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We describe a simple model that automatically generates the sum over gauge group representations and 
chiralities of a single generation of fermions in the Standard Model, augmented by a sterile neutrino. The 
model is a modification of the world-line approach to chiral fermions.
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1. Introduction

The natural language of high energy physics is second quan-
tisation, or quantum field theory, providing a simple formulation 
of the processes of particle creation and annihilation. Its triumphs 
are the astonishing accuracy of QED and the succinctness and ele-
gance of the Standard Model. However, first quantisation can also 
offer significant insights, which is perhaps not surprising given 
the success of the approach in studying string theory. For exam-
ple, Strassler [1] showed that the world-line formalism could be 
used to derive the Bern–Kosower rules that streamline perturba-
tive calculations. For a more recent application of the formalism 
see [2]. In this paper we will find that a simple modification of-
fers the possibility of unifying quarks and leptons into a single 
mathematical structure. In particular we will show that the sum 
over gauge group representations and chiralities of a generation of 
the Standard Model arises automatically. We begin by describing a 
world-line approach to chiral fermions and then set out our model.

2. World-line description of chiral fermions

The action for a left-handed fermion moving in a background 
gauge-field A is S = ∫

d4x iξ †σ̄ · Dξ in the representation [3] of the 
Dirac matrices
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(γ μ) =
(

0 σμ

σ̄μ 0

)
, (σμ) = (12,σ

i), (σ̄ μ) = (12,−σ i).

(1)

D = ∂ + A and the coupling has been absorbed into the gauge-field. 
The effective action obtained by integrating out the fermions is a 
functional of the background. Rather than study this directly it has 
often been found more convenient to consider its variation under 
a change of A, as in [4,5]:

δ log
∫

D(ξ̄ , ξ) eiS = Tr
(
(σ̄ · D)−1σ̄ · δA

)
(2)

which can be written in terms of the full Dirac matrices as:

Tr
(
(σ · D σ̄ · D)−1σ · D σ̄ · δA

)

= −
∞∫

0

dT Tr
(

P L exp
(

T (γ · D)2
)
γ · D γ · δA

)
(3)

with P L = (1 −γ5)/2. γ -matrices can be represented by functional 
integrals over anti-commuting variables ψ :∫

Dψ e
− ∫ 2π

0 dt
(

1
2 ψ ·ψ̇−√

2η·ψ
)

∝ P tr e
∫ 2π

0 dt η·γ , (4)

where η is an anti-commuting source, and we impose anti-
periodic boundary conditions ψ(2π) = −ψ(0). We write ∝ as the 
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two sides differ by a (possibly divergent) normalisation constant. 
Periodic boundary conditions produce a γ5 insertion resulting in 
P trγ5e

∫ 2π
0 dt η·γ . Now (γ · D)2 = D2 + Fμνγ

μγ ν/2. Using this, to-
gether with the Wick-rotated path integral representation of the 
heat kernel [6] exp

(
T (γ · D)2

)
leads to the world-line representa-

tion of (3) which sums over closed paths wμ(t):

−
∞∫

0

dT

∫
ap−p

D(w,ψ)N e
− 1

2

∫ 2π
0 dt

(
ẇ2
T +ψ ·ψ̇

)

×P tr

⎛
⎝g(2π)

2π∫
0

dt ψ · ẇ ψ · δA

⎞
⎠ , (5)

where

g(t′) = P exp

⎛
⎜⎝−

t′∫
0

AR T R dt

⎞
⎟⎠ , A = ẇ · A − T

2
Fμνψμψν,

(6)

and {T R } are anti-Hermitian Lie algebra generators. tr g(2π) is the 
(super)-Wilson loop. N is a normalisation constant. The action re-
sults from the reparametrisation invariant expression∫

dt
1

2

(
ẇ2

e
+ ψ · ψ̇ + χ ẇ · ψ

e

)
(7)

when the local supersymmetry

δw = εψ, δψ = −ε

(
ẇ

e
+ χψ

2e

)
, δe = εχ, δχ = −2ε̇,

(8)

and reparametrisation invariance are gauge fixed by the condi-
tions on the einbein e = T and its super-partner χ = 0 [7]. The 
ap − p subscript on 

∫
denotes that the integral with periodic 

boundary conditions on the ψ should be subtracted (with appro-
priate choices of N ) from that with anti-periodic conditions so 
as to generate the P L insertion. Summing the two contributions 
instead generates the expression for a right-handed fermion. This 
representation can be interpreted as the contribution of a parti-
cle with world-line wμ(t) traced out in the direction of increas-
ing t , but, corresponding to rewriting the Lagrangian in the form 
(ξ tσ2)iσ · (∂ − At)(σ2ξ

∗), it can equally be interpreted as the con-
tribution of an anti-particle moving around the closed path in the 
opposite sense because the effect of changing direction on g(2π)

is to change the sign of A and replace path-ordering by anti-path-
ordering, i.e. g → g†, and interchange chiralities.

To compute the full one-loop effective action for the fermions 
in the Standard Model we would have to sum (5) over the appro-
priate representations of SU(2) and SU(3) and weak hypercharges 
and take correlated combinations of periodic and anti-periodic 
boundary conditions on the ψ to pick out the corresponding chi-
ralities. For each generation this consists of ten pieces: the lep-
tons form a left-handed SU(2) doublet, E L = (ν, l)t (in the nota-
tion of [18]) and a right-handed SU(2) singlet, lR , both of which 
are SU(3) singlets. The quarks form a left-handed SU(2) doublet, 
Q L = (U , D)t , and two right-handed singlets U R and D R , all be-
ing in the fundamental representation of SU(3). To these can be 
added the anti-particles, transforming in conjugate representations 
of SU(3) and with opposite chiralities. The U (1) charges associated 
to these species are −1/2, −1, 1/6, 2/3 and −1/3 respectively 
with the anti-particles taking the opposite U (1) charges. We de-
note anti-particles by bars: Ē L , l̄R , etc. The point of this paper is 
to demonstrate that this somewhat complicated sum can be writ-
ten very simply as an integral over additional fermionic variables 
on the world-line.

3. The model

It is well known that if φ̃r and φs are a set of anti-commuting 
operators with {φ̃r, φs} = δrs then the operators T̂ R ≡ φ̃r T R

rs φs sat-
isfy the Lie algebra. These anti-commutation relations follow from 
a Lagrangian φ̃ · φ̇, which leads to a propagator containing the step-
function θ(t1 − t2) (plus other terms depending on the boundary 
conditions) which is just what is needed to build the path-ordering 
in (6) [8]. These two connections between fermionic variables and 
Lie algebras suggest we consider, instead of the functional integral 
in (5), the simpler

−
∞∫

0

dT

∫
D(w,ψ, ϕ̃,ϕ)N e

− 1
2

∫ 2π
0 dt

(
ẇ2
T +ψ ·ψ̇+ϕ̃·ϕ̇+ϕ̃Aϕ

)

×
2π∫
0

dt ϕ̃ ψ · ẇ ψ · δA ϕ. (9)

The path-ordered exponential in (5) can be picked out by a par-
ticular choice of boundary conditions, an operator insertion and a 
choice of normalisation, or, as in [9] and [10], by projecting out 
a piece with appropriate U (1)-charge. We shall not follow these 
paths, but rather we will find it more useful to consider the in-
tegral (9) as it stands. The Lagrangian in this model has been 
analysed extensively [11–13], mainly in canonical quantisation. It 
also arises naturally in models of tensionless strings interacting 
on contact: in [14] and [15], building on [16], it was shown that 
the expectation value of the super-Wilson loop associated with 
a closed curve for an Abelian gauge theory is generated by the 
spinning string action integrated over world-sheets spanning the 
curve. Generalising this to the non-Abelian theory requires a way 
of extending the path-ordering associated with the boundary into 
the spanning world-sheet, this can be achieved by the introduc-
tion of additional world-sheet fields with boundary values ϕ̃ , ϕ . 
A full discussion of this string model is unnecessary here, save for 
the requirement that the Lie algebra generators be traceless. We 
rewrite (9) as

∞∫
0

dT

∫
D(w,ψ)N e

− 1
2

∫ 2π
0 dt

(
ẇ2
T +ψ ·ψ̇

)
� Z [A],

where

Z [A] =
∫

D(ϕ̃,ϕ) e− 1
2

∫ 2π
0 dt ϕ̃·D ϕ, D = d

dt
+A,

and � =
2π∫
0

dt ψ · ẇ ψ · δA
δ

δA
. (10)

There is a world-line supersymmetry underlying this model. As 
previously observed the action for w and ψ results from gauge-
fixing the locally supersymmetric action (7). Similarly the new 
term 

∫
dt ϕ̃ ·Dϕ results from the reparametrisation invariant∫

dt
(
ϕ̃

{
d

dt
+ ẇ · A − eψ · ∂ A · ψ

}
ϕ

+ e
(
z̃ ψ · A ϕ + ϕ̃ ψ · A z + z̃ z

))
(11)

on integrating out z̃ and z. This is invariant under the supersym-
metry (8) when it is extended to act on the anti-commuting ϕ̃ , ϕ
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and their commuting superpartners z̃ and z

δϕ = εz, δϕ̃ = ε z̃, δz = −ε

(
ϕ̇

e
+ χ z

2e

)
,

δ z̃ = −ε

( ˙̃ϕ
e

+ χ z̃

2e

)
. (12)

To apply this to the Standard Model we use ϕ̃ and ϕ with five 
components partitioned into sets of three and two to accommo-
date Lie algebra generators of SU(3) × SU(2) × U (1)

(T R) = i
(
λb/2, σ a/2, 12/2 − 13/3

)
, (13)

where λ and σ are the 3 × 3 Gell-Mann and 2 × 2 Pauli matrices, 
and the form of the U (1)-generator is dictated by the traceless-
ness condition inherited from the underlying string model. Eq. (13)
coincides with the embedding into SU(5) of the Georgi–Glashow 
model [17], however we make no further assumptions about the 
particle representations to use as these will emerge naturally from 
the model. Separate couplings are associated with each of the 
three algebras, but these have been implicitly absorbed into the 
gauge-field. Integrating over ϕ̃ and ϕ gives Z [A] = Det (iD) which 
we compute by solving the eigenvalue problem (with anti-periodic 
boundary conditions, as for ψ )

iD v(t) = μ v(t), v(2π) = −v(0) (14)

which has the solution v(t) = g(t) v(0) exp(−iμt) and μ = n +
1/2 + log(ρ)/(2π i) where v(0) is required to be an eigenvector 
of the matrix g(2π) with eigenvalue ρ , and n is an integer. Now

∞∏
n=−∞

(
1 + logρ

2π i(n + 1/2)

)
=

√
ρ + 1/

√
ρ

2
, (15)

giving

Det (iD)ap ∝ det
(√

g(2π) + 1/
√

g(2π)
)

. (16)

g(2π) is block-diagonal with a 3 × 3 piece

exp

⎛
⎝ 2π∫

0

i

3
AU (1)dt

⎞
⎠ P exp

⎛
⎝−

2π∫
0

i

2
ASU(3) · λdt

⎞
⎠ (17)

which we denote by e−iθ/3 gSU(3) , with θ = − 
∫ 2π

0 AU (1)dt , and a 
2 × 2 piece

exp

⎛
⎝−

2π∫
0

i

2
AU (1)dt

⎞
⎠ P exp

⎛
⎝−

2π∫
0

i

2
ASU(2) · σdt

⎞
⎠ (18)

which we denote by eiθ/2 gSU(2) . The 3 × 3 piece has eigenvalues 
eiξa with (ξa) = (−θ/3 +a, −θ/3 +b −a, −θ/3 −b), whilst the 2 ×2
piece has eigenvalues eiζa with (ζa) = (θ/2 + c, θ/2 − c) so (16) is

2∏
1

(
eiζa/2 + e−iζa/2

) 3∏
1

(
eiξa/2 + e−iξa/2

)

=
(

eiθ/2 + eic + e−ic + e−iθ/2
)

×
(

eiθ/2 + eiθ/6
(

eia + ei(b−a) + e−ib
)

+ e−iθ/6
(

e−ia + ei(a−b) + eib
)

+ eiθ/2
)

enabling the determinant to be expressed as a sum of products of 
traces
Det (iD)ap ∝
(

eiθ/2 + tr gSU(2) + e−iθ/2
)

×
(

eiθ/2 + eiθ/6 tr gSU(3) + e−iθ/6 tr g†
SU(3) + e−iθ/2

)
. (19)

The eigenvalues become μ = n + log(ρ)/(2π i) if we impose peri-
odic boundary conditions on the ϕ̃ and ϕ , and( −1∏

n=−∞

(
1 + logρ

2π in

))
logρ

( ∞∏
n=1

(
1 + logρ

2π in

))
= √

ρ − 1/
√

ρ,

giving

Det (iD)p ∝
(

eiθ/2 − tr gSU(2) + e−iθ/2
)

×
(
−eiθ/2 + eiθ/6 tr gSU(3) − e−iθ/6 tr g†

SU(3) + e−iθ/2
)

(20)

and if at the same time we impose periodic boundary conditions 
on ψ the effect is to generate a γ5 insertion. Adding together the 
result of computing (10) with anti-periodic boundary conditions 
on all fermions to that of imposing periodic boundary conditions 
results in the sum of (19) and (20) multiplied by γ5 provided we 
choose the values of the normalisations of the functional integrals, 
N , in the two cases appropriately. Note that we have simultane-
ously imposed the same boundary conditions on all the anticom-
muting variables ψ , ϕ and ϕ̃ . This is necessary to preserve the 
underlying world-line supersymmetry, because the periodicity of 
the bosonic variables requires that ε in (8) is periodic or anti-
periodic when ψ is, and so (12) implies that ϕ and ϕ̃ are too.

Multiplying out the terms results in the projection operators P L
and P R multiplied by various exponentials of gauge fields:

eiθ P L + eiθ/2 tr gSU(2) P R + P L + ei2θ/3 tr gSU(3) P R

+ eiθ/6 tr gSU(3) tr gSU(2) P L + e−iθ/3 tr gSU(3) P R

+ eiθ/3 tr g†
SU(3)

P L + e−iθ/6 tr g†
SU(3)

tr gSU(2) P R

+ e−i2θ/3 tr g†
SU(3) P L + P R

+ e−iθ/2 tr gSU(2) P L + e−iθ P R . (21)

From which we can read off the representations and chiralities 
of the fermions. Each term has a piece eiY θ where Y is the 
U (1)-charge. tr gSU(2) represents the coupling of an SU(2)-doublet, 
tr gSU(3) the coupling in the fundamental representation of SU(3)

and tr g†
SU(3) its complex conjugate. This set of twelve terms cor-

responds to the U (1)-charges, SU(2), SU(3) representations and 
chirality assignments of the fermions and their anti-particles in the 
Standard Model, augmented by a sterile neutrino (useful in mod-
elling neutrino masses): 

(
l̄R , Ē L, ̄νR , U R , Q L, D R , D̄ R , Q̄ L, Ū R , νR ,

E L, lR
)
, respectively.

4. Concluding remarks

We have described a simple generalisation of the world-line ap-
proach to chiral fermions that automatically produces the sum over 
the SU(3) × SU(2) × U (1) representations and chiralities that oc-
cur in a single generation of the Standard Model augmented by a 
sterile right-handed neutrino. In the language of field theory the 
one-loop effective action in a background gauge-field is

log
∫

D(E L, lR , Q L, U R , D R)exp
(
−

∫
d4x (E†

L σ̄ · D E L

+ l†Rσ · D lR + ν
†
Rσ · D νR + Q †

L σ̄ · D Q L

+ U †
Rσ · D U R + D†

Rσ · D D R)
)
,

where the gauge-covariant derivative, D , depends on the represen-
tation of the field it acts on. By contrast the world-line expression 
for the variation of this effective action under a change of gauge-
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field is just∫
dT D(w,ψ, ϕ̃,ϕ)�exp

(
−1

2

∫
dt

(
ẇ2

T
+ ψ · ψ̇ + ϕ̃ ·Dϕ

))
summed over anti-periodic and periodic boundary conditions on 
the anti-commuting variables. (D, A and � are defined in (10)
and (6).) The information about representations and chiralities is 
generated by the functional determinant resulting from integrating 
out the additional anti-commuting world-line variables, ϕ̃ and ϕ . 
This model arises naturally in the context of tensionless strings 
with contact interactions where it becomes necessary to extend 
the notion of path-ordering along a closed curve into the body of 
a world-sheet spanning the curve.

We made a number of choices. We chose the gauge group to 
be that of the Standard Model, with the generators of SU(3) and 
SU(2) as in (13). The U (1) generator was required to be traceless 
due to the underlying string model, but we chose its overall nor-
malisation in (13). We also added the result of applying periodic 
and anti-periodic boundary conditions on all the fermions. This is 
like a GSO projection, as might be anticipated given the connection 
with an underlying spinning string theory.
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