, the

scattering angle varies accordingly from standard scattering to a scattering angle greater

than π. This demonstrates that, far from being the standard result, right-angled scattering

is one possible outcome from the collisions of noncommutative instantons.

The above results raise more questions about the behaviour of the instantons. From

figure 6 one can see that there appears to be a “critical” tuning between b and ζ which

maximises the final scattering angle. Such a tuning exists for all possible values of b (or

equivalently, ζ), as can be seen in figure 7.

These results are perhaps surprising: right-angled scattering does appear, but is not the

most general result for close to head-on collisions between two noncommutative instantons.

In fact, it naturally arises from a consideration of the symmetries in section 3.5 and the
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(a) (b)

Figure 8. Collisions for a range of b and ζ = 0.1. The configuration that maximises the scattering

angle (the right figure) corresponds to a “slingshot”, where the instantons orbit each other before

returning whence they came. In the right-hand plot (where the size of one instanton has been

suppressed for clarity), the right instanton approaches from above the x-axis with stable size and

speed and leaves more slowly, but with an increasing size.

expression for the separation (4.1). The more involved form of s, coupled with the presence

of the parameter α in the data, allows for a greater range of initial data causing the τ -s

identification change. As a result, one can obtain scattering in a range of scenarios and

scattering angles, of which right-angled is but one aspect.

4.3 The connection to vortices

The results gained for instantons have wider reach to other solitonic systems. The (4 + 1)-

dimensional Yang-Mills theory can be dimensionally reduced in a number of ways to obtain

other lower-dimensional theories. Accordingly, instantons (as solutions to bosonic Yang-

Mills theory) can be dimensionally reduced to produce monopole and vortex solutions.

The vortex picture is an interesting one: the vortices are static solutions to a (2 + 1)-

dimensional maximally supersymmetric N = 4 field theory. To guarantee the existence

of vortex solutions, the bosonic Lagrangian of such a theory can be adapted to contain a

Fayet-Iliopoulos parameter, which modifies the D-term constraints and ensures symmetry

breaking of the vacuum [11]. The introduction of such a term mediates the coupling

between the SU(N) gauge symmetry and the remnant U(1) symmetry, in a similar vein to

the instanton picture and hence the vortex solutions thus obtained can be considered to be

non-Abelian [34]. The equivalence between the instanton and vortex deformations is not

quite straightforward, however.

To make clear the connection, we must consider the symmetries of the instanton

data [11]. The full symmetry group of the ADHM data for U(N) instantons is

Ginst = SO(5)×U(N)× SU(2)×U(1),
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where the SO(5) rotates the transverse scalars XI , the U(N) is the overall flavour symmetry

(corresponding to the ADHM redundancies) and the SU(2)×U(1) symmetry is the unbroken

parts of the worldvolume SO(4) symmetry after the introduction of noncommutativity. The

vortex theory arises via a symmetry breaking of a subgroup of Ginst to leave the matter

content and SUSY structure equivalent to that of the vortices. To achieve this, we weakly

gauge a U(1) factor inside Spin(5). We can interpret this in a more concrete sense via

the ADHM data and corresponding moduli space. The U(1) gauge field is tantamount

to a circle action on the moduli space, which will have a corresponding triholomorphic

Killing vector k̂. Gauging by this S1 action leads to a potential term in the instanton

Lagrangian, with mass term proportional to k̂2. Now, considering the fixed points of the

circle action (equivalently, all points in the moduli space for which k̂ = 0) gives us exactly

the vortex moduli space. To ensure isometry between the two sets of theories, one must

relate the instanton noncommutative parameter, ζ, to the gauge coupling of the vortex

theory; namely,

ζ =
π

2e2
. (4.2)

There are a number of open questions in this analysis, most of which are unfortunately

beyond the scope of this work. The FI parameter in the vortex theory already guarantees

the existence and smoothness of vortex solutions, unlike in the overarching instanton theory.

Due to the identification between ζ and the gauge coupling of the vortex U(1), descending to

a theory of vortices from noncommutative instantons may, rather than resolving the moduli

space, lead to singularities not present in the original theory [11]. More work on this aspect

of the analysis, including classifying such potential singularities, would be helpful.

The scope of vortex solutions, a priori, appears to be larger than those configurations

that would arise from the instanton reduction. The instantons, when dimensionally re-

duced, provide a ‘critically coupled’ non-abelian vortex theory and in fact, one can see

from (4.2) that in the commutative limit the U(1) part of U(N) is frozen out of the theory.

However, the theory of vortices may also admit its own FI parameter as well as the U(1)

gauge coupling. It would appear that, as ζ is in some sense determined by the coupling e,

that the instanton theory says nothing about the noncommutative structure of the vortex

theory. It seems incongruous to assert that the vortices have additional freedom not pos-

sessed by the instantons, but a clear justification of the converse would be preferred. As it

stands, we may only consider equivalence of our solutions to this critically coupled theory.

A point that naturally stems from the above discussion is related to dyonic instantons.

If we choose a potential for the dyonic instantons in a direction orthogonal to the U(1) ⊂
Spin(5), then we should anticipate some form of ‘dyonic’ vortices to appear. The nature

of such a theory is not clear, but work is being done to include a Higgs field to the vortex

picture (e.g. [35]), which should find some analogue in the instanton secnario.

We do not wish to enter into a discussion of these issues. The aim here is to ensure

that our solutions to the noncommutative ADHM equations agree, upon reduction, with

the known behaviours of non-Abelian vortices [32]. We note that, in the ‘free’ instanton

case, we have no real restriction on the choice of U(1) ⊂ Spin(5) to gauge. We may also

note that when complexifying the moduli space of instantons, we required the data to be
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(a) Vortex scattering for φ = π/2, b = 0.5,

0.75, . . . .

(b) Vortex scattering for b = 1, φ = 0,

π/8, . . . .

Figure 9. Vortices from a reduction of the instanton moduli space.

unchanged under conjugation by the unit quaternion e3. The data we have obtained, then,

is fixed under the circle action generated by e3 and hence viable as a starting point for the

comparison with vortices.

Figure 9 shows the results of this vortex limit. We reproduce the results gained in [32]

from the instanton data and observe the expected behaviour: the non-Abelianisation is

shown in the different behaviours with varying gauge orientation φ ≡ θ1 − θ2. Of course,

this is just one aspect of non-Abelian vortex scattering, but nonetheless it is encouraging

to see the scattering behaviour exactly reproduced in the context of instantons.

4.4 The attractiveness of noncommutativity

Before moving on to consider dyonic noncommutative instantons, we may analyse the effect

of noncommutativity on the free instanton picture. We noted that the presence of non-

zero ζ seems to introduce an attractive effect to the normal instanton scattering that, for

sufficiently high ζ, overrides the normal repulsion of the two instantons. Then, before we

concern ourselves with an additional potential force, we should investigate whether we may

view the noncommutative effect as a genuine attractive effect. If so, then we would expect

the transition to dyonic instantons to be unremarkable: the same scattering solutions will

exist, but each solution will correspond to a two-parameter space spanned by the strength

of the potential, v, and the noncommutativity.

The clearest possible test of this is the following. We set our instantons at a finite

distance apart such that in the commutative v = 0 case the repulsive behaviour is apparent.

Sending the two initially at right angles to the line of separation, we would expect a

deviation away from π/2 for a small time, until the instantons are suitably far away that

repulsion is no longer a feature of the system. We may then repeat this for some appreciably

large value of ζ. The results are shown in figure 10 for unit-size instantons and initial

separation 0.9. Crucially, the separation is chosen such that the extent of the instantons
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Figure 10. A demonstration of the attractive effect of noncommutativity: overlapping instantons

with initial motion at an angle π/2 to the x-axis. On the left, for ζ = 0.05, repulsive behaviour

dominates short-scale interactions; on the right, for ζ = 0.3, attractive behaviour is the key feature.

initially overlap, and so interaction effects are the dominant initial contribution to the

instanton dynamics.

On the left hand side, with ζ = 0.05, we observe the expected behaviour. The instan-

tons temporarily repel, before maintaining a steady course. On the right hand side, for

ζ = 0.3, a very different picture emerges. Far from repelling, the short-distance behaviour

is attractive, before the instantons separate too far for interaction effects to dominate. If

the noncommutativity is strong enough, then the tendency is for the instantons to come

together rather than pull apart. Figure 11 shows the changing angle of exit with vary-

ing ζ for some values of the separation, where the crossover point between repulsion and

interaction becomes clear.

Figure 11 also shows the sensitivity of such behaviour to the initial separation. We plot

the value of the final scattering angle χ−π/2 against ζ for a variety of impact parameters.

When the plots remain below the x-axis, the instantons are scattering repulsively; when

they cross the axis, this demonstrates the transition to attractive scattering. For large

initial separation, the generic instanton repulsion is the only notable effect on the dynamics

due to the subleading nature of the ζ modifications to the metric, and the crossover between

repulsion and attraction is not evinced. Note that the trajectories of the plots suggests

that the case b = 1.1 will eventually cross the transition point. However, the value of ζ at

which it does so is outside the valid parameter regime for the geodesic approximation and

therefore cannot be considered to be a feature of the system. Nevertheless, it can be seen

that the introduction of a noncommutative parameter to the moduli space can cause an

attractive, rather than repulsive, effect.

We have now seen the important effects of a noncommutative parameter on instanton

scattering. Far from a simple modification to scattering angle, we may observe very different

behaviours. For an initially small impact parameter, we may recover the standard results

of soliton scattering. However, for off-centre scattering configurations, the presence of ζ
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Figure 11. The attractive/repulsive interface for noncommutative instantons. For χ − π/2 <

0, repulsion occurs. For suitably small initial separation, one can instead obtain χ − π/2 > 0

(attraction).

can effect an attractive force between the two instantons, greatly modifying their scattering

behaviour. We now turn on an actual potential force in the metric, and consider the twin

effects of the two attractions.

5 Dyonic noncommutative instantons

In this section, we consider the effect on the dynamics of noncommutative instantons un-

der the addition of a potential term. The ADHM construction in section 3 demonstrated

that the potential term does not remain unchanged after we consider a noncommuta-

tive space. We would expect, then, that the dynamics of such instanton solutions should

change accordingly.

We first recall the form of the potential term for two noncommutative U(2) instantons:

V =
1

4
v2

(
ρ2

1 + ρ2
2 −

1

2
α2ζ2 − 4ω2

+
2ω2(ρ2

1 + ρ2
2 + 4ω2 − 2αζ)

N−
+

2ω2(ρ2
1 + ρ2

2 + 4ω2 + 2αζ)

N+

)
,

where N± ≡ 4ω2 + ρ2
1 + ρ2

2 ± 2αζ + 1
ω2 ρ1±ρ2± sin2 φ and ρi± ≡

√
ρ2
i ± αζ. In the extremal

limit as noncommutativity becomes comparable to instanton size, that is αζ ∼ ρ2, N+ →
4ω2 + 4ρ2 + 2ρ2/ω2 and N− → 4ω2. Then as ω → 0, we see that both interacting terms

become negligible and the effect of the potential term on the full dynamics is dominated by

the ‘free’ terms therein, with some marginal noncommutative modification arising from the

α2ζ2/2 term. For small noncommutativity (in line with the requirements of the Manton

approximation) this effect, too, is subdominant. Conversely, as previously mentioned (and

studied in [23]), the commutative limit gives a similar picture: the NA term is subleading in
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(a) Orbiting from perpendicular instantons, for

v = 0.07.

(b) Beyond Manton scattering: v = 10. Objects

scatter as if propelled inwards to begin with.

Figure 12. The attraction options for commutative dyonic ‘instantons’. The instantons either

attract and reside in a fixed orbit, or attract with such force that scattering occurs. No intermediate

behaviour is demonstrated.

the scattering limit. Hence any substantive effects of the introduction of noncommutativity

are not to be found in straightforward scattering. Nevertheless, the difference between

dyonic instantons and their regular counterparts may be seen in some aspects of scattering

in a neighbourhood around ω = 0, and we may consider those. Moreover, dyonic instantons

may exhibit a feature not present in the free case: it is possible to ‘tune’ the latent repulsive

force of the instantons and the attractive potential force to obtain stable orbiting solutions.

We shall examine whether such solutions are an option in the noncommutative framework.

5.1 The dyonic picture

Now we introduce a non-zero potential strength, v. The results of section 4.4 were sug-

gestive of a potential-like force on the moduli space arising from the noncommutativity. A

potential of the form [18, 23] is also useful, however, as it allows us to examine whether the

slow-roll instability as ρ → ∞ exists in the noncommutative case. It may also shed some

light on the BPS spectra, via an analysis of the zeros of the potential [9].

The results are shown in figure 12. This demonstrates quite different characteristics:

for relatively low potential strength, the instantons can attract and form a stable orbit

(of which we will see more shortly), with the potential force and repulsive force balanced.

Even if one breaks the Manton approximation by allowing |v|2 > 1, the ‘instanton’ solutions

attract so strongly that the configuration resembles that of a head-on collision. There is no

configuration that envinces attractive behaviour of the form seen in the pure instanton case.

This is interesting, but perhaps not surprising. The dynamics of noncommutative

instantons are resulting from purely geodesic motion: that is, any scattering effect arises

due to the geometry of the moduli space. Since the key feature of the noncommutative
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moduli space is that the singularity at zero is smoothed out, the instantons are liable

to reside in a lower energy state due to their newly allowed closeness. In the dyonic

commutative picture, the singularity at zero-separation remains, and the instantons are

unable to bind. Any deviation from the geodesic motion effected by the potential or a

velocity will not overcome the singularity at the origin.

This aside, we consider the available solutions under the influence of both ζ and v.

In the search for interesting results, we ignore some regions of the parameter space: the

addition of an attractive potential term is not going to change the scattering behaviour for

small impact parameter. Rather, we will focus on the regions of parameter space where

scattering did occur in the free noncommutative picture and analyse any changes that

arise in those situations. In the following, we consider a range of initial impact parameters,

0.32 ≤ b ≤ 0.52, and stipulate that the combined ‘strength’ of the noncommutativity

and potential are fixed. Figure 13 shows the results for different partitions of ζ + v =

0.15, where this partition and strength are chosen in order to demonstrate the salient

qualitative behaviours.

In the first case, we consider pure noncommutativity. This is a familiar result: we have

a modified scattering picture. As we dial down ζ and dial up v, we may see very different

behaviours. While ζ dominates, the pure noncommutative picture is still approximately

valid; as the effect of the potential dominates, then scattering is guaranteed, albeit with

the expected changes to the final scattering angle. Somewhere around the midpoint of this

transition (demonstrated in figure 13 for ζ = 0.05 and v = 0.1), the behaviour becomes

more interesting. A zoomed out version of this plot is shown in figure 14, and shows the

presence of unstable orbits even without the initial conditions chosen by [23].

One point to make with regards to these results is that the qualitative difference

between configurations with similar initial conditions can be considerable. The moduli

space is incredibly sensitive to any adjustments to impact parameter and potential strength,

in particular. This is not surprising: given the respective instabilities inherent in both

the dyonic commutative and free noncommutative instanton configurations, a combination

thereof allows for a greater range of unstable dynamical systems in the ζ-v parameter space.

5.2 Dyonic orbits

Despite the observed instability of certain scattering scenarios as in section 5.1, and the

atypical behaviour of some ‘non-scattering’ situations as in section 4.4, we may exam-

ine whether the stable orbits known to exist in the commutative picture remain in the

noncommutative analogue. Such orbits existed at a point of equilibrium between the at-

tractive and repulsive forces of the potential and the instanton effect, respectively. Given

our previous considerations, it is not clear whether such a situation may be replicated for

noncommutative instantons.

One key point in the search for such systems is that of longevity: the presence of a

non-zero ζ has introduced the possibility of attraction and scattering for previously normal

scattering scenarios, if ζ is large enough. This option is still possible if we start with a stable

orbit and turn on noncommutativity, but the time taken to demonstrate the behaviour

may be much longer. With this in mind, all numerical simulations run to investigate the
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Figure 13. Dyonic noncommutative scattering for ζ + v = 0.15. The free noncommutative result

ζ = 0.15 is shown in the top left, followed by ζ = 0.1, v = 0.05, ζ = 0.05, v = 0.1 and v = 0.15

(commutative dyonic) respectively.

possibility of orbits have been run for around 5 times longer than those in [23] to rule

out eventual scattering. We again consider the interplay between the noncommutative

parameter ζ and the strength of the potential v.

The first question is whether naively adding a non-zero ζ to previously known stable

orbits affects the qualitative results. We take the stable orbit previously determined and

turn on some amount of noncommutativity. The differences are shown in figure 15 and

figure 16, where we record the evolution of the trajectories of the instantons and their

sizes. In the commutative case, the instantons oscillate in a regular fashion, trading size

as they sweep out a annulus in the moduli space. The maximum (minimum) combined

size ρ1 + ρ2 is reached on the outer (inner) edge of the annulus, as one would expect from

the ‘free’ scattering data. This orbit is stable, and exhibits no interesting features beyond

those shown in figure 15.
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(a) (b)

Figure 14. A zoomed out plot of the ζ = 0.05, v = 0.1 configuration above, and one particular

unstable orbit from the initial plot with size oscillation shown.

Figure 15. A commutative dyonic orbit.

The noncommutative equivalent is less aesthetically pleasing, though it still exhibits

a stable configuration. The instantons begin as in the commutative case (as can be seen

most clearly in the size plots) before starting to trade sizes in an irregular fashion. This

results in a more irregular orbit, but it remains stable for an indefinite period of time. The

minimum distance between the two instantons is also reduced: this agrees with the results

gained from the free case, where the removal of the singularity in the moduli space allows

for the instantons to comfortably reside in more tightly bound configurations.

Of course, this behaviour should not be assumed to be a generic feature of noncom-

mutatively deformed orbits. As in section 5.1, we may choose to maintain the combined

effect of noncommutativity and potential, and consider the interplay between the two pa-
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Figure 16. The same initial conditions as in figure 15 with ζ = 0.1.

(a) Long-lived unstable orbit for ζ = 0.1, v = 0.2. (b) Short-lived unstable orbit for ζ=0.15, v=0.15.

Figure 17. Unstable orbit evolution.

rameters. Figure 17 demonstrates the two configurations where, rather than remaining in

a stable orbit indefinitely, the instantons attract and scatter away in finite time.

These results underline the variety of dynamical outcomes that may occur due to the

presence of the additional parameter ζ. It is quite probable that the set of results above is

not exhaustive: it is feasible to imagine some carefully tuned system that undergoes orbit,

scattering and reorbit. However, the vastness of the parameter space, coupled with the

computational intensity of the numerical simulations, makes a full characterisation of the

space unwieldy.
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6 Conclusion and outlook

In this work, we have calculated the metric and potential on the moduli space of two

noncommutative U(2) instantons using the ADHM construction. While it was not possible

to find a concise form for the metric of the full, 16-dimensional, moduli space, we were

able to find a valid geodesic submanifold of the space, corresponding to non-singular fixed

points of a symmetry of the metric. The key result gained is that the orbifold singularities

that occur in the analogous commutative framework, due to the singular small instantons,

are no longer present after the noncommutative deformation. In the large separation limit,

the metric of two noncommutative instantons becomes two copies of the Eguchi-Hanson

metric, in agreement with the results of [9, 20]. Using the Manton approximation, we were

able to consider scattering of slow-moving instantons, and determined that right-angled

scattering is no longer a generic feature of instanton scattering, unlike in the commutative

case. A variety of scattering behaviours can be demonstrated for varying noncommutative

strength, including an attractive channel for pure instantons. This diversity of results

extended to the dyonic picture, where previously stable orbits may have their behaviour

qualitatively modified.

There are a number of open questions that remain to be addressed. While the analysis

allowed for a definite parametrisation of the metric, we have only considered instanton

dynamics where the the instantons have relative gauge angles in the unbroken U(1) of the

U(2) flavour group. This gave a simple equivalence between the instanton dynamics and

the vortex configurations presented in [32], but it would be interesting (particularly in the

dyonic case) to observe the effect of the full U(2) on configurations. This, unfortunately,

would require a full parametrisation of the ADHM data, and as such remains beyond the

scope of our current work. Similarly, it would be instructive to compare the results of this

moduli space approximation against the full Yang-Mills field theory. This too is beyond

the reach of the computational analysis presented herein.

The aforementioned connection between instantons and vortices would also benefit

from some closer consideration. It is not completely clear to what extent one can recover

the non-Abelian vortex behaviour from noncommutative instantons, particularly since the

identification of the instanton noncommutativity parameter ζ with the vortex U(1) gauge

coupling leaves us without a tuneable parameter to play the role of the vortex noncommuta-

tivity parameter. A similar connection between circle-invariant instantons and hyperbolic

monopoles exists [13]: whether this connection can be realised in the context of noncom-

mutative R4 remains to be seen.

It is notable that the work done in this paper is in a purely classical context. It would,

therefore, be interesting to consider the corresponding quantum mechanics in a similar

vein to the work of [9]. In particular, a full description of the potential term for two

noncommutative U(2) instantons would allow us to apply the same localisation procedure

as in [8], and gain some insight into the BPS spectra of the bound states of the quantum

mechanical system.

Finally, one could extend this work to calculate the metric of U(N) noncommutative

instantons for N > 2 and k > 2. The extension to even N would perhaps be the most
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tractable, as the ADHM data should admit a deformed quaternion structure in the same

manner as the U(2) case. Such considerations would be valuable in considering the string

theoretical analogue, as it would allow for the possibility of bound states that pass through

D-branes and may elucidate the details of the index-counting mechanism in [8, 36] for

higher gauge groups.
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