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ABSTRACT
Well-motivated elementary particle candidates for the dark matter, such as the sterile neutrino,
behave as warm dark matter (WDM). For particle masses of the order of a keV, free streaming
produces a cutoff in the linear fluctuation power spectrum at a scale corresponding to dwarf
galaxies. We investigate the abundance and structure of WDM haloes and subhaloes on
these scales using high resolution cosmological N-body simulations of galactic haloes of
mass similar to the Milky Way’s. On scales larger than the free-streaming cutoff, the initial
conditions have the same power spectrum and phases as one of the cold dark matter (CDM)
haloes previously simulated by Springel et al. as part of the Virgo consortium Aquarius project.
We have simulated four haloes with WDM particle masses in the range 1.5–2.3 keV and, for
one case, we have carried out further simulations at varying resolution. N-body simulations
in which the power spectrum cutoff is resolved are known to undergo artificial fragmentation
in filaments producing spurious clumps which, for small masses (<107 M� in our case)
outnumber genuine haloes. We have developed a robust algorithm to identify these spurious
objects and remove them from our halo catalogues. We find that the WDM subhalo mass
function is suppressed by well over an order magnitude relative to the CDM case for masses
<109 M�. Requiring that there should be at least as many subhaloes as there are observed
satellites in the Milky Way leads to a conservative lower limit to the (thermal equivalent) WDM
particle mass of ∼ 1.5 keV. WDM haloes and subhaloes have cuspy density distributions that
are well described by Navarro–Frenk–White or Einasto profiles. Their central densities are
lower for lower WDM particle masses and none of the models we have considered suffering
from the ‘too big to fail’ problem recently highlighted by Boylan-Kolchin et al.
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1 IN T RO D U C T I O N

The identity of the dark matter remains one of the central unsolved
problems in cosmology. Various lines of evidence, for example, data
on the cosmic microwave background radiation, indicate that the
dark matter is made up of non-baryonic elementary particles (e.g.
Larson et al. 2011), but exactly which kind (or kinds) of particles
are involved is not yet known. For the past 30 years or so attention
has focused on cold dark matter (CDM; see Frenk & White 2012
for a review), for which there are well-motivated candidates from
particle physics, for example, the lightest supersymmetric particle
or neutralino (Ellis et al. 1984), or the axion (Preskill, Wise &
Wilczek 1983). CDM particles have negligible thermal velocities
during the era of structure formation.

� E-mail: m.r.lovell@durham.ac.uk

More recently, particle candidates that have appreciable thermal
velocities at early times, and thus behave as warm, rather than cold,
dark matter have received renewed attention. The best-known ex-
ample is a sterile neutrino which, if it occurs as a triplet, could
explain observed neutrino oscillation rates and baryogenesis (e.g.
Asaka & Shaposhnikov 2005). This model is known as the neu-
trino minimal standard model (νMSM; Boyarsky, Ruchayskiy &
Shaposhnikov 2009b; Boyarsky et al. 2009c); a list of alternative
models may be found in Kusenko (2009). Warm particles are rela-
tivistic when they decouple from the primordial plasma and become
non-relativistic during the radiation-dominated era. This causes the
particles to freely stream out of small perturbations, giving rise to
a cutoff in the linear matter power spectrum and an associated sup-
pression of structure formation on small scales. When the particles
collect at the centres of dark matter haloes, their non-negligible
thermal velocities reduce their phase-space density compared to the
CDM case and this can result in the formation of a ‘core’ in the
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density profile whose size varies inversely with the velocity disper-
sion of the halo (Hogan & Dalcanton 2000). However, recent analyt-
ical and numerical work (Macciò et al. 2012, 2013; Shao et al. 2013)
has shown that the resulting cores are astrophysically uninteresting
being, in particular, significantly smaller than the cores claimed to
be present in dwarf satellites of the Milky Way (e.g. Gilmore et al.
2007; de Vega & Sanchez 2010).

On comoving scales much larger than the free-streaming cutoff,
the formation of structure proceeds in very similar ways whether
the dark matter is cold or warm and so current astronomical ob-
servations on those scales (larger than ∼1 Mpc) cannot distinguish
between these two very different types of dark matter particles. Suc-
cesses of the CDM paradigm, such as the remarkable agreement of
its predictions (in a universe dominated by a constant vacuum en-
ergy, �) with observations of temperature fluctuations in the cosmic
microwave background radiation (e.g. Komatsu et al. 2011) and the
clustering of galaxies (e.g. Cole et al. 2005), carry over, for the most
part, to a warm dark matter (WDM) model. To distinguish between
these two types of dark matter using astrophysical considerations
it is necessary to resort to observations on the scale of the Local
Group.

Over the past decade, surveys such as SDSS (York et al. 2000),
PAndAS (Ibata et al. 2007) and Pan-STARRS (Kaiser et al. 2010)
have begun to probe the Local Universe in detail. A number of new
dwarf spheroidal (dSph) satellite galaxies have been discovered
around the Milky Way and M31 (e.g. Willman et al. 2005; Walsh,
Jerjen & Willman 2007; Martin et al. 2009, 2013; Bell, Slater &
Martin 2011). Follow-up studies of stellar kinematics have been
used to investigate their dynamics and mass content (Walker et al.
2009, 2010; Wolf et al. 2010; Tollerud et al. 2012). These data
indicate that some dSphs have mass-to-light ratios of around 100,
and are thus systems in which the properties of dark matter may be
most directly accessible. Analyses of the number and structure of
dSphs should therefore provide strong constraints on the nature of
the dark matter.

The luminosity function of satellites in the Local Group has now
been determined to quite faint magnitudes (Koposov et al. 2008;
Tollerud et al. 2008), confirming that there are far fewer satel-
lites around galaxies like the Milky Way than there are subhaloes
in cosmological N-body simulations from CDM initial conditions
(Diemand, Moore & Stadel 2005; Springel et al. 2005). This dis-
crepancy is not new and can be readily explained by the physics
of galaxy formation because feedback processes are very efficient
at suppressing the formation of galaxies in small haloes (Bullock,
Kravtsov & Weinberg 2000; Benson et al. 2002; Somerville 2002).
Recent hydrodynamic simulations have confirmed this conclusion
originally deduced from semi-analytical models of galaxy forma-
tion (Okamoto et al. 2010; Wadepuhl & Springel 2011).

Kinematical studies of the bright Milky Way satellites can con-
strain the internal structure of their dark matter subhaloes. Gilmore
et al. (2007) argued that the data support the view that dSphs have
central cores, in apparent contradiction with the results of N-body
simulations which show that CDM haloes and their subhaloes have
central cusps (Navarro, Frenk & White 1996b, 1997; Springel et al.
2005). Strigari, Frenk & White (2010) explicitly showed that it
is always possible to find CDM subhaloes formed in the Aquarius
high resolution simulations (HRS) of galactic haloes (Springel et al.
2008a) that are consistent with these data; however, the subhaloes
that best fit the kinematical data for the bright satellites turn out
not to be the most massive ones, as would naturally be expected
for these bright satellites. This surprising result was explored in
detail in the Aquarius simulations by Boylan-Kolchin, Bullock &

Kaplinghat (2011, 2012), who dubbed it the ‘too big to fail’ prob-
lem; it was also found in gas dynamic simulations of Aquarius
haloes by Parry et al. (2012). The discrepancy has attracted a great
deal of attention because it could potentially rule out the existence
of CDM. Possibly related problems include the paucity of galaxies
in voids (Tikhonov et al. 2009), and the local H I velocity width
function (Zavala, Okamoto & Frenk 2008; Papastergis et al. 2011,
but see Sawala et al. 2013).

A number of solutions to the ‘too big to fail’ problem have now
been proposed. Within the CDM context, perhaps the simplest is
that the virial mass of the Milky Way halo is smaller than the
average mass, M200 ∼ 1.4 × 1012 M�, of the Aquarius haloes (Wang
et al. 2012; Vera-Ciro et al. 2013). A somewhat more uncertain
possibility is that the central density of CDM subhaloes may have
been reduced by the kind of explosive baryonic processes proposed
by Navarro, Eke & Frenk (1996a) which appear to occur in some
recent hydrodynamic simulations (Brooks & Zolotov 2012; Parry
et al. 2012; Pontzen & Governato 2012; Zolotov et al. 2012) but not
in others (di Cintio et al. 2011) which assume different prescriptions
for physics that are not resolved in the simulations.

More radical solutions to the ‘too big to fail’ problem require
abandoning CDM altogether. Vogelsberger, Zavala & Loeb (2012)
show that simulations with a new class of ‘self-interacting’ dark
matter could solve the problem. However, a solution is also possi-
ble with more conventional assumptions. In particular, Lovell et al.
(2012) show that simulations with WDM produce very good agree-
ment with the dSph kinematical data. The absence of small-scale
power in the initial fluctuation field causes structure to form later
than in the CDM case. Haloes of a given mass thus collapse when
the mean density of the universe is smaller and, as a result, end
up with lower central densities (Avila-Reese et al. 2001). However,
the WDM model they assumed was ‘too warm’, in the sense that it
assumed too low a particle mass (and thus too large a cut-off scale
in the initial power spectrum) and produced only 18 dark matter
subhaloes within 300 kpc of the main halo centre whereas observa-
tions suggest the actual number of satellites may be over an order
of magnitude greater (Tollerud et al. 2008).

This constraint from subhalo central densities is one of several
that can be used to place bounds on the WDM particle mass. The
measured clustering of the Lyman α forest lines at high redshift sets
a lower limit to the particle mass (Viel et al. 2005; Boyarsky et al.
2009c; Viel et al. 2013) while the absence of X-rays from particle
decay sets a (model dependent) upper limit to the mass of the
sterile neutrino (whose decay rate into pairs of neutrinos and X-ray
photons scales with the mass of the sterile neutrino; see Kusenko
2009; Boyarsky, Iakubovskyi & Ruchayskiy 2012, and references
therein.)

The results of Lovell et al. (2012) and related results by Macciò
et al. (2012, 2013) and Shao et al. (2013) raise the question of
whether it is possible to find a range of WDM particle masses that
lead to ‘warm enough’ models that match satellite central densities
but which are also ‘cold enough’ to generate the observed number of
satellite galaxies (Polisensky & Ricotti 2011; Kamada et al. 2013).
In this work we examine both the number and structure of satellite
galaxies in simulations as a function of the WDM particle mass.

The first requirement is to be able to count accurately the number
of dark matter haloes formed in WDM cosmologies. The first sim-
ulations of WDM models (Bode, Ostriker & Turok 2001) showed
the halo mass function to be suppressed as expected, but also found
that at least 90 per cent of haloes, depending on the choice of
power spectrum cutoff, formed from the fragmentation of filaments
and had masses below the smoothing scale. Wang & White (2007)
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examined this effect in hot dark matter (HDM) simulations (which
assume a much larger power spectrum cutoff scale than in WDM)
and showed that the fragmentation of filaments depends on the res-
olution of the simulation, thus concluding that most of the haloes in
the Bode et al. (2001) simulations were due to a numerical artefact.

In this paper we introduce a series of methods for identifying spu-
rious haloes in simulations, and then use our cleaned halo sample to
examine the distribution and structure of WDM haloes as a function
of the power spectrum cutoff. The paper is organized as follows.
In Section 2 we present our simulation set and in Section 3 we
describe our algorithm for removing spurious subhaloes. We then
present our results in Section 4 and draw conclusions in Section 5.

2 T H E S I M U L AT I O N S

We begin by describing the details of our simulations, the procedure
for generating initial conditions and a general overview.

2.1 Simulation parameters

Our N-body simulation suite is based upon that of the Aquarius
Project (Springel et al. 2008a), a set of six (Aq-A through to Aq-F)
galactic dark matter haloes simulated at varying resolution (levels
1-5, where level 1 corresponds to the highest resolution). The Aquar-
ius simulations assumed cosmological parameter values derived
from the Wilkinson Microwave Anisotropy Probe (WMAP) year 1
data. These have now been superseded and in this paper we use the
cosmological parameter values derived from the WMAP year 7 data
(Komatsu et al. 2011): matter density, �m = 0.272; dark energy
density, �� = 0.728; Hubble parameter, h = 0.704; spectral index,
ns = 0.967; and power spectrum normalization σ 8 = 0.81.

Our main set of simulations follows the formation of four WDM
galactic haloes with different effective WDM particle masses. The
initial phases in the fluctuation spectrum are identical to those of the
original CDM Aq-A halo but the transfer function is that appropriate
to WDM as described below. In addition, we resimulated the level-2
Aq-A halo using the WMAP year-7 cosmology. For all five haloes
(one CDM and four WDM), we ran simulations at different resolu-
tion. Our ‘high resolution’ suite corresponds to level 2 in the original
Aquarius notation; it has particle mass of 1.55 × 104 M�, and grav-
itational softening length of ε = 68.1 pc. All haloes were also run
at ‘low resolution’ (level 4), with particle mass of 4.43 × 105 M�
and gravitational softening of ε = 355.1 pc. Finally, we ran an in-
termediate resolution version (level 3) of the WDM models with
the lightest and heaviest dark matter particles, with particle mass
5.54 × 104 M� and ε = 125.0 pc, in order to facilitate conver-
gence studies. All haloes were simulated from z = 127 to 0 using
the GADGET3 N-body code (Springel et al. 2008a).

To set up the initial conditions for the WDM runs we employed
the transfer function, T(k), defined as

PWDM(k) = T 2(k)PCDM(k), (1)

where P(k) denotes the power spectrum as a function of comoving
wavenumber k. We adopted the fitting formula for T(k) given by
Bode et al. (2001):

T (k) = (1 + (αk)2ν)−5/ν, (2)

where ν and α are constants. Bode et al. (2001) and Viel et al. (2005)
find that ν can take values between 1 and 1.2 depending on the fitting
procedure; we adopted ν = 1 for simplicity. The position of the
cutoff in the power spectrum is determined by the parameter α, such
that higher values of α correspond to cutoffs at larger length-scales.

In principle, the initial conditions for WDM simulations should
include thermal velocities for the particles (Colı́n, Valenzuela &
Avila-Reese 2008; Macciò et al. 2012; Shao et al. 2013). However,
at the resolution of our simulations, the appropriate velocities would
have a negligible effect (Lovell et al. 2012) and are therefore not
included. All of our CDM and WDM initial conditions employed a
glass-like initial particle load (White 1994).

For our four WDM models we adopted values of α of
0.0199, 0.0236Mpc, 0.0297 and 0.0340h−1 Mpc, respectively. The
last of these corresponds to the original WDM simulation presented
in Lovell et al. (2012) which, however, assumed the WMAP year-1
cosmological parameters. That model was originally chosen as a
thermal relic approximation to the M2L25 model of Boyarsky et al.
(2009c), the νMSM parameter combination that has the largest ef-
fective free-streaming length that is still consistent with bounds
from the Lyman α forest (but see also Viel et al. 2013).

Bode et al. (2001) related α to a generic thermal relic WDM
particle mass, mWDM, using the formula

α = 0.05

h Mpc−1

(mWDM

1 keV

)−1.15
(

�WDM

0.4

)0.15

×
(

h

0.65

)1.3 (gWDM

1.5

)−0.29
, (3)

where �WDM is the WDM contribution to the density parameter; we
have set the number of degrees of freedom, gWDM = 1.5. We list the
thermal relic masses for each of our models in Table 1, and use these
masses as labels for the models, namely m2.3, m2.0, m1.6 and m1.5;
we denote the CDM simulation with WMAP year-7 parameters as
CDM-W7. We also give the cutoff mass scale for each simulation,
which we define as the mass within a top hat filter which, when
convolved with the CDM power spectrum, results in a function that
peaks at the same value of k as the WDM power spectrum.

In order to compare our study to that of Viel et al. (2005, 2013)
we need to take into account that the transfer function that we use
assumes ν = 1 in equation (2) while theirs assumes ν = 1.12. For
values of k near the power spectrum cutoff, the transfer function for
a given mWDM has a higher amplitude if ν = 1.12 than if ν = 1. To
match the power on this scale then requires a higher value of mWDM

if ν = 1 than if ν = 1.12. We can therefore derive an ‘equivalent
ν = 1.12’ mass for each of our models which gives the best ap-
proximation to the transfer function in our ν = 1 simulations. These
masses are listed in the final column in Table 1. [We carry out the
comparison for T2(k) > 0.5 and use the equation relating mWDM and
α given in equation 7 of Viel et al. 2005.]

The linear theory power spectra used to set up the initial condi-
tions are plotted in Fig. 1. By construction, the peak of the power

Table 1. Parameters of the simulations. The parameter α determines the
power spectrum cutoff (equation 2); mWDM is the thermal relic mass cor-
responding to each value of α; and Mth is the cutoff mass scale defined
using a top hat filter as described in the text. The final column gives the
particle masses that, when combined with the ν = 1.12 transfer function
and mWDM−α relation of Viel et al. (2005), give the best approximation to
our ν = 1 transfer functions.

Simulation mWDM(keV) α(h−1 Mpc) Mth( M�) mν=1.12
WDM (keV)

CDM-W7 – 0.0 – –
m2.3 2.322 0.01987 1.4 × 109 1.770
m2.0 2.001 0.02357 1.8 × 109 1.555
m1.6 1.637 0.02969 3.5 × 109 1.265
m1.5 1.456 0.03399 5.3 × 109 1.106
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Figure 1. The linear theory power spectrum used in the simulations. The
black line corresponds to the CDM model, CDM-W7, while the blue, green,
orange and red lines correspond to the m2.3, m2.0, m1.6 and m1.5 WDM
models, respectively. The arrows mark, in order of smallest to largest, the
Nyquist frequency of our low, medium, and high resolution simulations.

spectrum moves to higher k as α decreases (and the particle mass
increases). For all WDM models the initial power spectrum peaks
at a value of k smaller than the Nyquist frequency of the particle
load in the simulation. This will lead to the formation of spurious
halo as mentioned in Section 1.

Self-bound haloes were identified using the SUBFIND algorithm
(Springel et al. 2001); they are required to contain at least 20 parti-
cles. The largest SUBFIND group is the galactic halo itself, to which
we will refer as the ‘main halo’. Smaller haloes that reside within
the main halo are known as ‘subhaloes’, whereas those that are
outside the main halo are ‘independent haloes’. Most of the sub-
haloes will have experienced gravitational stripping whilst most of
the independent haloes will have not.

A first view of the simulations is presented in Fig. 2. The smooth
component of the main haloes is very similar in all five models: in all
cases, the haloes are similarly centrally concentrated and elongated.
The main difference is in the abundance of subhaloes. The myriad
small subhaloes evident in CDM-W7 are mostly absent in the WDM
models. For these, the number of subhaloes decreases as α increases
(and the WDM particle mass decreases).

The apparent similarity of the main haloes displayed in Fig. 2 is
quantified in Table 2, which lists the masses and radii of the largest
friends-of-friends halo in each simulation. The table gives their
masses enclosed within radii of mean density 200 times the critical
density (M200) and 200 times the background density (M200b). There
is a slight trend of decreasing mass with increasing α, but the
maximum change is only 7 per cent for M200 and 2 per cent for
M200b. The change in cosmological parameters also makes only a
small difference: M200 is 5 per cent higher for CDM-W7 than for
the original Aquarius halo with WMAP year 1 parameters.

2.2 The structure of the main haloes

The density profiles of the main haloes (including substructures) in
our HRS are plotted in Fig. 3. There is good agreement amongst
all the haloes at radii (10–100) kpc, with the five profiles agreeing
to better than 10 per cent. At larger radii, systematic differences
between CDM-W7 and the WDM models begin to appear and these
become increasingly pronounced for the warmer models. These

differences are due to slight variations in the position of large sub-
structures in the outer parts. There are also small differences at
much smaller radii (<10 kpc) which are not systematic and are thus
likely due to stochastic variations in the inner regions.

The radial variation of the logarithmic slope of the density profile
of each halo is plotted in Fig. 4. In all cases the slope at the inner-
most point plotted approaches the Navarro–Frenk–White (NFW)
asymptotic value of −1 but there is no evidence that the slope is
converging. There is a slight tendency in the inner parts, r < 4 kpc,
for the slope in the WDM models to be shallower than in the CDM
model, but there is no obvious trend with α, possibly because of
stochastic effects in the inner regions. Thus, apart from minor dif-
ferences, the structure of these ∼1012 M� haloes varies little with
power spectrum cut off, as expected for systems of mass �Mth.

3 R E M OVA L O F SP U R I O U S H A L O E S

One of the main aims of this study is to determine the mass function
of subhaloes in WDM simulations. However, as we discussed in
Section 1, simulations in which the initial power spectrum has a
resolved frequency cutoff can undergo spurious fragmentation of
filaments. An example is shown in Fig. 5, where we compare a
region in one of our simulations with the corresponding region of
a higher resolution simulation with the same initial conditions by
plotting those particles that have collapsed into dark matter haloes.
In both simulations there are two large haloes and several smaller
ones. The large haloes have very similar sizes and positions in
the two simulations, and can be regarded as genuine objects. By
contrast, the small haloes have different sizes and positions in the
two simulations; there are also more of them in the higher resolution
case. As shown by Wang & White (2007), increasing the resolution
even by rather large factors is not sufficient to prevent the formation
of these artificial haloes. Using glass initial conditions, as we do for
our simulations, does not reduce this problem. Future N-body codes
that use phase space smoothing techniques may be able to alleviate
this problem (Hahn, Abel & Kaehler 2012; Shandarin, Habib &
Heitmann 2012; Angulo, Hahn & Abel 2013). At present, however,
the only practical measure is to develop a reliable algorithm for
identifying and removing these ‘spurious’ haloes from the halo
catalogues.

We now introduce an algorithm for distinguishing between gen-
uine and spurious subhaloes. It exploits three properties of the arte-
facts – mass, resolution dependence and the shape of the initial
particle distribution – to define a series of cuts that isolate the
artefacts. We present an outline of the method in Section 3.1 and
provide details in Section 3.2. Note that while the results presented
here have been derived for subhaloes that have been accreted into
another halo, the algorithm is equally valid for independent haloes.

3.1 Outline of the methods

Previous simulations have shown that spurious haloes have small
masses at formation and outnumber genuine haloes on those mass
scales where they are present (Wang & White 2007). Thus, in prin-
ciple, many spurious haloes can be singled out by applying a mass
cut. This mass threshold, however, is not well defined because the
mass function of genuine haloes overlaps that of the spurious haloes,
so it is useful to introduce additional criteria to ensure that, as far
as possible, all artificial haloes are identified and no genuine ones
are removed.

The resolution dependence of the spurious fragmentation can be
used to refine the distinction between genuine and artificial haloes.
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Figure 2. Images of our haloes at redshift z = 0. The panels show CDM-W7 (top), m2.3, m2.0, m1.6 and m1.5 (left to right, then top to bottom). The image
intensity and hue indicate the projected squared dark matter density and the density-weighted mean velocity dispersion, respectively (Springel et al. 2008a).
Each panel is 1.5 Mpc on a side.

While genuine haloes in a simulation at a given resolution are
expected to be present in the same simulation at higher resolu-
tion, this need not be the case for spurious haloes, as illustrated in
Fig. 5. Springel et al. (2008a) showed that it is possible to match
haloes and subhaloes between different resolution simulations by
tracing their particles back to the initial conditions and identifying
overlapping Lagrangian patches in the two simulations. We refer

to the initial Lagrangian region of each halo, or more precisely
the unperturbed simulation particle load, as its ‘protohalo’. The
initial positions of the particles displayed in Fig. 5 are shown in
Fig. 6. The two large objects originate from protohaloes of similar
size and location, but there are clear discrepancies in the number,
location and mass of the small objects. Thus, attempts to match
small haloes in the two simulations will often fail because spurious
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Table 2. Properties of the main friends-of-friends halo in each HRS.
The radii r200 and r200b enclose regions within which the mean density
is 200 times the critical and background density, respectively. The
masses M200 and M200b are those contained within these radii. We also
reproduce data from the original Aquarius Aq-A2 halo.

Simulation M200( M�) r200(kpc) M200b( M�) r200b(kpc)

CDM-W7 1.94 × 1012 256.1 2.53 × 1012 432.1
m2.3 1.87 × 1012 253.4 2.52 × 1012 431.4
m2.0 1.84 × 1012 251.7 2.51 × 1012 430.8
m1.6 1.80 × 1012 250.1 2.49 × 1012 429.9
m1.5 1.80 × 1012 249.8 2.48 × 1012 429.0
Aq-A2 1.84 × 1012 245.9 2.52 × 1012 433.5

Figure 3. Density profiles of the main haloes (including subhaloes) in the
simulations normalized by the background matter density. The line colours
are as in Fig. 1. The profiles are plotted only beyond the ‘Power radius’
(Power et al. 2003) at which numerical convergence is expected. The bottom
panel shows the profiles for the WDM simulations normalized to the profile
for the CDM-W7 model.

Figure 4. Radial variation of the logarithmic slope of the density profiles
of the main haloes in the simulations. Line colours and plotting range are as
in Fig. 3.

Figure 5. A region of a WDM simulation performed at two different reso-
lutions. The particle mass for the HRS (right) is 29 times smaller than that
of the low resolution case (left). Only particles in bound structures at this
snapshot are shown. Particles are coloured according to the halo to which
they belong. The number of particles plotted in each panel is equal to the
number of bound-structure particles in the LRS; we have applied random
sampling in the high resolution case.

Figure 6. The particles of Fig. 5 traced back to their positions in the initial
conditions. The LRS is shown in the top panel and the HRS in the bottom
panel. Note the highly flattened configurations of spurious haloes.

haloes in the low resolution calculation do not have a counterpart in
the HRS.

A third criterion exploits the most striking feature visible in Fig. 6:
the shapes of the protohaloes. Genuine protohaloes are spheroidal,
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whereas spurious protohaloes have much thinner, disc-like geome-
tries. They can therefore be easily flagged as the progenitors of
spurious haloes in the initial conditions.

In this study we are interested in objects that become subhaloes
at the present day. We will apply these three criteria to them in
the following order. First, we identify a cut based on protohalo
shape, rejecting from the catalogue all subhaloes flatter than a given
threshold. Secondly, we apply a mass cut; finally, we refine the mass
cut using a matching procedure between simulations at different
resolution. In what follows, we restrict attention to subhaloes lying
within r200b of the main halo centre at z = 0 except where we state
otherwise.

3.2 Application

3.2.1 Protohalo shapes

To determine the flattening of protohaloes we consider all the par-
ticles that make up a subhalo at some epoch (determined below),
find their positions in the unperturbed simulation particle load and
calculate the inertia tensor of the particle set:

Iij =
∑

allparticles

m(δij |x|2 − xixj ), (4)

where δij is the Kronecker delta function, m is the particle mass and
x is the particle position relative to the protohalo centre of mass. We
take a ≥ b ≥ c to be the axis lengths of the uniform, triaxial ellipsoid
that has the same moment of inertia tensor as the protohalo. We can
then calculate s = c/a, known as the sphericity. A disc-like (or,
more rarely, needle-like) spurious subhalo will have a major axis
(disc diameter, a) much longer than its minor axis (disc thickness,
c), and thus a small value of s. Genuine subhaloes, on the other
hand, are spheroidal and thus have higher values of s.

We now need to choose an appropriate epoch at which to iden-
tify the particles that make up the protohalo. This should be well
before the subhalo has fallen into a larger halo, after which its outer
particles will be stripped. We select the earliest simulation snapshot
below which the halo mass is more than half the maximum mass,
the ‘half-maximum mass snapshot’. The initial positions of the par-
ticles in the object at this time are used to evaluate the protohalo
sphericity.

The distributions of s for the subhaloes that survive to z = 0 in the
CDM-W7 and m1.5 simulations are illustrated in Fig. 7, as a function
of MMax. The mean sphericity is shown as a solid line and the 98 per
cent range is indicated by the dotted lines in each case. The figure
reveals two regimes. For values of MMax > 109 M�, the spheric-
ity distributions in the two simulations are consistent with each
other. For lower masses the protohaloes in the m1.5 simulation are
much flatter than in CDM-W7. This clear dichotomy suggests that
most of the m1.5 subhaloes with MMax > 109 M� are genuine and
most of those with MMax < 108 M� are spurious. We can use the
CDM subhaloes to define a cut in protohalo sphericity above which
WDM subhaloes are likely to be real. We find that 99 per cent
of CDM subhaloes containing more than 100 particles at the half-
maximum mass snapshot have protohaloes with sphericity greater
than ∼0.16 (depending slightly on simulation resolution), which
we denote scut. We exclude from our cleaned subhalo catalogue
any WDM subhalo whose protohalo has sphericity less than scut,
regardless of mass. This cut rejects between 86 per cent (m2.3) and
93 per cent (m1.5) of the WDM subhaloes as spurious. We have
checked, as we show later, that the subhaloes rejected by this cri-
terion do not have clear counterparts in pairs of simulations of

Figure 7. Mean subhalo sphericities as a function of MMax for the high
resolution CDM-W7 (black) and the m1.5 (red) runs. The region between
the upper and lower 99 percentiles of the CDM distribution is shown in grey;
the same region for the m1.5 simulation is delineated by the red dotted lines.

different resolution, where in this case the difference in resolution
is a factor of 8. We find that varying scut by 20 per cent changes the
number of subhaloes identified as genuine by less than 20 per cent,
which is within the 2σ Poisson uncertainty in the number identified
using our chosen value of scut.

3.2.2 A first guess of the mass cut

For a first guess of the mass cut below which a majority of subhaloes
are spurious, we resort to the results of Wang & White (2007). They
showed that the characteristic mass below which spurious subhaloes
begin to dominate the subhalo mass function is related to the matter
power spectrum cutoff and the simulation resolution. The larger the
value of the cutoff frequency and the higher the resolution of the
simulation, the smaller is the mass of the largest spurious subhaloes.
Wang & White (2007) derived an empirical formula for the mass at
which spurious subhaloes begin to dominate:

Mlim = 10.1ρ̄dk−2
peak, (5)

where ρ̄ is the mean density of the Universe, d is the mean interparti-
cle separation (a measure of resolution) and kpeak is the wavenumber
at which the dimensionless power spectrum, �2(k), has its greatest
amplitude. We can apply this formula to MMax to estimate a cut
below which the majority of the subhaloes will be spurious. Some
genuine haloes will have MMax below this threshold but the mass
limit can be refined using the matching criterion.

3.2.3 Matching subhaloes between simulations

A subhalo that is present in both a low resolution simulation (LRS)
and in its high resolution counterpart (HRS) is likely to be genuine.
We can use this property to refine the mass cut. We set the cutoff
mass to be Mmin = κMlim, where κ is a constant such that the number
of LRS subhaloes of mass greater than Mmin is equal to the number
of subhaloes with matches in the HRS. We will assume that the
value of κ determined for the LRS subhaloes is also applicable to
the HRS catalogues.

We now introduce an algorithm for finding high resolution coun-
terparts of the low resolution subhaloes. Genuine haloes should
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originate from the same Lagrangian region regardless of resolution.
Therefore, to match subhaloes we require a quantitative measure to
compare these Lagrangian regions in simulations of different reso-
lution and check that they overlap and have the same shape. These
shapes are defined by point-like particles. In order to develop a
quantitative measure of the overlap we need to smooth these points.
We measure the degree to which a pair of objects in different reso-
lution simulations are the ‘same’ by comparing the entirety of the
regions from which they form. We introduce a statistic

R = U 2
AB

UAAUBB
, (6)

where UXY = ∫
φXρYdV , V is volume, and ρA/B and φA/B are the

density of and gravitational potential due to the matter distributions
A/B, respectively. It can be shown using Green’s Theorem that if the
matter distribution of subhalo A is proportional everywhere to that
of subhalo B, R = 1; for any other configuration R < 1. We apply this
formula to our candidate LRS–HRS protohalo particle distributions,
representing each particle as a spherical shell of radius equal to the
LRS mean interparticle separation and with infinitesimal thickness.
The best match for the LRS subhalo will then be the HRS halo with
which it attained the highest value of R. We retain this value of R
for each LRS subhalo as our measure of its matching quality. A
genuine LRS subhalo will have a good match at high resolution and
therefore have a value of R close to 1, whereas a spurious subhalo
will have a poor match and a lower value of R.

To find candidate matches, we first divide the simulation volume
into a grid of cells of comoving length �60 kpc, and, for a given
low resolution protohalo, choose as candidate matches the high res-
olution protohaloes that occupy the same and neighbouring grid
cells. It is computationally expensive to calculate R for the largest
subhaloes, but we found that random sampling of each halo with
10 000 particles returned values of R that did not vary systematically
with MMax for subhaloes of MMax > 109 M�. We therefore adopt a
threshold of 10 000 particles. When attempting to match subhaloes
between simulations, minor differences in which particles are as-
signed to each subhalo can have an impact on R. We mitigate this
problem by performing the calculation for both the maximum-mass
and half-maximum mass snapshots, selecting the higher value of
the two for each subhalo. The resulting values of R are plotted as a
function of MMax in Fig. 8.

At high masses, the CDM and WDM protohaloes have R close
to 1. As the protohalo mass decreases, R becomes systematically
lower and the decline is much steeper for the WDM models, as
expected in the presence of poorly matching spurious subhaloes.
Unfortunately, a small proportion of CDM subhaloes also attain
low values of R and the demarcation between the distributions of R
for WDM and CDM is much less clear cut than we found for the
sphericity measurement, s. Were we to take the same approach for
R as we did for s, we would infer a cut in R of about 0.68. More
than half of the WDM subhaloes have a value of R closer to 1 than
this, and since the sphericity-based algorithm rejects ∼90 per cent
of subhaloes, adopting this cut in R would return a heavily contam-
inated sample. We circumvent this problem by using our sphericity
cut to determine the distribution of R for spurious subhaloes. For
each WDM model, we take 10 000 subsamples of 100 subhaloes
that fail the sphericity cut (with replacement) and take the second
highest R of each subsample to be the threshold, Rmin, below which
subhaloes are spurious. This result is not sensitive to the size of our
subsamples. The mean value of Rmin across the 10 000 subsamples
is found to be in the range 0.94–0.96 for each of the four WDM
models. For those subhaloes that instead pass the sphericity cut, the

Figure 8. R as a function of MMax for CDM and WDM LRS subhaloes
matched to HRS counterparts (those that fail the sphericity cut are still
included). The black dots denote CDM subhaloes, blue m2.3, green m2.0,
orange m1.6 and red m1.5 (the same as Fig. 1).

Figure 9. Dot plots of s and MMax for subhaloes in the four different WDM
models at low resolution. Blue points correspond to R ≥ 0.94 and red points
to R < 0.94. The horizontal, dashed line is scut and the vertical line is Mmin.
All subhaloes are within r200b of the main subhalo centre at redshift zero.

mean value of Rmin is greater than 0.995 for all four models, show-
ing that sphericity is a robust and accurate diagnostic of whether or
not an object is spurious.

We now couple the matching and sphericity criteria to determine
the optimal cut in MMax. In Fig. 9, we plot s as a function of MMax

for the LRS subhaloes in each of our four WDM models, indicating
their matching quality by colour. We adopt Rmin = 0.94. We restrict
attention to subhaloes that pass the sphericity cut and take a mass
limit Mmin = κMlim such that the number of subhaloes with mass
greater than Mmin is equal to the number of subhaloes with R > Rmin.
In Fig. 9 this is equivalent to the number of red dots to the right of the
mass cut being equal to the number of blue dots to the left. We find
that this condition requires values of κ between 0.4 and 0.6, given
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Figure 10. Dot plots of s and MMax for subhaloes in the four different
WDM models at high resolution. The horizontal, dashed line is scut and the
vertical line is Mmin. All subhaloes are within r200b of the main subhalo
centre at redshift zero.

the uncertainty in Rmin. For simplicity, we will adopt κ = 0.5; we find
that this value provides a good compromise between rejecting low
mass genuine objects and including high mass spurious subhaloes
in all four models. Varying Rmin and κ in the range stated here makes
a difference of ∼10 per cent to the number of subhaloes returned
in the m1.5 model and ∼5 per cent in the other cases. The values of
Mmin are then 1.5 × 108, 2.2 × 108, 3.2 × 108 and 4.2 × 108 M�
for the m2.3, m2.0, m1.6 and m1.5 models, respectively, in the LRS.
For the HRS, they decrease to 5.1 × 107, 7.0 × 107, 1.1 × 108 and
1.4 × 108 M�.

To summarize, we have used the mass, resolution dependent and
Lagrangian region shape properties to identify spurious subhaloes
in our subhalo catalogues. Having derived values for scut and Mmin

– the latter as a function of power spectrum cutoff and resolution –
we can apply these cuts to the HRS. We plot the results in Fig. 10.
Changing the value of κ in the range 0.4–0.6 produces a variation
of <5 per cent in all four HRS models, and this does not affect our
conclusions. In what follows we consider only those subhaloes that
pass the cuts in each of these panels.

4 R ESU LTS

4.1 The subhalo mass and Vmax functions

In Fig. 11 we present the cumulative distributions of subhalo mass,
Msub, and Vmax at z = 0, where Vmax is defined as the peak amplitude
of the circular velocity profile Vcirc = √

GM(<r)/r , with G being
the gravitational constant and M(<r) the mass enclosed within ra-
dius r. This is a useful proxy for mass that is insensitive to the
definition of the edge of the subhalo. The figure includes both gen-
uine (solid lines) and spurious (dashed lines) subhaloes. Overall, the
spurious subhaloes outnumber the genuine ones by a factor of 10.
However, the mass function is dominated by genuine haloes beyond
Msub ∼ (1–3) × 107 M�, corresponding to Vmax∼ (4−6) km s−1, for
the different models. The differential mass function (relative to the

Figure 11. Cumulative subhalo mass, Msub, (top panel) and Vmax (bottom
panel) functions of subhaloes within r < r200b of the main halo centre in
the HRS at z = 0. Solid lines correspond to genuine subhaloes and dashed
lines to spurious subhaloes. The black line shows results for CDM-W7 and
the coloured lines for the WDM models, as in Fig. 1. The black cross in the
lower panel indicates the expected number of satellites of Vmax > 5.7 km s−1

as derived in the text.

CDM mass function) for genuine haloes in the m2.3 case can be
fitted with the functional form given by Schneider et al. (2012):

nWDM/nCDM = (1 + MhmM−1)β, (7)

where Mhm is the mass associated with the scale at which the WDM
matter power spectrum is suppressed by 50 per cent relative to the
CDM power spectrum, M is subhalo mass and β is a free parameter.
The best-fitting value is β of 1.3, slightly higher than the value of
1.16 found by Schneider et al. (2012) for friends-of-friends haloes
(rather than SUBFIND subhaloes as in our case). A slightly better fit
is obtained by introducing an additional parameter, γ , such that

nWDM/nCDM = (1 + γMhmM−1)β, (8)

with γ = 2.7 and β = 0.99. However, better statistics are required
to probe the subhalo mass function more precisely.

In principle, comparison of the abundance of subhaloes shown
in Fig. 11 with the population of satellite galaxies observed in
the Milky Way can set a strong constraint on the mass of viable
WDM particle candidates. Assuming that every satellite possesses
its own dark matter halo and that the parent halo in our simulations
has a mass comparable to that of the Milky Way halo, a minimum
requirement is that the number of subhaloes in the simulations above
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some value of Msub or Vmax should exceed the number of Milky
Way satellites above these values. In practice, the comparison is
not straightforward because: (i) the values of Msub or Vmax for the
observed population are not well known and (ii) the total number
of Milky Way satellites is uncertain. Nevertheless, we can obtain a
conservative limit on the mass of the particle as follows. There are 22
satellites in the Milky Way for which good quality kinematical data
exist (Walker et al. 2009; Wolf et al. 2010). 11 of these are ‘classical
satellites’ and the remainder are SDSS satellites. Of the classical
satellites, eight are dSphs and the others are the large and small
Magellanic clouds (LMC and SMC) and Sagittarius. Wolf et al.
(2010) have estimated values of the mass (and line-of-sight velocity
dispersion, σ 2

los) within the (deprojected 3D) half-light radius for the
eight classical and 11 SDSS dSphs. These are essentially insensitive
to the velocity anisotropy of the stellar populations. The circular
velocity within this radius is then given by

Vcirc(r1/2) =
√

3σ 2
los. (9)

The values of Vcirc are lower limits to Vmax for each satellite. Leo
IV has the smallest circular velocity, Vcirc = 5.7 ± 2.9 km s−1, of the
22 studied by Wolf et al. (2010). We show in Appendix A that our
simulations have converged to better than 8 per cent at this value of
Vmax, showing that our conclusions are not affected by resolution
issues (cf. Polisensky & Ricotti 2011). As shown by Springel et al.
(2008b), values of Vmax for subhaloes in Aquarius level 2 simula-
tions are converged to within ∼10 per cent for Vmax ≥ 1.5 km s−1.
We have examined the convergence in our m2.3 model and find that
our L3 and L2 resolution Vmax functions are converged to within 2σ

(Poisson) of each other for Vmax > 4 km s−1. This is more modest
than for the CDM Aquarius simulations, but sufficient to resolve
the Leo IV type satellites. This result also gives us confidence that
our ability to count satellites is not impaired by the numerical issues
(cf. Polisensky & Ricotti 2011).

The known number of satellites in the Milky Way halo, 22, is
a lower limit to the total number within 280 kpc of the galaxy’s
centre, the distance to which the tip of the red giant branch can
be detected in the SDSS. This is because although all the classical
satellites (i.e. satellites brighter than MV = −11) have probably been
discovered, SDSS surveyed only 20 per cent of the sky [data release
5 (DR5)]. Thus, a conservative lower limit to the WDM particle
mass is obtained by requiring that the simulation should produce
at least 22 satellites within this radius with Vmax > 5.7 km s−1. Our
m1.5 simulation produced only 25 subhaloes with Vmax greater than
this value within the larger radius, r200b = 429 kpc. Furthermore, the
mass of the m1.5 halo, M200 = 1.80 × 1012 M�, is towards the higher
end of acceptable values for the mass of the Milky halo; simulations
of haloes with lower mass would produce even fewer subhaloes.
Finally, any residual contamination by spurious subhaloes would
artificially inflate the numbers in our subhalo sample. Thus, we
can safely set a conservative lower limit to the mass of the WDM
particle of mWDM = 1.5 keV.

We can set a less conservative but still robust lower limit to mWDM

by correcting the observed number of SDSS satellites to take into
account the area surveyed. A simple extrapolation multiplying the
observed number by a factor of 5 has to be taken with caution
because we know that the classical satellites are not distributed
isotropically but are concentrated towards a plane, called the ‘Great
pancake’ by Libeskind et al. (2005). However, from analysis of the
Aquarius simulations, Wang et al. (2012) have argued that such flat
configurations occur only for the most massive ∼10 subhaloes and
the anisotropy of the distribution falls off rapidly with increasing

sample size so that samples of ∼50 subhaloes follow quite close
the overall shape of the halo. Based on this, we do not make any
corrections for anisotropy and conclude that the Milky Way contains
at least 11 + 5 × 11 = 66 satellites with Vmax > 5.7 km s−1 within
280 kpc. Using the same argument as before, counting out to a
radius of 419 kpc in the simulations to be conservative, we find that
only the m2.3 and CDM models produces enough satellites to satisfy
the limit.

To make an estimate of the halo-to-halo scatter, we make use of
the result of Boylan-Kolchin et al. (2010) that the intrinsic scatter in
the abundance of CDM subhaloes, σ scatter, can be fitted by the sum
of the Poisson, σ 2

P , and intrinsic, σ 2
I , variances

σ 2
scatter = σ 2

P + σ 2
I , (10)

where σ 2
P = 〈N〉 and σ 2

I = sI〈N〉2. Here, sI is constant, which
Boylan-Kolchin et al. (2010) calibrate against their simulation re-
sults and thus obtain sI = 0.18. They also found that the probability
distribution for the number of subhaloes N, given the mean 〈N〉 and
intrinsic coefficient sI, is well described by the negative binomial
distribution:

P (N |r, p) = �(N + r)

�(r)�(N + 1)
pr (1 − p)N, (11)

where p = [1 + s2
I 〈N〉]−1 and r = s−2

I . We then adopt the number
of subhaloes within r200b from each of our models as the distribution
mean and compute the probability that a given halo will have at least
66 subhaloes. This probability equals 22 per cent for m2.0 and 0.30
per cent for m1.6. Therefore, we conclude on this evidence that
mWDM > 1.6 keV.1 This is a more conservative limit than found
by Polisensky & Ricotti (2011), although our choice of central
halo is slightly more massive than theirs. A larger suite of WDM
simulations is required to determine more precisely the variation in
WDM subhalo abundance at a given host halo mass as well as the
systematic variation of abundance with host halo mass.

4.2 The radial distribution of subhaloes

The number density of subhaloes of mass Msub > 108 M� as a
function of radius, normalized to the mean number density within
r200b, is shown in the top panel of Fig. 12. The bottom panel shows
the cumulative number fraction of subhaloes per logarithmic radial
interval. The number density profiles of subhaloes in the different
WDM models are very similar to one another and to the CDM
case. This uniformity is surprising since, as we shall see below,
the central densities of WDM subhaloes decrease with decreasing
WDM particle mass, making them increasingly vulnerable to tidal
disruption. This result is reminiscent of that found by Springel et al.
(2008a) that the number density profiles of Aquarius subhaloes
are essentially independent of subhalo mass. It may be that better
statistics might reveal differences in the radial distribution of WDM
subhaloes.

The subhalo number density profiles are shallower than that of
the halo dark matter. Springel et al. (2008a) found that the subhalo
profiles are well described by an Einasto form (see equation 13
below), with r−2 = 199 kpc = 0.81r200 and αein = 0.678. The lower
panel of Fig. 12 shows that, as was the case for CDM, subhaloes lie

1 check whether this limit is sensitive to our choice of scut, we repeated the
analysis lowering scut by 20 per cent. In this case the probability for the m1.6

model increases to 2.7 per cent; thus this mass is still excluded at 95 per
cent confidence.
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Figure 12. The radial distribution of subhaloes. Top: the spherically aver-
aged number density of Msub > 108 M� subhaloes normalized to the mean
overdensity at r200b for our four WDM and one CDM models. The dotted
line indicates the CDM main halo density profile from Fig. 3, renormalized
to pass through the locus of radial distribution points at 250 kpc. Bottom: the
number fraction of subhaloes per logarithmic interval in radius, on a linear
log plot. The area under the curves is proportional to subhalo number, so
this plot shows that subhaloes are preferentially found in the outer parts of
the halo. The black line corresponds to the CDM model, CDM-W7, while
the blue, green, orange and red lines correspond to the m2.3, m2.0, m1.6 and
m1.5 WDM models, respectively.

preferentially in the outer parts of the halo, between 100 kpc and
the virial radius, even though the number density is highest in the
central regions.

The cumulative mass fraction in subhaloes as a function of radius
is depicted in Fig. 13. As expected from the mass functions of
Fig. 11, the subhalo mass fractions in the WDM models are lower
than for CDM. At r200b, the mass fractions in WDM subhaloes are
approximately 5 per cent less than half the value in the CDM case.
There is a small, but systematic decrease in the mass fraction with
decreasing WDM particle mass.

4.3 The internal structure of WDM subhaloes

We now consider the internal structure of WDM haloes, particularly
their radial density profiles. We begin by performing a convergence
test of the profiles.

Figure 13. Cumulative mass fraction in substructures as a function of ra-
dius. The black line corresponds to the CDM model, CDM-W7, while the
blue, green, orange and red lines correspond to the m2.3, m2.0, m1.6 and m1.5

WDM models, respectively.

4.3.1 Convergence of the density profiles

Springel et al. (2008a) carried out a careful study of the convergence
properties of the CDM Aquarius haloes upon which our set of WDM
halo simulations is patterned. Here we carry out an analogous study
of the WDM subhaloes. We focus on the most extreme case, m1.5,
since this differs most from CDM. Fig. 14 shows the density profiles
of the nine most massive subhaloes lying within 500 kpc in the m1.5

simulation at three different resolutions (levels 2, 3 and 4). For the
subhaloes of mass >1 × 109 M�, we find that the three realizations
agree extremely well at all radii satisfying the convergence criterion
of Power et al. (2003). For those of lower mass, the low resolution
(level 4) examples have fewer than 10 000 particles and although
this limits the range where the convergence test is applicable, the
convergence is still very good.

To emphasize the differences between subhaloes simulated at
different resolution, we plot, in Fig. 15, the ratios of the intermediate
and low resolution density profiles to that of their high resolution
counterparts. At the smallest radius that satisfies the Power et al.
(2003) criterion, the level 3 simulations are converged to better than
10 per cent; in most cases the same is true of the level 4 simulations.
There are large excursions, however, in the outer parts, beyond
∼10 kpc. These are particularly noticeable for those subhaloes that
are closer than 100 kpc from the main halo centre, and reflect the
slightly different positions within the main halo of each of the
matched subhaloes.

We can determine the mass range where the density profiles are
converged by considering the ratio of circular velocities at the con-
vergence radius of Power et al. (2003) between matched subhaloes
at different resolution. Demanding that deviations from the level-2
simulation should not exceed 10 per cent, we find that the structure
of level-3 subhaloes is well converged for subhalo masses >108 M�
whereas for level-4 subhaloes convergence is only achieved for
masses >109 M�.

4.3.2 The density profiles of subhaloes

We now consider the spherically averaged radial density profiles of
subhaloes in all four different WDM models. For the CDM case
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Figure 14. Spherically averaged radial density profiles for subhaloes matched between the high (level 2), intermediate (level 3) and low (level 4) resolution
versions of the m1.5 simulation. Blue corresponds to high, red to intermediate and green to low resolution. The density profiles are shown by thick lines down
to the smallest radius at which they satisfy the convergence criterion of Power et al. (2003), and are continued by thin lines down to a radius equal to twice the
softening length. In the legend, dL is the distance of the low resolution subhalo from the main halo centre, ML is the subhalo mass and ML/MH is the ratio
between the masses of the low and high resolution counterparts.

Springel et al. (2008a) found that the profiles of subhaloes are well
fitted by either an NFW (Navarro et al. 1996b, 1997) or an Einasto
(Einasto 1965; Navarro et al. 2004) functional form. The NFW
profile is given by

ρ(r) = δc ρcrit

(r/rs)(r/rs + 1)2
, (12)

where δc is a characteristic overdensity (usually expressed in units of
the critical density) and rs is a spatial scale that marks the transition
between the asymptotic slopes of −1 and −3. The Einasto profile
is given by

ρ(r) = ρ−2 exp

(
− 2

αein

[(
r

r−2

)αein

− 1

])
, (13)

where r−2 is the scale (analogous to rs) where the profile attains a
slope of −2, ρ−2 is the density at r−2 and αein is a shape parameter.
Springel et al. find that Einasto fits (which have an additional free
parameter) are marginally better than NFW fits for CDM subhaloes
even when αein is fixed to a constant.

Following Springel et al. (2008a) we define a goodness of fit
statistic for the functional fits to the subhalo profiles as

Q2 = 1

Nbins

∑
i

[ln ρi − ln ρmodel(ri)]
2, (14)

where ρ i is the density measured at radius ri and ρmodel is the model
density evaluated at that same radius. In Fig. 16, we show how
well our subhaloes can be fitted by NFW and Einasto profiles, in
the latter case with fixed shape parameter (αein = 0.18, following
Springel et al. 2008a), by plotting the median value of Q for each of
the different models as a function of the thermal equivalent WDM
particle mass. As for CDM, we find that the Einasto profile is a
marginally better fit to WDM subhaloes than the NFW profile.
There is little variation in the quality of the Einasto fits for the
different values of the particle mass, but the NFW fits seem to
become slightly worse with increasing mass.

The density profiles of subhaloes vary systematically with the
WDM particle mass. Before performing a statistical comparison,
we illustrate this variation with a few examples of subhaloes that
we have been able to match across simulations with different WDM
particle masses. Such matches are not trivial because the subhaloes
have masses close to the cutoff in the initial power spectrum and
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Figure 15. Ratio of the intermediate (level 3; red) and low (level 4; green) resolution density profiles of the m1.5 subhaloes shown in Fig. 14 to the density
profile of their high resolution (level 2) counterparts. The blue dashed line indicates the convergence radius for the high resolution subhaloes.

Figure 16. Median value of the goodness of fit statistic, Q, for Einasto
(blue dots) and NFW (red dots) fits to all subhaloes of Msub > 109 M�, as
a function of the WDM particle mass, mWDM. In the Einasto fits, we have
fixed αein = 0.18. The error bars indicate the upper and lower quartiles of the
distribution. The Einasto data points are slightly offset in mWDM for clarity.

thus their formation histories can vary substantially from one case
to another. In Fig. 17 we show nine examples of subhaloes where,
based on their positions and masses, we have been able to identify
likely matches. In Fig. 18, we show the ratio of the profiles to that
of their CDM counterpart.

The differences amongst the profiles tend, in most cases, to be
larger at smaller radii. As the WDM particle mass decreases, the
subhalo profiles tend to become shallower. At the innermost con-
verged point, the density of the subhalo with the smallest value of
mWDM is generally a factor of several smaller than its CDM coun-
terpart. For example, the m1.5 keV subhalo in the central panel of
the Figs 17 and 18 is a factor of ∼3 less dense at the innermost
converged point than its CDM counterpart and a factor of ∼2 less
dense than the subhalo with m2.3 keV.

The trends seen in Figs 17 and 18 reflect the fact that, for fixed
cosmological parameters, haloes of a given mass form later in WDM
models than in CDM (Avila-Reese et al. 2001; Lovell et al. 2012).
We can quantify the difference by comparing, for example, the cen-
tral masses of haloes in our various models. The masses enclosed
within 300 pc and 2 kpc of the centre in field haloes and subhaloes
in our simulations are plotted in Fig. 19 as a function of halo mass.
For field haloes (left-hand panel) there is a clear separation at both
radii amongst the different models: at fixed mass, the WDM haloes
have lower central masses than their CDM-W7 counterparts and the
enclosed mass decreases with the WDM particle mass. For (field)
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Figure 17. Spherically averaged radial density profiles of subhaloes in simulations of different WDM particle mass. The subhaloes have been matched across
simulations on the basis of their position and mass. However, it should be noted that in some cases the matches are uncertain. The different colours correspond
to different WDM particle masses: red, orange, green and blue to 1.5, 1.6, 2 and 2.3 keV, respectively, while black corresponds to the CDM case. In the legend,
d1.5 is the distance of the subhalo from the main halo centre in the mWDM = 1.5 keV, M1.5 is the mass of the subhalo also in this case, and M1.5/MCDM is the
ratio of this mass to that of the CDM counterpart. As in Fig. 14 the density profiles are shown by thick lines down to the smallest radius at which they satisfy
the convergence criterion of Power et al. (2003), and are continued by thin lines down to a radius equal to twice the softening length.

haloes of mass less than 5 × 109 M�, the masses enclosed within
300 pc are lower relative to the CDM case by factors of ∼4 and
∼3 in the m1.6 and m2.3 models, respectively. At higher masses the
differences are smaller (by factors of 2 and 3 for the m2.3 and m1.6

cases, respectively), thus the main halo density profiles varies very
little for this range of mWDM. The situation is somewhat different
for subhaloes (right-hand panel), largely because tidal stripping re-
moves material from the outer regions, leaving the central density
largely unaffected. As a result, after falling into their host halo,
objects move primarily to the left in Fig. 19 but the change is com-
paratively greater for the less concentrated WDM subhaloes than
for the CDM subhaloes. Nevertheless, an offset amongst the WDM
subhaloes and amongst these and the CDM subhaloes remains, par-
ticularly at large masses.

Another measure of central mass is provided by the value of Vmax

which we plot as a function of mass for field haloes in Fig. 20.
There is a marked difference between the CDM-W7 and the WDM
haloes which, at a given mass, have a lower Vmax. As expected,
these differences decrease with increasing halo mass. At 109 M�
the mean value of Vmax for the m2.3 case is a factor of 1.33 smaller
than for CDM-W7.

The differences in the internal structure of haloes in the WDM
and CDM cases can be further quantified by comparing the relation
between Vmax and rmax, the radius at which Vmax is attained. We plot

these relations separately for independent haloes and subhaloes in
Fig. 21. Tidal stripping of CDM subhaloes causes their value of Vmax

to drop less rapidly than their value of rmax, leading to an increase
in the concentration of the subhalo (Peñarrubia, McConnachie &
Navarro 2008; Springel et al. 2008a). As may be seen by comparing
the top and bottom panels of Fig. 21, the values of rmax for CDM
subhaloes at fixed Vmax are typically 70 per cent of the values for
field haloes.2 Since WDM subhaloes are less concentrated than
their CDM counterparts to begin with, they are more susceptible to
stripping once they become subhaloes (see also Knebe et al. 2002).
Thus, at fixed Vmax, the values of rmax in the m2.3 case are now
typically only 40 per cent of the values for field haloes. Even so,
since the typical values of rmax for subhaloes with Vmax > 10 km s−1

are greater than 1 kpc (even in the models with the smallest WDM
particle mass), the majority of any dSphs residing in subhaloes like
these would not show clear signs of tidal disruption.

2 This number depends on the choice of cosmological parameters. For the
Aquarius simulations (which assumed WMAP1 cosmological parameters),
this number decreases to 62 per cent (Springel et al. 2008a), as can be seen
by comparing the dotted lines in the two panels of Fig. 20. This difference
is driven primarily by the higher value of σ 8 in the WMAP1 cosmology
which causes haloes of a given mass to collapse earlier and thus be more
concentrated than their WMAP7 counterparts.
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Figure 18. Ratio of the density profiles of matched subhaloes in simulations of different WDM particle mass relative to the mass of the CDM counterpart.
The colours are as in Fig. 17 as is the use of thick and thin lines.

Figure 19. Central masses of field haloes (left) and subhaloes within r200b (right), evaluated within radii of 2 kpc (crosses) and 300 pc (circles) as a function
of total mass. Different colours correspond to different simulations: black for CDM-W7, blue, green, orange and red for models m2.3, m2.0, m1.6 and m1.5,
respectively.

4.4 The abundance of the most massive subhaloes

Boylan-Kolchin et al. (2011, 2012) showed that the most massive
subhaloes in the Aquarius halo simulations are much too massive
and concentrated to host the brightest dSph satellites of the Milky
Way. Parry et al. (2012) reached the same conclusion using gas
dynamic simulations of the Aquarius haloes. This discrepancy was

called the ‘too big to fail problem’ by Boylan-Kolchin et al. Sub-
sequently Wang et al. (2012) showed that the extent of the discrep-
ancy depends strongly on the mass of the Galactic halo and all but
disappears if the Milky Way’s halo has a mass of 1 × 1012 M�.
Alternatively, Lovell et al. (2012) showed the problem is naturally
solved in a WDM model even if the mass of the Galactic halo is
2 × 1012 M�. Their WDM model, chosen to have a particle mass
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Figure 20. Mhalo versus Vmax for field haloes. The black dots show the data
for the CDM-W7 simulation and the black line represents the mean relation.
The colour dots show data for the WDM simulations: blue, green, orange
and red for models m2.3, m2.0, m1.6 and m1.5, respectively. The mean relation
is shown only for the m2.3 WDM model in which the number of subhaloes
is largest and thus the least noisy.

only just compatible with the Lyman α constraints of Boyarsky et al.
(2009a, 2009c) (but not with the more recent constraint quoted by
Viel et al. 2013) is the m1.5 model of the current study.

The Milky Way contains three satellites, the LMC, SMC and
Sagittarius, that are brighter than the brightest dSph, Fornax. The
‘too big to fail problem’ consists of having substantially more than
three massive subhaloes within 300 kpc in the simulations whose
properties are incompatible with the measured kinematics of the
nine brightest dSphs, specifically with the measured masses within
their half-light radii (where masses can be robustly measured from
the data; Walker et al. 2009; Wolf et al. 2010). In our WDM sim-
ulations we thus count the number of subhaloes within 300 kpc of
the main halo centre that have circular velocity profiles of ampli-
tude greater than the measured half-light circular velocities of the
nine brightest dSphs plus their 3σ errors (Walker et al. 2009; Wolf
et al. 2010; Lovell et al. 2012). We find 1, 1, 3 and 4 subhaloes in
the m1.5, m1.6, m2.0 and m2.3 WDM models, respectively, and 6 in
CDM-W7. Thus, all our WDM simulations are free of the ‘too big
to fail problem’ even in a 2 × 1012 M� Galactic halo. Note that if
we knew the mass of the Milky Way halo precisely, this argument
could, in principle, be used to set an upper limit on the (thermal)
WDM particle mass.

5 D I S C U S S I O N A N D C O N C L U S I O N S

Although the existence of dark matter was inferred in the 1930s, its
identity remains one of the most fundamental unsolved questions
in physics. The evidence points towards dark matter being made
of as yet undiscovered elementary particles. Over the past 30 years
attention has focused on CDM (Peebles 1982; Davis et al. 1985;
Bardeen et al. 1986) but this is not the only possibility. For ex-
ample, the lightest sterile neutrino in the νMSM model (Asaka &
Shaposhnikov 2005) would behave as WDM, generating very simi-
lar structures to CDM on scales larger than bright galaxies but very
different structures on smaller scales (Lovell et al. 2012; Macciò
et al. 2012; Schneider et al. 2012).

In this study we have carried out a series of high resolution N-body
simulations of galactic haloes in universes dominated by WDM,
taking as the starting point one of the haloes from the Aquarius

Figure 21. Vmax versus rmax for independent haloes (top) and subhaloes
(bottom). The black dots show the data for the CDM-W7 simulation and
the black line represents the mean relation in the case. The dotted line
corresponds to a �CDM simulation using the WMAP1 cosmological pa-
rameters. The colour dots show data for the WDM simulations: blue, green,
orange and red for models m2.3, m2.0, m1.6 and m1.5, respectively. The mean
relation is shown only for the m2.3 WDM model in which the number of
subhaloes is largest and thus the least noisy. The solid lines of the top panel
are reproduced in the bottom panel as dashed lines.

project of simulations of CDM galactic haloes carried out by the
Virgo Consortium (‘Aq-A’ in Springel et al. 2008a). As a prelude we
resimulated this CDM halo replacing the cosmological parameters
from the WMAP year-1 values assumed by Springel et al. to the
WMAP year-7 values (Komatsu et al. 2011). For CDM this change
has the effect of lowering the central densities of galactic subhaloes,
alleviating (but not eliminating) the tension between the structure
of CDM subhaloes orbiting in haloes of mass ∼2 × 1012 M� and
the kinematical data for Milky Way satellites (Boylan-Kolchin et al.
2012; Wang et al. 2012). We then performed a series of simulations
of WDM haloes, using as initial conditions the same fluctuation
phases and linear power spectrum of Aq-A, suitably truncated to
represent WDM with (thermal equivalent) particle masses in the
range 1.5 to 2.3 keV. Our main simulations correspond to level-2
resolution in the notation of Springel et al. (2008a), but we also ran
simulations at lower resolution to establish convergence.

N-body simulations with a resolved cutoff in the initial power
spectrum undergo artificial fragmentation in filaments (Bode et al.
2001; Wang & White 2007). The resulting spurious structures need
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to be identified before the simulations can be analysed. This is
best done in the initial conditions: we found that the spurious frag-
ments evolve from disc-like structures that are much flatter than
the progenitors of genuine haloes. The sphericity of structures in
the initial conditions therefore provides a robust flag for spurious
objects which we supplement with a mass cut, Mmin, derived from
the limiting mass for genuine haloes, Mlim, inferred by Wang &
White (2007) from simulations of HDM models. We find that a cut
of Mmin = κMlim, with κ = 0.5, captures the results from a compar-
ison of matched haloes in simulations of different resolution. The
combined sphericity and mass cut criteria result in clean catalogues
of genuine haloes and subhaloes.

The spherically averaged density profile of the main halo is vir-
tually indistinguishable in the CDM and all our WDM simulations
but there are large differences in the abundance and structure of
their subhaloes. For WDM, the subhalo mass functions begin to
diverge from the CDM case at masses between ∼2 × 109 M� for
the m2.3 (least extreme) and ∼7 × 109 M� for the m1.5 (most ex-
treme) models. The cumulative mass functions are well fitted by
fitting functions given in Section 4.1: they become essentially flat
for subhaloes masses below ∼7 × 109 M�. The mass fraction in
substructures within r200b is lower than in the CDM case by factors
between 2.4 (for m1.5) and 2 (for m2.3). The radial distributions of
subhaloes are very similar to the CDM case.

WDM haloes and subhaloes are cuspy (except in the very inner
regions – see Macciò et al. 2012; Shao et al. 2013) and are well fitted
by NFW profiles, and even better by Einasto profiles. However, the
central density of WDM haloes depends on the WDM particle mass:
in those cases where it is possible to identify the same subhalo in
CDM and different WDM simulations, the density profiles have
systematically shallower slopes in the latter which become flatter
for smaller particle masses. This change of slope is reflected in the
main halo mass, Mhost−Msub, Msub−Vmax and Vmax−rmax relations,
such that, for a given mass, subhaloes in warmer dark matter models
have progressively lower central densities, lower values of Vmax and
higher values of rmax relative to CDM subhaloes. These differences
affect the evolution of subhaloes once they fall into the main halo
since less concentrated haloes are more easily stripped.

Both the abundance and the structure of WDM subhaloes can be
compared to observational data. The requirement that the models
should produce at least as many subhaloes as there are observed
satellites in the Milky Way sets a lower limit to the WDM particle
mass. This is a very conservative limit since feedback processes,
arising from the reionization of gas in the early universe and super-
nova energy, would prevent the formation of galaxies in small mass
haloes just as they do in CDM models (e.g. Benson et al. 2002).
However, the number of subhaloes above a given mass or Vmax de-
pends, of course, on the host halo mass (Gao et al. 2004; Wang et al.
2012). For the case we have considered, in which Mhost ∼ 1012 M�,
we find that the WDM particle mass must be greater than 1.5 or
1.6 keV depending on whether we simply consider the observed
number of satellites or apply a correction for the limited area sur-
veyed by the SDSS. This limit is less stringent than that limit of
3.3 keV (2σ ) inferred by Viel et al. (2013) from the clumpiness
of the Lyman α forest of a sample of quasars at redshift z > 4,
although the two results are not directly comparable because Viel
et al. (2013) use a slightly different transfer function. In principle,
it might also be possible to set an upper limit on the WDM particle
mass by comparing the subhalo central densities with those inferred
for the brightest satellites of galaxies like the Milky Way. Current
kinematical data are insufficient for this test but they are compatible
with the properties of the most massive subhaloes in the four WDM

models we have considered none of which suffers from the ‘too big
to fail’ problem highlighted by Boylan-Kolchin et al. (2012).

WDM remains a viable alternative to CDM, alongwith other
possibilities such as self-interacting dark matter (Vogelsberger et al.
2012) and cold-plus-warm mixtures (Anderhalden et al. 2013). Fur-
ther theoretical work, including simulations and semi-analytical cal-
culations (Benson et al. 2013; Kennedy et al. 2013) combined with
better data for dwarf galaxies offer the prospect of ruling out or
validating these models.
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Tikhonov A. V., Gottlöber S., Yepes G., Hoffman Y., 2009, MNRAS, 399,

1611
Tollerud E. J., Bullock J. S., Strigari L. E., Willman B., 2008, ApJ, 688, 277

Tollerud E. J. et al., 2012, ApJ, 752, 45
Vera-Ciro C. A., Helmi A., Starkenburg E., Breddels M. A., 2013, MNRAS,

428, 1696
Viel M., Lesgourgues J., Haehnelt M. G., Matarrese S., Riotto A., 2005,

Phys. Rev. D, 71, 063534
Viel M., Becker G. D., Bolton J. S., Haehnelt M. G., 2013, Phys. Rev. D,

88, 043502
Vogelsberger M., Zavala J., Loeb A., 2012, MNRAS, 424, 2715
Wadepuhl M., Springel V., 2011, MNRAS, 410, 1975
Walker M. G., Mateo M., Olszewski E. W., Peñarrubia J., Wyn Evans N.,
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A P P E N D I X A : C O N V E R G E N C E S T U DY

For several dSph satellites of the Milky Way it is possible to measure
the circular velocity at the radius encompassing half the light in a
relatively model-independent way (Walker et al. 2009; Wolf et al.
2010). The smallest measured value is 5.7 km s−1 for Leo IV. The
circular velocity at the half-light radius is a lower bound on Vmax.
Therefore, to compare with Milky Way data, we need the number of
subhaloes in the simulations with Vmax greater than 5.7 km s−1. It is
important to check that the simulations resolve all these subhaloes.

We have performed a convergence study using the levels 4, 3 and
2 simulations for two of the WDM models. For the m2.3 model, the
subhalo Vmax function at level 4 deviates by 10 per cent from that in
the corresponding level 2 simulation at a value of Vmax = 11 km s−1;
the level 3 subhalo Vmax function deviates by the same amount at
a value of Vmax = 6 km s−1. The particle masses in the levels 4
and 3 simulations differ by a factor of 8. If we write (m4/m3)n =
Vmax(4)/Vmax(3) (where the numbers denote the resolution level) we
find n = 0.29. The high resolution, level 2, simulation has a particle
mass 3.6 times smaller than that of level 3. Therefore, we expect
this simulation to be complete to 10 per cent at Vmax = 4.2 km s−1.
A similar analysis for the m1.5 simulation shows that this is already
complete at level 3 for Vmax = 5.7 km s−1.

We have checked the validity of this approach by analysing the
original Aquarius Aq-A2 and Aq-A1 simulations. The Aq-A1 sim-
ulation has a particle mass of 1.7 × 103 M�, a factor of ∼8 smaller
than the level 2 simulations. We find that at Vmax = 5.7 km s−1

the Aq-A2 subhalo Vmax function deviates by 8 per cent from the
Aq-A1 result. The suppression of small subhaloes in WDM models
should result in better subhalo completeness in this case compared
to CDM in this mass range (cf. convergence between levels 3 and
2 for m1.5). We therefore conclude that we have lost no more than
8 per cent of the ‘true’ number of subhaloes in the m2.3 simulation
and even fewer in the warmer models.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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