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Let Xt be any d-dimensional continuous process that takes values in an open connected domain
O in R

d. In this paper, we give equivalent formulations of the conditional full support (CFS)
property ofXt inO. We use them to show that the CFS property of X inO implies the existence of a
martingaleM under an equivalent probability measure such thatM lies in the ε > 0 neighborhood
of Xt for any given ε under the supremum norm. The existence of such martingales, which
are called consistent price systems (CPSs), has relevance with absence of arbitrage and hedging
problems in markets with proportional transaction costs as discussed in the recent paper by
Guasoni et al. (2008), where the CFS property is introduced and shown sufficient for CPSs for
processes with certain state space. The current paper extends the results in the work of Guasoni
et al. (2008), to processes with more general state space.

1. Introduction

We consider a financial market with d risky assets and a risk-free asset which is used as a
numéraire and therefore assumed to be equal to one. We assume that the price processes
of the d risky assets are given by an R

d-valued process Yt = (Y 1
t , Y

2
t , . . . , Y

d
t ), where Y i

t =
eX

i
t , 1 ≤ i ≤ d, and the d-dimensional process Xt = (X1

t , X
2
t , . . . , X

d
t ) is defined on a filtered

probability space (Ω,F,F = (Ft)t∈[0,T], P) and adapted to the filtration F that satisfies the
usual assumptions. We assume that there are transaction costs in the market and they are
fully proportional in the sense that each cost is equal to the actual dollar amount being traded
beyond the riskless asset, multiplied by a fixed constant. In the presence of such transaction
costs, it is reasonable to assume that purchases and sales do not overlap to avoid dissipation
of wealth. In general, in markets with proportional transaction costs trading strategies θt =
(θ1

t , θ
2
t , . . . , θ

d
t ) are given by the difference of two processes Lt = (L1

t , L
2
t , . . . , L

d
t ) and Mt =

(M1
t ,M

2
t , . . . ,M

d
t ) representing respectively the cumulative number of shares purchased and

sold up to time t, namely, θt = Lt − Mt. We are also required to start and end without any
position in the risky assets to and this requirement corresponds to θ0 = θT = 0.



2 International Journal of Stochastic Analysis

For each such trading strategy θt = Lt − Mt, the corresponding wealth process, after
taking into account the incurred transaction costs, is given by

Vt(θ) =
d∑

i=1

∫ t

0
θi
sdY

i
s − ε

d∑

i=1

∫ t

0
Y i
sdVar

(
θi
)

s
, (1.1)

where Var(θi)s = Li
s +Mi

s is the total variation of θi in [0, s] for each 1 ≤ i ≤ d and ε > 0 is the
proportion of the transaction costs. In our model (1.1), transaction costs between risky assets
and cash are permitted and all transaction costs are charged to the cash account. Next, we
introduce the class of trading strategies that we consider in this paper.

Definition 1.1. An admissible trading strategy is a predictable R
d-valued process θt =

(θ1
t , θ

2
t , . . . , θ

d
t ) of finite variation with θ0 = θT = 0 such that the corresponding wealth process

Vt(θ) satisfies Vt(θ) ≥ −C for some deterministic C > 0 and for all t ∈ [0, T].

In the next definition, we state the absence of arbitrage condition for the market.

Definition 1.2. We say that the market (1, Y 1
t , Y

2
t , . . . , Y

d
t ) does not admit arbitrage with ε-sized

transaction costs if there is no admissible trading strategy θt = (θ1
t , θ

2
t , . . . , θ

d
t ) such that the

corresponding value process Vt(θ) satisfies

P(VT (θ) > 0) > 0, P(VT (θ) ≥ 0) = 1. (1.2)

The absence of arbitrage condition excludes trading strategies that enables the
investors to have nonnegative payoff with the possibility of positive payoff with zero initial
investment. The purpose of this note is to study the sufficient conditions on (Y 1

t , Y
2
t , . . . , Y

d
t )

that ensure absence of arbitrage in the market (1, Y 1
t , Y

2
t , . . . , Y

d
t ). It is clear that if the stock

price process Yt = (Y 1
t , Y

2
t , . . . , Y

d
t ) is a martingale under a measure Q that is equivalent

to the original measure P , then the model (1.1) does not admit arbitrage. This can easily
be seen from the fundamental theorem of asset pricing (see [1]) that states that martingale
price processes do not admit arbitrage in frictionless markets (i.e., ε = 0). In the absence of
such martingale measure for Y , the existence of a process Ỹt = (Ỹ 1

t , Ỹ
2
t , . . . , Ỹ

d
t ) which is a

martingale under an equivalent measure Q and which has the following property:

∣∣∣Y i
t − Ỹ i

t

∣∣∣ ≤ εY i
t , for i = 1, 2, . . . , d, ∀t ∈ [0, T], (1.3)

also implies absence of arbitrage for the model (1.1). To see this simple fact, observe the
following:

VT (θ) =
d∑

i=1

∫T

0
θi
sd
(
Y i
s − Ỹ i

s

)
+

d∑

i=1

∫T

0
θi
sdỸ

i
s − ε

d∑

i=1

∫T

0
Y i
sdVar

(
θi
)

s

=
d∑

i=1

[∫T

0

(
Y i
s − Ỹ i

s

)
dθi

s − ε

∫T

0
Y i
sdVar

(
θi
)

s

]
+

d∑

i=1

∫T

0
θi
sdỸ

i
s.

(1.4)
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Note that because of (1.3), we have
∑d

i=1[
∫T
0 (Y

i
s−Ỹ i

s)dθ
i
s−ε
∫T
0 Y i

sdVar(θi)s] ≤ 0 a.s. This implies
that

VT (θ) ≤
d∑

i=1

∫T

0
θi
sdỸ

i
s. (1.5)

The financial interpretation of (1.5) is that trading at price process Ỹt without transaction
costs is always at least as profitable as trading at price process Yt with transaction costs. The
martingale property of Ỹt implies that trading on Ỹt is arbitrage free, and therefore trading on
Y with transaction costs is also arbitrage-free.

The process Ỹt is called consistent price systems (CPSs) for the price process Y . The
origin of CPSs is due to [2] and the name consistent price system first appeared in [3]. In the
following, we write down the formal definition of CPSs.

Definition 1.3. Let ε > 0. We say that Ỹt = (Ỹ 1
t , Ỹ

2
t , . . . , Ỹ

d
t ) is an ε-consistent price system for

Yt = (Y 1
t , Y

2
t , . . . , Y

d
t ), if there exists a measureQ ∼ P such that Ỹt is a martingale underQ, and

1
1 + ε

≤ Ỹ i
t

Y i
t

≤ 1 + ε, for i = 1, 2, . . . , d, ∀t ∈ [0, T]. (1.6)

The existence of such pricing functions is a central question in markets with
proportional transaction costs and their existence was extensively studied in the past
literature. For example, the papers [4, 5] studied CPSs for semimartingale models and the
papers [6–11] studied CPSs for non-semi-martingale models. Other papers that studied
similar problems include [4, 8, 12–17]. Particularly, the recent paper [10] introduced a general
condition, conditional full support (CFS), for price processes and showed that if a continuous
process Xt = (X1

t , X
2
t , . . . , X

d
t ) with state space R

d has the CFS property, then the exponential
process Yt = (Y 1

t , Y
2
t , . . . , Y

d
t ) admits ε-CPS for any ε > 0. The proof of this result is based on a

clever approximation of Y by a discrete process which is called random walk with retirement
(see [10]). In this paper, we consider continuous processes Xt with general state space O,
where O is any connected open set in R

d. Unlike the original paper [10], where the random
walkwith retirement is constructed by using geometric grids, in this paper we choose to work
on arithmetic grid. As a consequence, we show that if the process Xt with the state space
O has the corresponding CFS property, then for any given ε > 0 there exists a martingale
Mt = (M1

t ,M
2
t , . . . ,M

d
t ), under an equivalent change of measure, such that

∣∣∣Mi
t −Xi

t

∣∣∣ ≤ ε for any i = 1, 2, . . . , d and any t ∈ [0, T]. (1.7)

By an abuse of language we call such M a ε-consistent price system for the process X. To
achieve this goal, we first provide a few of equivalent formulations of the CFS property. We
use these equivalent formulations in the proof of our result. The advantage is that with our
approach the proofs become more transparent and also it enables us to state some stronger
results than the original paper. For example, our Lemma 2.10 is a stronger result than the
corresponding result in [10] that states that the CFS property is equivalent to the so-called
strong CFS property which is stated in terms of stopping times.
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Our main result in this paper is Theorem 2.6 which states that the CFS property of
X in any open connected domain O implies the existence of CPSs. To prove this result, we
first prove Lemmas 2.7, 2.8, 2.9, 2.10, and 2.11. In Lemma 2.7, we show that the CFS property
implies the necessary properties of a random walk with retirement (see [10] for the formal
definition of random walk with retirement). In Lemma 2.8, we prove that our approximating
discrete time process is a martingale under an equivalent martingale measure. The proof of
this Lemma gives an alternative and elementary proof for the corresponding result in the
paper [10]. In Lemma 2.9, we prove that the approximating discrete time process is in fact
a uniformly integrable martingale. The proof of this lemma is standard and similar to the
corresponding proofs of the papers [10, 11]. In Lemma 2.10, we show the equivalence of the
f-stickiness with the weak f-stickiness for each given f . In Lemma 2.11, we show that the
CFS property is equivalent to the seemingly weaker linear stickiness property.

2. Main Results

Let Xt = (X1
t , X

2
t , . . . , X

d
t ), t ∈ [0, T] be a d-dimensional continuous process that takes values

in an open connected domainO ⊂ R
d. For simplicity of our discussion, we assume that 0 ∈ O.

We also assume that the process Xt is defined on a probability space (Ω,F, P) and adapted
to a filtration F = (Ft)t∈[0,T] that satisfies the usual assumptions in this space. Let C([u, v],O)
denote the set of continuous functions f defined on the interval [u, v] and with values in O
and, for any x ∈ R

d, let Cx([u, v],O) denote the set of functions in C([u, v],O)with f(u) = x.

Definition 2.1. An adapted continuous process Xt satisfies the CFS property in O, if for any
t ∈ [0, T) and for almost all ω ∈ Ω,

Supp
(
Law
[
(Xs)s∈[t,T] | Ft(ω)

])
= CXt(ω)([t, T],O), a.s. (2.1)

The CFS condition requires that, at any given time, the conditional law of the future of
the process, given the past, must have the largest possible support. An equivalent formulation
of this property is given in the following definition.

Definition 2.2. Let Xt be an adapted continuous process that takes values in an open and
connected domain O ⊂ R

d. We say that Xt is linear sticky if for any α ∈ R
d, ε > 0, and any

deterministic 0 ≤ s ≤ θ ≤ T ,

P

({
sup
t∈[s,θ]

|Xt −Xs − α(t − s)| < ε

}
| Fs

)
> 0, a.s. (2.2)

on the set {Xs ∈
⋂

t∈[0,θ−s](O − αt}.
The equivalence of the CFS and the linear stickiness properties will be established in

Lemmas 2.10 and 2.11. We also need the following definition.

Definition 2.3. Let Xt be an adapted continuous process that takes values in an open and
connected domain O ⊂ R

d.
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(a) We say that Xt is f-sticky for f ∈ C0([0, T],Rd) if

P

({
sup
t∈[τ,T]

∣∣Xt −Xτ − f(t − τ)
∣∣ < ε

}
| Fτ

)
> 0, a.s. (2.3)

on the set {Xτ ∈ ⋂t∈[0,T−τ](O − f(t))} for any ε > 0 and any stopping time τ .

(b) We say that Xt is weak f-sticky for f ∈ C0([0, T],Rd) if

P

({
sup
t∈[s,T]

∣∣Xt −Xs − f(t − s)
∣∣ < ε

}
| Fs

)
> 0, a.s. (2.4)

on the set {Xs ∈ ⋂t∈[0,T−s](O − f(t))} for any ε > 0 and any deterministic time
s ∈ [0, T].

Remark 2.4. It is clear that the CFS property of X in O is equivalent to the weak f-stickiness
of X for all f ∈ C0([0, T],O). The linear stickiness of Xt is seemingly weaker condition than
the weak f-stickiness of Xt for all f ∈ C0([0, T],O). However, this is not the case and in
Lemma 2.11 we will show that linear stickiness is equivalent to weak f-stickiness ofXt for all
f ∈ C0([0, T],Rd). This, in turn, implies that the linear stickiness property is equivalent to the
CFS property.

Remark 2.5. When a process Xt is 0-sticky as in (b) in Definition 2.3, we say that Xt is jointly
sticky and this property was studied in the recent paper [14]. The f-stickiness roughly means
that starting from any stopping time τ on, the process Xt has paths that are as close as one
wants to the path f(t) + Xτ . As it was shown in [14], the f-stickiness holds for any f ∈
C0([0, T],Rd) for the process (BH1

t , BH2
t , . . . , BHd

t ), where BH1
t , BH2

t , . . . , BHd

t are independent
fractional Brownian motions with respective Hurst parameters H1,H2, . . . ,Hd ∈ (0, 1). From
[10], the f-stickiness also holds for any continuous Markov process with the full support
property in C0([0, T],Rd) for any f ∈ C0([0, T],Rd).

The following is the main result of this paper. This result is an extension of the main
result in [10] to processes with more general state space. We use [10] as a road map in the
proof of this result.

Theorem 2.6. Let Xt = (X1
t , X

2
t , . . . , X

d
t ) be a continuous process that takes values in a connected

domain O in R
d. If Xt is linear sticky, then Xt admits CPSs for all ε > 0.

To show this result, one fix any ε > 0 and define the following increasing sequence of
stopping times associated with the process X:

τ0 = 0, τn+1 = inf
t≥τn

{|Xt −Xτn | ≥ εn+1} ∧ T, ∀n ≥ 0, (2.5)

with εn+1 := ε ∧ d(Xτn, ∂O)/2. One should mention that the paper [10] defined the corres-
ponding stopping times in a slightly different way, see the proof of Theorem 1.2 in [10].
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In addition, for each n ≥ 1 we define

Δn =

{
Xτn −Xτn−1 when τn < T,

0 otherwise.
(2.6)

Let Gn = Fτn for every n ≥ 0. Note that εn is bounded and Gn−1 measurable.
In the following, we use the notation Supp(Δn | Gn−1) to denote the smallest closed set

of R
d that contains the values of the random variable E[Δn | Gn−1] with probability one. We

use Br(x) to denote the open ball in R
d with center x and radius r. When the center is 0, we

simply write Br . We first prove the following lemma.

Lemma 2.7. If Xt is f-sticky in O for all f ∈ C0([0, T]), then the process {Δn} in (2.6) satisfies the
following three properties:

(i) P(Δm = 0, ∀m ≥ n | Δn = 0) = 1;

(ii) Supp (Δn | Gn−1) = 0 ∪ ∂Bεn almost surely on {Δn−1 /= 0},
(iii) P(Δm /= 0, ∀ m ≥ 1) = 0.

(2.7)

Proof. Property (i) is obvious since {Δn = 0} = {τn = T} and τn is increasing. Property (iii)
follows from the fact that almost surely each path of Xt is contained in a compact set of O
and therefore minnεn(ω) > 0 almost surely ω ∈ Ω. To prove property (ii), let us assume that
P(τn−1 < T) > 0 and let Gn−1 be any Gn−1 measurable set such that P(Gn−1 ∩ {τn−1 < T}) > 0.
Then, it is clear that there exist T ′ < T , y ∈ O and ζ > 0 such that ζ < ε ∧ d(y, ∂O)/4 and
P(Gn−1 ∩ {τn−1 < T ′} ∩ {Xτn−1 ∈ Bζ(y)}) > 0, where d(y, ∂O) is the distance of y with the
boundary ∂O of O. It is also clear that on the set Gn−1 ∩ {τn−1 < T ′} ∩ {Xτn−1 ∈ Bζ(y)} we have
ε ∧ 3ζ/2 ≤ εn < 2ζ.

First we show that P(Δn = 0 | Gn−1) > 0 a.s. on {Δn−1 /= 0}. To see this, define the
following stopping time:

τ =

{
τn−1 on Gn−1 ∩ {τn−1 < T ′} ∩ {Xτn−1 ∈ Bζ

(
y
)}

,

T otherwise.
(2.8)

The 0-stickiness of X implies that

P

(
sup
t∈[τ,T]

|Xt −Xτ | < ζ, τ < T

)
> 0. (2.9)

But {supt∈[τ,T]|Xt−Xτ | < ζ, τ < T} ⊂ {Δn = 0} and sinceGn−1 was an arbitraryGn−1 measurable
set with P(Gn−1 ∩ {τn−1 < T}) > 0, we have

P(Δn = 0 | Gn−1) > 0 a.s. on{Δn−1 /= 0}. (2.10)
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Next we show that ∂Bεn(ω) ⊂ Supp(Δn | Gn−1)(ω) almost surely on {Δn−1 /= 0}. Too see this,
take any x ∈ ∂B1, 0 < ε′ < ζ and define

f(t) =

⎧
⎪⎨

⎪⎩

6ζt
(T − T ′)

x if 0 ≤ t ≤ T − T ′

2
,

3ζx otherwise,
(2.11)

and note that

P

⎛

⎝τ < T,Xτ ∈
⋂

t∈[τ,T]

(O − f(t − τ)
)
⎞

⎠ > 0. (2.12)

By f-stickiness of X, we obtain

P

(
sup
t∈[τ,T]

∣∣Xt −Xτ − f(t − τ)
∣∣ < ε′, τ < T

)
> 0, (2.13)

or equivalently P(A ∩Gn−1) > 0, where

A =

{
sup

t∈[τn−1,T]

∣∣Xt −Xτn−1 − f(t − τn−1)
∣∣ < ε′

}

∩ {τn−1 < T ′}

∩
⎧
⎨

⎩Xτn−1 ∈
⋂

t∈[τn−1,T]

(O − f(t − τn−1)
)
⎫
⎬

⎭.

(2.14)

We claim that A ⊂ {Δn ⊂ B2ε′(εnx)}. Indeed, if ω ∈ A, we get

∣∣Xτn−1+(T−T ′)/2(ω) −Xτn−1(ω)
∣∣

≥
∣∣∣∣f
(
T − T ′

2

)∣∣∣∣ −
∣∣∣∣Xτn−1+(T−T ′)/2(ω) −Xτn−1(ω) − f

(
T − T ′

2

)∣∣∣∣

≥ 3ζ − ε′ > εn(ω).

(2.15)

Hence {τn < T} on A. Also, for ω ∈ A we have

0 = d(Xτn −Xτn−1 , ∂Bεn) ≥ d
(
f(τn − τn−1), ∂Bεn

) − ∣∣Xτn −Xτn−1 − f(t − τn−1)
∣∣

>
∣∣f(τn − τn−1) − εnx

∣∣ − ε′,

|Xτn −Xτn−1 − εnx| ≤
∣∣f(τn − τn−1) − εnx

∣∣ +
∣∣Xτn −Xτn−1 − f(t − τn−1)

∣∣

<
∣∣f(τn − τn−1) − εnx

∣∣ + ε′ < 2ε′.

(2.16)
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So for all ω ∈ A, d(Δn, εnx) < 2ε′. Since this is true for any small ε′, x ∈ B1 and any arbitrary
Gn−1 measurable set with P(Gn−1 ∩ {τn−1 < T}) > 0, we conclude that ∂Bεn(ω) ⊂ Supp(Δn |
Gn−1)(ω) almost surely on {Δn−1 /= 0}. Note that the other direction ∂Bεn(ω) ∪ {0} ⊃ Supp(Δn |
Gn−1)(ω) is clear from the definition of Δn.

Now, define εn, Δn, n ≥ 0 as above and let Mn = X0 +
∑n

i=1 Δi, n ≥ 0. The R
d-valued

process Mn =: (M1
n,M

2
n, . . . ,M

d
n) will be used to construct CPSs for Xt. Next, we prove a

lemma that shows that all ofMi
n, 1 ≤ i ≤ d are in fact uniformly integrable martingales under

an equivalent change of measure. The proof of this lemma uses Lemma 3.1 of [10] as a road
map (see also Proposition 2.2.14 of [18]).

Lemma 2.8. There exists a measure Q equivalent to P under which the R
d-valued discrete process

{(Mn,Gn)}+∞n=0 is a martingale.

Proof. For any n ≥ 0, let μn be the regular conditional probability of Δn with respect to Gn−1
and let Ωn = {ω ∈ Ω | Supp(Δn | Gn−1)(ω) = 0 ∪ ∂Bεn}. Let k be any strictly increasing
convex function defined on R with values in (0,+∞) such that k(t) = t for every t ≥ 1. Define
Gn : Ωn × R

d → R
d as follows:

Gn(ω, α) =
∫

Rd

k(α · x)xdμn(ω, ·). (2.17)

Obviously for each n, Gn(·, a) is Gn−1 measurable and convex with respect to α. As a
consequence, for any fixed ω ∈ Ωn, Im(Gn(ω, ·)), the image of the function Gn(ω, ·) is convex.
We first prove that for every n ≥ 1 and ω ∈ Ωn:

lim
|α|→∞

Gn(ω, α) · α

|α| = +∞. (2.18)

By the way of contrary, assume that this is not true, for some n ≥ 1 and ω ∈ Ωn. Then, there
exists a sequence (αm)m≥1 with |αm| → ∞ such that Gn(ω, αm) · (αm/|αm|) is bounded above.
We can assume that (αm/|αm|) converges to some α (this is a bounded sequence and therefore
has a convergent subsequence). We have

Gn(ω, αm) · αm

|αm| ≥
∫

αm·x≤0
k(αm · x)αm · x

|αm| dμn(ω, ·)

+
∫

(αm·x)/|αm|>εn(ω)/4
k(αm · x)αm · x

|αm| dμn(ω, ·)

≥ − k(0) +
∫

2α·x>εn(ω)

(αm · x)2
|αm| dμn(ω, ·),

(2.19)

for big enoughm. Therefore, we can conclude that
∫
2α·x>εn(ω)((αm ·x)2/|αm|) ·(1/|am|)dμn(ω, ·)

converges to 0 as |am| → +∞, which will imply after passing to the limit that μn(ω, {2α ·
x > εn}) and this is a contradiction. From this it follows easily that 0 ∈ Im(Gn(ω, ·)). If
0 /∈ Im(Gn(ω, ·)), then using the geometric form of Hahn Banach theorem, there exists
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a unit vector β ∈ R
d such that

∫
Rd k(α · x)βxdμn(ω, ·) < 0 for every α ∈ R

d. Therefore,
lim supt→∞

∫
Rd k(tβ · x)βxdμn(ω, ·) ≤ 0. But

∫

Rd

k
(
tβ · x)βxdμn(ω, ·) = Gn

(
ω, tβ

) · tβ
∣∣tβ
∣∣ , (2.20)

and so it contradicts (2.18).
Next, we want to show that Im(Gn(ω, ·)) is closed. Let a ∈ Im(Gn(ω, ·)), so there exists

a sequence (αm)m≥1 such that Gn(ω, αm) → a. But then |αm| is unbounded, and therefore this
contradicts (2.18). So based on the continuity of Gn(ω, ·), a ∈ Im(Gn(ω, ·)).

Therefore, we conclude that for any n ≥ 1 and ω ∈ Ωn, there exists an αn(ω) ∈ R
d,

unique, as a consequence of the strict monotonicity of k, such that Gn(ω, αn(ω)) = 0. Gn

being continuous with respect to α and Gn−1 measurable with respect to ω, it follows that αn

is Gn−1 measurable. We extend αn with 1 outside Ωn and define:

Zn =
k(αn ·Δn) 1{Δn /= 0}

2E
(
k(αn ·Δn)1{Δn /= 0} | Gn−1

) +
1{Δn=0}

2P(Δn = 0 | Gn−1)
. (2.21)

It is easy to check that Zn satisfies

E(Zn | Gn−1) = 1,

E(ZnΔn | Gn−1) = 0.
(2.22)

Let Ln =
∏n

i=1Zi and L = limn→∞Ln. Note that this limit exists almost surely since Ln+1 = Ln

a.s. on {Δn = 0} and {Δn = 0} ↗ Ω. From (2.22), we get

E(Ln | Gn−1) = Ln−1

E(LnMn | Gn−1) = Ln−1Mn−1,
(2.23)

which shows that (Ln)n≥1 and (MnLn)n≥1 are martingales under P . We thus get E(Ln) =
E(Z1) = 1, and Fatou’s lemma gives E(L) ≤ 1. We will show that E(L) = 1. We have

E(L) = E

(
lim
n→∞

L1{Δn=0}

)
= lim

n→∞
E
(
L1{Δn=0}

)
= lim

n→∞
E
(
Ln1{Δn=0}

)

= 1 − lim
n→∞

E
(
Ln1{Δn /= 0}

)
= 1 − lim

n→∞
E
(
E
(
Ln1{Δn /= 0} | Gn−1

))

= 1 − 1
2
lim
n→∞

E
(
Ln−11{Δn−1 /= 0}

)
= 1 − lim

n→∞

(
1
2

)n

= 1.

(2.24)

Combining Fatou’s lemma with the equation E(Ln) = E(L) = 1, we obtain E(L | Gn) = Ln.
Also,

E(MnL | Gn−1) = E(E(MnL | Gn) | Gn−1) = E(MnL | Gn−1)

= Mn−1Ln−1 = E(Mn−1L | Gn−1).
(2.25)
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Hence, L is the density of a measure Q under which our discrete process Mn is a martingale.
And since L > 0 (Ln > 0 for all n), Q is equivalent to P .

Lemma 2.9. Under the measure Q of Lemma 2.8 the process Mi
n is uniformly integrable for each

1 ≤ i ≤ d. In particular, EQ(supn≥0|Mi
n|) < ∞ for each i = 1, 2, . . . , d.

Proof. For any 1 ≤ i ≤ d, set Mi
∗ = supn≥0|Mi

n| and observe that on {Δk /= 0,Δk+1 = 0} we have
Mi

∗ ≤ |Xi
0|+kε. Observing thatQ(Δk /= 0) = Q(Δk /= 0 | Δk−1 /= 0) · · ·Q(Δ1 /= 0 | Δ0 /= 0)Q(Δ0 /= 0)

and that Q(Δk /= 0 | Δk−1 /= 0) = 1/2 we obtain the following:

EQ

(
Mi

∗
)
=

∞∑

k=0

EQ

(
Mi

∗1{Δk /= 0}∩{Δk+1=0}
)
≤

∞∑

k=0

(∣∣∣Xi
0

∣∣∣ + kε
)
Q({Δk /= 0,Δk+1 = 0}) < ∞.

(2.26)

The two lemmas above uses the f-stickiness. The f-stickiness is seemingly stronger
condition than the weak f-stickiness since it involves stopping times. However, the next
Lemma 2.10 shows that, in fact, these two conditions are equivalent.

Lemma 2.10. Let Xt be an adapted continuous process with state space O and f ∈ C0([0, T],Rd).
Then, Xt is weak f-sticky if and only if it is f-sticky.

Proof. Let us show first that for any f ∈ C0([0, T],Rd)weak f-stickiness implies f-stickiness.
Suppose for a contradiction that Xt is weak f-sticky but not f-sticky. Then there exists a
stopping time τ with P(τ < T) > 0, and an ε > 0 such that

P

⎛

⎝τ < T,Xτ ∈
⋂

t∈[0,T−τ]

(O − f(t)
)
⎞

⎠ > 0,

P

(
sup
t∈[τ,T]

∣∣Xt −Xτ − f(t − τ)
∣∣ < ε, τ < T

)
= 0.

(2.27)

Since f ∈ C0([0, T],Rd), there exists a δ > 0 such that for all t, s ∈ [0, T], |t − s| < δ implies
|f(t) − f(s)| < ε/3. In addition, we can find t1, t2 ∈ [0, T), 0 < t2 − t1 < δ, and 0 < ζ ≤ ε/3 such
that

P

⎛

⎝t1 ≤ τ < t2, Xτ ∈
⋂

t∈[τ,T]

(Oζ − f(t − τ)
)
⎞

⎠ > 0, (2.28)

where Oζ = {x ∈ O/d(x, ∂O) > ζ}.
For each q ∈ I = Q ∩ [t1, t2), let Aq := A ∩ {t1 ≤ τ < q} ∩ {supt∈[τ,q]|Xt −Xτ | < ζ}, where

A :=

⎧
⎨

⎩t1 ≤ τ < t2, Xτ ∈
⋂

t∈[τ,T]

(Oζ − f(t − τ)
)
⎫
⎬

⎭. (2.29)
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Since P(A) > 0 andA =
⋃

q∈I Aq, there exists a q∗ ∈ I such that P(Aq∗) > 0. Note thatAq∗ ∈ Fq∗

and Aq∗ ⊂
⋂

t∈[0,T−q∗](O − f(t)). Hence, since Xt is weak f-sticky, we obtain

P

⎛

⎝Aq∗ ∩
⎧
⎨

⎩ sup
t∈[q∗,T]

∣∣Xt −Xq∗ − f
(
t − q∗

)∣∣ <
ε

3

⎫
⎬

⎭

⎞

⎠ > 0. (2.30)

Let Cq∗ = Aq∗ ∩ {supt∈[q∗,T]|Xt −Xq∗ − f(t − q∗)| < ε/3}. Then we claim that

Cq∗ ⊂
{

sup
t∈[τ,T]

∣∣Xt −Xτ − f(t − τ)
∣∣ < ε

}
∩ {τ < T}, (2.31)

which contradicts (2.27). Indeed, if ω ∈ Cq∗ , then for t ∈ [τ, q∗] we have

∣∣Xt −Xτ − f(t − τ)
∣∣ < |Xt −Xτ | +

∣∣f(t − τ)
∣∣ <

ε

3
+
ε

3
< ε, (2.32)

by the definition of Aq∗ and the choice of δ. We will show also that |Xt −Xτ − f(t − τ)| < ε on
Cq∗ whenever t ∈ [q∗, T]:

∣∣Xt −Xτ − f(t − τ)
∣∣ ≤ ∣∣Xq∗ −Xτ − f(t − τ) + f

(
t − q∗

)∣∣ +
∣∣Xt −Xq∗ − f

(
t − q∗

)∣∣

≤ ∣∣Xτ −Xq∗
∣∣ +
∣∣f
(
t − q∗

) − f(t − τ)
∣∣ +
∣∣Xt −Xq∗ − f

(
t − q∗

)∣∣

<
ε

3
+
ε

3
+
ε

3
= ε.

(2.33)

Thus, weak f-stickiness implies f-stickiness. Since the opposite direction is obvious, the
proposition is proved.

Lemma 2.11. Let Xt be a continuous adapted process with state space O. Then Xt is linear sticky if
and only if Xt is f-sticky for all f ∈ C0([0, T],Rd).

Proof. We only need to show that linear stickiness implies the weak f-stickiness for each
f ∈ C0([0, T],Rd). Fix any f ∈ C0([0, T],Rd), s ∈ [0, T], ε0 > 0. We need to show that

P

({
sup
t∈[s,T]

∣∣Xt −Xs − f(t − s)
∣∣ < ε0

}
| Fs

)
> 0, a.s. (2.34)

on the set B =: {Xs ∈ ⋂t∈[0,T−s](O − f(t))}. To do this, for any A ∈ Fs with P(A ∩ B) > 0, we
need to show that

P

(
A ∩ B ∩

{
sup
t∈[s,T]

∣∣Xt −Xs − f(t − s)
∣∣ < ε0

})
> 0. (2.35)
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Define Z(ω) = infr∈[0,T−s]d(Xs(ω) + f(r), ∂O) for any ω ∈ A ∩ B. From the definition of B, it
is clear that Z > 0 a.s. on A ∩ B. Let h > 0 be a constant such that the set B0 = {Z ≥ h} has
positive probability. Note that B0 ∈ Fs and B0 ⊂ A ∩ B. In the following, we show that

P

(
B0 ∩

{
sup
t∈[s,T]

∣∣Xt −Xs − f(t − s)
∣∣ < ε0

})
> 0. (2.36)

Let ε = min(ε0, h) and set t0 = 0, and define

tk = inf
{
t ≥ tk−1 :

∣∣f(t) − f(tk−1)
∣∣ ≥ ε

4

}
∧ (T − s), (2.37)

for k ≥ 1. Let N be the smallest positive integer such that tN = T − s. For each k ≥ 1, define
g(t) on [tk−1, tk] to be equal to the linear function that connects the two points f(tk−1) and
f(tk). We can assume that

g(t) = f(tk−1) + αk−1t, on [tk−1, tk], (2.38)

for some constant vector αk−1 ∈ R
d for each k ≥ 1. It is clear that

sup
t∈[0,T−s]

∣∣f(t) − g(t)
∣∣ ≤ ε

2
. (2.39)

Because of (2.39), to show (2.36)we only need to show

P

(
B0 ∩

{
sup
t∈[s,T]

∣∣Xt −Xs − g(t − s)
∣∣ <

ε

2

})
> 0. (2.40)

For each k = 0, 1, 2, . . . ,N − 1, let

Bk+1 = Bk ∩
{

sup
t∈[s+tk ,s+tk+1]

∣∣Xt −Xs − g(t − s)
∣∣ <

ε

2N−k

}
. (2.41)

Note that BN is contained in the event in (2.40). Therefore, it is sufficient to prove that BN

has positive probability. When t ∈ [s + tk, s + tk+1], we have g(t − s) = f(tk) + αk(t − s) =
f(tk) + αktk + αk[t − (s + tk)] = g([(s + tk) − s]) + αk[t − (s + tk)]. Therefore, we have the
following relation:

{
sup

t∈[s+tk ,s+tk+1]

∣∣Xt −Xs − g(t − s)
∣∣ <

ε

2N−k

}

⊃
{
Xs+tk −Xs − g([(s + tk) − s]) <

ε

2N−k+1

}

∩
{

sup
t∈[s+tk,s+tk+1]

|Xt −Xs+tk − αk[t − (s + tk)]| < ε

2N−k+1

}
.

(2.42)
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By the definition of Bk and the above relation, it is easy see that

Bk+1 ⊃ Bk ∩
{

sup
t∈[s+tk,s+tk+1]

|Xt −Xs+tk − αk[t − (s + tk)]| < ε

2N−k+1

}
. (2.43)

On Bk we have

d(Xs+tk , ∂O) ≥ d
(
Xs + g((s + tk) − s), ∂O) − d

(
Xs + g((s + tk) − s), Xs+tk

)
>

ε

2
− ε

2N−k+1 ≥ ε

4
,

|Xs+tk − [Xs+tk + αk(t − (s + tk))]| = |αk(t − (s + tk))| =
∣∣g(t) − g(tk)

∣∣ ≤ ε

4
,

(2.44)

for each k = 0, 1, . . . ,N − 1 and for all t ∈ [s + tk, s + tk+1]. From this, we conclude that
Bk ⊂ {Xs+tk ∈ ⋂t∈[s+tk ,s+tk+1](O − αk[t − (s + tk)]}. Now, from the linear stickiness and the fact
that P(B0) > 0 we conclude P(BN) > 0. This completes the proof.

Proof of Theorem 2.6. By Lemmas 2.8 and 2.9, there exists an equivalent probability measure
Q ∼ P such that (Mi

n,Gn)n≥0 is a uniformly integrable martingale for each 1 ≤ i ≤ d. Let
Mi

∞ = limn→∞Mi
n. For each t ∈ [0, T], set M̃i

t = EQ[Mi
∞ | Ft]. Observe that M̃i

τn = EQ[Mi
∞ |

Fτn] = Mi
n, and M̃i

t = EQ[M̃i
τn | Ft] on the set {τn−1 ≤ t ≤ τn} for all n ≥ 0. Thus the following

equation holds:

(
M̃i

t −Xi
t

)
1{τn−1≤t≤τn} = EQ

[(
Mi

n −Xi
t

)
1{τn−1≤t≤τn} | Ft

]
, n ≥ 1. (2.45)

We write Mi
n − Xi

t = (Mi
n − Xi

τn) + (Xi
τn−1 − Xi

t) + (Xi
τn − Xi

τn−1). Note that each of Mi
n − Xi

τn ,
Xi

τn−1 −Xi
t, and Xi

τn −Xi
τn−1 takes values in (−ε, ε) on the set {τn−1 ≤ t ≤ τn}. Therefore, we have

−3ε ≤ |M̃i
t − Xi

t| ≤ 3ε on the set {τn−1 ≤ t ≤ τn}. Since
⋃∞

n=1{τn−1 ≤ t ≤ τn} = Ω, we conclude
that

−3ε ≤
∣∣∣M̃i

t −Xi
t

∣∣∣ ≤ 3ε. (2.46)

Since ε > 0 is arbitrary, the claim follows.

Example 2.12. Let BH1
t , BH2

t , . . . , BHd

t be a sequence of independent fractional Brownian
motions with respective Hurst parameters H1,H2, . . . ,Hd ∈ (0, 1). Let fi : R → (ai, bi) be
a homeomorphism for each i = 1, 2, . . . , d, where (ai, bi) is an open interval in the real line.
Then the new process (f1(B

H1
t ), f2(B

H2
t ), . . . , fd(B

Hd

t )) admits CPSs for each ε > 0. This can
be easily seen from the CFS property of the process (BH1

t , BH2
t , . . . , BHd

t ) which was shown in
[14] and the fact that the map f(x) = (f1(x), f2(x), . . . , fd(x)) is a homomorphism from R

d to
(a1, b1) × (a2, b2) × · · · × (an, bn).
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