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Exploring the robustness of set theoretic findings from a large n
fsQCA: an illustration from the sociology of education

Barry Cooper* and Judith Glaesser

School of Education, Durham University, Leazes Road, Durham DH1 1TA, UK

(Received 15 July 2014; accepted 19 March 2015)

Ragin’s Qualitative Comparative Analysis (QCA) is often used with small to
medium samples where the researcher has good case knowledge. Employing it to
analyse large survey datasets, without in-depth case knowledge, raises new chal-
lenges. We present ways of addressing these challenges. We first report a single
QCA result from a configurational analysis of the British National Child Develop-
ment Study dataset (highest educational qualification as a set theoretic function of
social class, sex and ability). We then address the robustness of our analysis by
employing Duşa and Thiem’s R QCA package to explore the consequences of (i)
changing fuzzy set theoretic calibrations of ability, (ii) simulating errors in
measuring ability and (iii) changing thresholds for assessing the quasi-sufficiency
of causal configurations for educational achievement. We also consider how the
analysis behaves under simulated re-sampling, using bootstrapping. The paper
offers suggested methods to others wishing to use QCAwith large n data.

Keywords: Qualitative Comparative Analysis; calibration; fuzzy sets; robustness;
simulation; bootstrapping

Ragin’s (2008) Qualitative Comparative Analysis (QCA) analyses minimally
necessary and/or sufficient conditions, or configurations of conditions, for some
outcome. Most published work uses QCA in the context of small to medium sized
datasets, but there is also work with large datasets. This addresses, for example,
education and stratification (Cooper, 2005; Cooper & Glaesser, 2008, 2010, 2012a;
Glaesser, 2008), poverty (Ragin, 2006; Ragin & Fiss, 2008), management
(Greckhamer, Misangyi, Elms, & Lacey, 2008), and typologies (Cooper & Glaesser,
2011a; Fiss, 2011).

Greckhamer, Misangyi, and Fiss (2013) note that QCA’s nature changes when it
is applied to large datasets. One challenge is the relative lack of detailed case
knowledge. This is important, though as these authors note, one can study selected
cases within the framework of a large n QCA. We have used this approach to
develop theoretical understanding (Cooper & Glaesser, 2012b). Another challenge is
to understand how QCA behaves with random sampling. We believe that the bene-
fits of QCA’s configurational approach should be available to all social scientists,
not just those studying small samples/populations. However, to make QCA more
acceptable to large n researchers, scholars need to explore further the nature of the
challenges inherent in using QCA with large n data and develop responses.
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Here, we draw on experience of using fsQCA with survey data in the sociology
of education. In typical work on education and meritocracy, comparisons of systems,
across time and space, using longitudinal datasets, are undertaken mostly using
correlation-based methods, focusing on the net effects on educational achievement
of ability vs. ascriptive factors. We have argued that the question of meritocracy can
be usefully re-phrased in terms of necessary and sufficient conditions, creating such
hypotheses as, ‘for girls from disadvantaged social backgrounds, high ability tends
to being necessary but not sufficient for high educational achievement’ (Cooper &
Glaesser, 2010, 2012a). We have also used QCA simply to explore the pathways to
high educational achievement (Cooper, 2005). We will focus our methodological
discussion here on that task, exploring results from a set-theoretic re-analysis of the
British National Child Development Study (NCDS) dataset (educational qualifica-
tions as a function of social class, sex and ability). The NCDS follows individuals
born in one week in 1958. The cohort is conventionally treated as if it comprises a
random sample from a population. We treat it as such.

Our data comprise 6666 cases.1 The variables are: social class origin, highest
qualification at age 33, sex and ‘ability’. Father’s social class has been coded to the
categories of the scheme employed in Breen and Goldthorpe (1999). Highest quali-
fication has six categories running from ‘no qualification’ to ‘degree or higher’;
‘ability’ derives from a general ability test taken at age 11 (variable: n920).2

We initially present a single solution. Our focus then moves to its robustness.
Previous robustness studies (Hug, 2013; Krogslund & Michel, 2014; Lucas &
Szatrowski, 2014; Schneider & Wagemann, 2012; Seawright, 2005; Skaaning, 2011)
have either focused on the effects of choices scholars must make in calibrating sets,
in choosing consistency thresholds for sufficiency/necessity, over frequency thresh-
olds for allowing configurations into the minimised solution, or have simulated the
effects of variously dropping one or two cases, dropping conditions or simulating
error. The nature of these studies reflects QCA’s origins in analysing small to med-
ium sized datasets, often whole populations such as ‘welfare states’. In such analy-
ses the ratio of cases to explanatory conditions is often very low and there are
usually configurations for which there are no cases (limited diversity). Marx and
Duşa (2011) have shown that, with very low cases/conditions ratios, QCA can mis-
leadingly find ‘explanatory’ models when faced with random data. They show that,
with three conditions – the number we employ – around a dozen cases are required
to avoid this problem. With our 6666 cases, this problem need not concern us.

Much of this work on robustness re-analyses studies where this key ratio is very
low, breaching or nearly breaching Marx and Duşa’s guidelines (for example, Hug,
2013; Krogslund & Michel, 2014; Lucas & Szatrowski, 2014; Schneider &
Wagemann, 2012; Skaaning, 2011). Because of this, these studies – some of which
report that QCA solutions are very sensitive to a scholar’s choices – are strongly
affected by the problem of limited diversity. The latter necessitates the analysis of
truth tables which are not fully populated. Some rows, termed ‘logical remainders’,
lack cases. Ragin (2008) has shown how, via counterfactual reasoning about all or
some of these remainders, drawing on theoretical or case knowledge, scholars can
access three types of solutions (parsimonious, intermediate or complex). Much of
the reported sensitivity of QCA solutions to scholars’ choices arises from the way in
which the set of logical remainders changes, in small n contexts, as calibration
anchors etc. are varied. In large n contexts, however, unless a large number of
conditions are employed, such limited diversity is usually absent, and the three types
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of solutions collapse into one. At no point in our analyses does the problem of
limited diversity arise.

The aspects of previous work most relevant for us are set calibration, consistency
thresholds and measurement error. We incorporate changes in these into our analy-
ses. However, given our large n focus, we will also address a key issue that doesn’t
arise in small n work analysing whole populations: the consequences of sampling
error for the stability of solutions. To summarise, we address robustness by employ-
ing Duşa and Thiem’s (2013) R QCA package (also: Thiem & Duşa, 2013) to
explore the consequences of (i) changing fuzzy set calibrations of ability, (ii) errors
in measuring ability and (iii) changing key thresholds for assessing the nature, as
well as the consistency and coverage, of set theoretic solutions for educational
achievement. We also use bootstrapping techniques to explore the stability of our
solutions when faced with sampling error. We focus our attention, for illustrative
purposes, as have others, on just one of our ‘causal conditions’: ability. We treat the
measurement and calibration of the others as givens. This makes it easier, in a
methodological paper, to present our arguments and suggestions. In addition, the
condition ‘ability’ is particularly interesting. If we take the fuzzy set ‘high ability’,
there is no obvious theoretically grounded way of setting the key calibration points
(Glaesser & Cooper, 2014). Measures of ability are already partly constructed to
meet conventional distributional criteria. Furthermore, given some calibration of
educational achievement, some ability calibrations are likely to be more successful
than others (in terms of QCA’s measures of ‘consistency’ and ‘coverage’ for suffi-
ciency3) in modelling pathways to it. Notwithstanding the warnings of various
authors concerning data mining (for example, Greckhamer et al., 2013), we see no
reason why varying the crossover point4 for ‘high ability’ and observing the effect
of this on consistency and coverage should be ruled out, given the nature of
measured ability itself.5

We discuss, in the light of our experiments, whether our initial solution is sound
and/or whether some other solution is preferable, taking account of the consistency
and coverage of the solutions, but also the PRI measure of consistency, which aims
to alleviate the paradoxical results that can arise when fuzzy logic is employed
(Cooper & Glaesser, 2011b). We also consider whether it makes sense to talk about
a ‘best solution’. Lastly, we consider how our initial solution behaves under simu-
lated re-sampling. Then, in our conclusion, we reconsider the differences between
assessing robustness in small and large n contexts, and set out the areas we believe
need further work.

1. The single solution

Initially, we report the result of a QCA in which our outcome, highest qualification
(HQUAL33F in Table 1) is a fuzzy set,6 as are two of our conditions, class7 and
ability, while sex (MALE) is a crisp set (with males = 1). In the first analysis
reported here, ability (0–80) is calibrated by Ragin’s (2008) direct method,8 using
the R QCA package, with the point for full exclusion at 25, the crossover at 45, and
the point for full inclusion at 65. The raw consistency threshold (for sufficiency) is
set at .89 (see Table 1 where the rows passing the threshold are shown in bold).

We should comment on our choice of 45 for the initial crossover point for the
ability calibration. As it happens, this value is close to the mean of the underlying
variable. However, this is not our reason for choosing it. We have already noted that
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there are no obviously correct calibration points for sets like ‘ability’. Varying the
crossover point for ability clearly will generate different solutions. For each solution,
for any particular crossover value, we must make sense of what the set ‘ability’
means. For example, if we set the crossover point at 55, then fsQCA reports10 that
ability on its own is quasi-sufficient for high achievement (consistency: .821, cover-
age: .617). In this case the set is best understood as comprising ‘very high ability’.
If, instead, we set the crossover at 30, then ability is not quasi-sufficient (consis-
tency: .678) but is now quasi-necessary (consistency: .887). Here the set is best
understood as something like ‘moderate ability’. That ‘very high ability’ is quasi-
sufficient and that ‘moderate ability’ is quasi-necessary are both interesting findings.
However, as sociologists, we are primarily interested in the ways in which factors
such as class and sex act together with ability in predicting achievement and, for this
purpose, we require a set with a crossover somewhere between these values of 30
and 55. We find that 45 is a choice that provides sociologically interesting findings.
Using this calibration we find ABILITY (best read as ‘high ability’ given the cali-
bration) must be combined with either MALE or CLASS (best read as ‘higher class
origin’) to be part of a configuration quasi-sufficient for the outcome. Table 2 shows
this solution. The coverage figures suggest that the second term is empirically more
important, but this partly reflects the binary nature of the sex factor. We have
(MALE*ABILITY) + (CLASS*ABILITY) ⇒ ACHIEVEMENT11 where the * indi-
cates set intersection (logical AND) and the + set union (logical OR).

Having established this solution, which, roughly speaking, shows that high abil-
ity, to be quasi-sufficient for high achievement, must be combined with one of
higher class origins or being male, we now, in Sections (2.1–2.3), explore its robust-
ness by drawing on a database of 15655 solutions created by running R QCA in
three nested loops. The outer loop runs through the original ability calibration plus

Table 1. The truth table.

MALE CLASS ABILITY Number
HQUAL33F
(the outcome)

Raw
consistency

PRI
consistency

1 1 1 872 1 0.879 0.786
0 1 1 1008 1 0.834 0.695
1 0 1 694 1 0.830 0.655
1 1 0 564 0 0.761 0.476
0 0 1 835 0 0.753 0.482
0 1 0 454 0 0.725 0.356
1 0 0 1057 0 0.593 0.275
0 0 0 1012 0 0.531 0.170

Note: The rows passing the threshold are shown in bold.

Table 2. Single solution (from minimising the first three rows of the truth table).

Raw coverage Unique coverage Consistency

MALE*ABILITY 0.369 0.115 0.799
CLASS*ABILITY 0.525 0.270 0.855

Solution coverage 0.639
Solution consistency 0.813

4 B. Cooper and J. Glaesser
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100 ‘new’ ability factors, created by adding random measurement error to the
original non-calibrated variable. The middle loop allows the crossover point for the
calibration of ABILITY to vary (30, 35, 40, 45, 50). The inner loop runs through 31
threshold levels for consistency (.70, .71, … , .99, 1.00). This gives us 101 × 5 × 31
(15655) solutions to examine.12

2.1. Stability of the solution as the ability calibration is varied

Here we discuss how the solution varies when, holding everything else the same as
in (1), we vary the ability calibration. We allow the crossover point for ability to
take, sequentially, the values 30, 35, 40, 45, 50. The solutions are in Table 3. The
obvious point to note is that the two lower crossover points, which reduce the diffi-
culty of entering the set ‘high ability’, have the effect of requiring more supportive
terms in the conjunction. Importantly, because the term MALE*CLASS*ABILITY
excludes all females, we find coverage greatly reduced for this solution. The table is
easy to interpret. As the crossover point is lowered, we effectively reduce the ‘high-
ness’ in the set of ‘high ability cases’ (ABILITY). At lower levels (30, 35), two
ascriptive factors need to be conjoined with ABILITY to achieve consistency above
.8. At the three higher levels (40, 45, 50), only one is required.

2.2. Stability of the solution as error in measuring ability is simulated

We have created 100 error-affected versions of ‘ability’ by adding to each score, prior
to calibration, a random variable representing measurement error. The added error
term is normally distributed with a mean of zero and a standard deviation of 5. Given
that our ability variable has a mean of approximately 45 and a standard deviation of
15 in our sample, this is a fairly severe test of robustness. Holding everything else the
same as in the analysis under (1) but running through these 100 error-affected
solutions (plus the original), we find that all 101 solutions are of the form
(CLASS*ABILITY) + (MALE*ABILITY). The overall consistencies range from
.804 to .813, the coverage indices from .629 to .639. Solutions are stable under this
trial.

2.3. Stability of the solution as the consistency threshold is varied

Here we hold everything the same as in the single solution under (1) except the con-
sistency threshold. We have 31 potential solutions. In fact, once the threshold
reaches .88, no rows pass from the truth table, leaving us 18 solutions.13 Varying
the threshold does affect the solutions dramatically. Again, coverage drops abruptly
as females disappear from the MALE*CLASS*ABILITY (.84–.87) solutions
(Table 4).

Table 3. Varying crossover.

Crossover Overall solution Consistency Coverage

30 MALE*CLASS*ABILITY 0.833 0.294
35 MALE*CLASS*ABILITY 0.849 0.284
40 CLASS*ABILITY + MALE*ABILITY 0.789 0.682
45 CLASS*ABILITY + MALE*ABILITY 0.813 0.639
50 CLASS*ABILITY + MALE*ABILITY 0.838 0.589

International Journal of Social Research Methodology 5
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The solution (CLASS*ABILITY) + (MALE*ABILITY) + (MALE*CLASS)
has a good balance of consistency and coverage but is unstable in that a small
shift in the threshold up or down changes its nature. Given this instability of
(CLASS*ABILITY) + (MALE*ABILITY) + (MALE*CLASS) perhaps the choice
here is essentially between the solutions between which it is sandwiched. This
choice involves a trade-off between consistency and coverage. Favouring consis-
tency leads to the choice of (CLASS*ABILITY) + (MALE*ABILITY), the solution
we found in (1).

3. All 15655 solutions

Of the complete set of 15655 combinations of crossover point, error-affected vari-
ables and consistency threshold 7219 (46.11%) produce no solution. Since there are
set theoretic relations to be found in these data, this in itself serves as an argument
that the analyst may need to explore varying calibrations. Giving up just because the
first set of parameters chosen fails to produce a solution would not seem a sensible
strategy, although this might be argued for by someone believing that the calibration
process should be entirely theoretical and/or substantive. In Section (3.2) we
consider the whole run of potential solutions, but only after looking first, in
Section (3.1), at just the subset of 155 that employ the original (but then calibrated)
ability score.

3.1. The 155 analyses using the original ability score (with no error added)

We can learn something from examining the distribution of solutions over the space
created by varying threshold and crossover values. To begin with, for simplicity,
Table 5 just looks at ability calibrated as a fuzzy set without added error. The maxi-
mum number of solutions per cell is therefore 1. Once the threshold reaches .9 there
is no solution whatever the crossover point for ability. Below .9 there is an interac-
tion between the crossover point – which partially sets the degree of highness in
‘high ability’ – and the threshold. Taking the threshold of .84 for illustration, we can
see that as ‘ability’ is calibrated ‘more selectively’, the solution changes (shown in
bold in Table 5). We have no solution when the crossover point is 30. We then, at
35, 40 and 45, obtain the solution MALE*CLASS*ABILITY. Once the crossover
reaches 50 then, in place of having to be ‘highly able’ and male and from high class
origins to reach quasi-sufficiency, it is good enough to be ‘(more) highly able’ and
either male or from high social class origins.

Table 4. Varying thresholds.

Overall solution Frequency Thresholds
Mean

consistency
Mean

coverage

ABILITY + CLASS 3 0.70–0.72 .698 .867
ABILITY + MALE*CLASS 3 0.73–0.75 .730 .821
CLASS*ABILITY + MALE*ABILITY
+ MALE*CLASS

1 0.76 .768 .710

CLASS*ABILITY + MALE*ABILITY 7 0.77–0.83 .812 .639
MALE*CLASS*ABILITY 4 0.84–0.87 .879 .254
No solution 13 0.88–1.0

6 B. Cooper and J. Glaesser
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Now, what about a ‘best solution’? For the moment we continue to consider just
the original ability measure, so that everything except the ability calibration and the
threshold is taken as fixed, and choose from the 155 QCAs. Of these 155 (5 × 31)
potential solutions 71 are non-solutions, leaving 84 to consider (see Table 5).
Amongst these CLASS*ABILITY +MALE*ABILITY appears 18 times (shaded
cells), with a mean consistency of .817 and a mean coverage of .629. The mean cross-
over for these is 45.83 and the mean threshold .804. The mean PRI consistency is
.695. No other solution offers as much. MALE*CLASS*ABILITY does appear more
times (23) but, overall, its parameters are less good. Though it has a slightly better
mean consistency of .862, its mean coverage is .270. Our candidate ‘best solution’ is,
therefore, at this stage, the familiar (CLASS*ABILITY) + (MALE*ABILITY).

3.2. The complete set of 15655 analyses

We now consider whether this conclusion is supported by the full set of solutions,
including the additional analyses of 100 error-affected ability variables. The overall
solutions and their distribution for the whole set (15655) and the smaller set (155)
are shown in Table 6.14 The distributions are very similar, but not identical. In
around 1 in a 1000 cases we obtain solutions amongst the 15655 that did not appear
in the set of 155 (MALE*ABILITY; MALE*CLASS). The mean consistency for
our potential ‘best’ solution (CLASS*ABILITY) + (MALE*ABILITY) is .813, its
mean coverage .619, and its mean PRI .687. Again, MALE*CLASS*ABILITY
appears more frequently, but with a much lower overall coverage. Moving from the
155 analyses to the full set of 15655 leaves the most plausible ‘best solution’ as
CLASS*ABILITY +MALE*ABILITY.15

4. Bootstrapping/resampling

Here we employ a method developed by Efron and Tibshirani (1993) to explore the
stability of QCA solutions. Efron’s non-parametric bootstrap is a well-known proce-
dure (for an introduction, see Shalizi, 2010). One assumes that the available sample

Table 6. Distribution of solutions as threshold and crossover are varied (15655 QCAs using
all 101 ability measures).

Solution
15655
set

Percent
(%)

155
set

Percent
(%)

ABILITY 201 1.28 3 1.94
ABILITY + CLASS 774 4.94 9 5.81
ABILITY + MALE*CLASS 574 3.67 6 3.87
CLASS 59 0.38 1 0.65
CLASS + MALE*ABILITY 1089 6.96 9 5.81
CLASS*ABILITY 574 3.67 3 1.94
CLASS*ABILITY + MALE*ABILITY 1648 10.53 18 11.61
CLASS*ABILITY + MALE*ABILITY +
MALE*CLASS

826 5.28 9 5.81

CLASS*ABILITY + MALE*CLASS 355 2.27 3 1.94
MALE*ABILITY 9 0.06 0 0.00
MALE*CLASS 13 0.08 0 0.00
MALE*CLASS*ABILITY 2314 14.78 23 14.84
No solution 7219 46.11 71 45.81

International Journal of Social Research Methodology 9
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of data contains all the available information about the underlying population from
which it is drawn.16 A series of samples with replacement is taken from the avail-
able single sample. For each of these the parameter of interest is calculated and then,
usually, the standard deviation of the distribution of the parameter of interest is used
to establish this parameter’s confidence intervals. Where one is interested in estab-
lishing confidence intervals for a parameter such as the mean the procedure is
straightforward and many statistical packages incorporate the optional calculation of
bootstrapped estimates. However, a complication arises in the context of QCA. Here,
the nature of the solutions themselves may vary with resampling.17 A ‘causal path-
way’ might appear in some solutions but not others. It is, of course, exactly this
possibility – that QCA solutions are unstable under resampling – that led us to
employ bootstrapping here. We therefore focus on using the resampling approach to
explore the stability of the form of solutions under resampling.

Because QCA minimises those rows of truth tables passing a consistency thresh-
old, we will consider whether the set of rows passing the threshold changes under
repeated resampling with replacement from our 6666 cases, initially taking samples
of size 6666 to match our case numbers, as is usually recommended in the literature.
We use the original ability measure for this work, with a calibration crossover of 45
and a consistency threshold of .8 (thus returning to the parameters employed in our
initial solution). We carry out this resampling 1000 times. Table 7 shows the
descriptive statistics for consistency for the eight rows for 1000 runs.18 Looking at
the minima and maxima, it can be seen that the three rows 111, 101 and 011 (shown
in bold) pass the .8 threshold in each of the 1000 runs. No other row passes the
threshold in any run. The solution (CLASS*ABILITY) + (MALE*ABILITY) is
therefore stable under this exercise.

Initially we took repeated samples of the same size (6666) as our empirical sam-
ple. It is, however, instructive to explore the behaviour of the solutions when smaller
samples are taken. We first take 1000 samples of size 1000. Here, in a minority of
samples, some rows whose consistency in Table 1 did not exceed .8 become consis-
tent at this level, and some whose consistency did exceed .8 now fall below this
level. As a result, not all 1000 runs exhibit the same solution (see Table 8). How-
ever, the solution (CLASS*ABILITY) + (MALE*ABILITY) dominates the results,
appearing in 91% of the analyses.19 Looking at this from a different perspective, we
can see that there will be some sample size, for this dataset, where the proportion of
solutions that are (CLASS*ABILITY) + (MALE*ABILITY) rises above a 95%
conventional confidence level. This seems to provide us with a possible way of
applying a statistical approach to the form of the solution. If we take samples

Table 7. Descriptive statistics from 1000 samples with replacement of size 6666.

MALE CLASS ABILITY Minimum Maximum Mean Std. deviation

0 0 0 .506 .561 .531 .0087
0 0 1 .730 .773 .753 .0068
0 1 0 .693 .754 .725 .0092
0 1 1 .815 .850 .834 .0055
1 0 0 .564 .617 .593 .0089
1 0 1 .809 .850 .830 .0065
1 1 0 .731 .786 .761 .0088
1 1 1 .860 .896 .879 .0051
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with replacement of size 1500, we obtain the solution (CLASS*ABILITY) +
(MALE*ABILITY) in 97% of the 1000 analyses. The required sample size here to
achieve a result over 95% is clearly between 1000 and 1500.20

5. Discussion

We aimed to illustrate some methods for addressing the robustness of large n set-
theoretic analyses. Our initial QCA solution, generated against the background of
the calibrations of sex, class and achievement used in Cooper (2005), entered a
plausible set of calibration points for ‘ability’ into Ragin’s ‘direct method’ of cali-
bration and used the often employed threshold for quasi-sufficiency of .8. We
explored the sensitivity of this solution to changes of calibration, to changes in the
threshold that allows configurations to pass from the truth table into the minimised
solution, and to measurement error. We also used a bootstrapping procedure to
explore the stability of our initial solution under random sampling. The overall
results suggest that, at least for the model and dataset under examination, the solu-
tion that would have been produced by a fairly standard application of fsQCA to
our dataset, notwithstanding the problems of calibrating sets in a large n context
where we have little case knowledge, would have been a good one to accept.21

However, there are some issues that differentiate our work from earlier robustness
studies that require discussion.

First, as we noted in discussing the literature on robustness, much earlier work
addressed studies in which the cases/variables ratio was very low. Schneider and
Wagemann (2012), for example, re-analysed a study with 19 cases and 6 conditions.
With 6 conditions a truth table will have 64 (26) rows, and clearly, with only 19
cases, many will be either empty or have just one or two cases. In such cases, drop-
one-case sensitivity tests, via their effect on which rows of the truth table remain
non-empty, will often produce changes in minimised solutions. In our case, with a
ratio of 6666 to 3, and no rows with no or few cases, such an approach can be
expected to have no dramatic effects on a solution. For this reason, we chose to
undertake the resampling exercise which, for us, seems, for those analysing samples
rather than small entire populations, to provide a large n alternative to the drop-one-
case test employed in earlier studies. We believe we have shown this to be a poten-
tially useful approach deserving of more development in the large n QCA context.22

Second, in comparison with others, we have allowed both (i) our key anchor
point for calibrating the ability set and (ii) our consistency thresholds to vary over a
wider range. Skaaning (2011) argues that, during robustness analyses, changes in

Table 8. Distribution of solutions under resampling (sampling n = 1000).

Overall Solution Frequency Percent

ABILITY 3 .3
CLASS*ABILITY 33 3.3
CLASS*ABILITY + MALE*ABILITY 912 91.2
CLASS*ABILITY + MALE*ABILITY + MALE*CLASS 40 4.0
MALE*ABILITY 10 1.0
MALE*ABILITY + male*CLASS 1 .1
MALE*CLASS*ABILITY 1 .1
Total 1000 100.0

Note: The “male” in lower case refers to the negation of the set “MALE”, i.e. to females.
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calibration should be small enough so as not to undermine the theoretical arguments
underpinning the original choice of anchor points. This is a sound argument but, in
the case of ability, as we argued earlier, it does not rule out the use of a wide range
of anchor points. For us, there is a complex relation between varying anchor points
to test the robustness of solutions and varying them to answer a range of theoretical
questions (Glaesser & Cooper, 2014). For the analysis of some outcomes, one .5
anchor point (creating the set ‘moderately high ability’) might be fruitful but, for
some other outcome, or some other societal setting, a second anchor point might
lead to more meaningful solutions. A related argument can be applied to our use of
consistency thresholds from .70 to .99. Given our substantive interests, we do not
only want to know how solutions change as small changes are made in these thresh-
olds (the robustness focus), but also how the solutions vary as we make larger
changes, making quasi-sufficiency easier or harder to achieve. A table like our
Table 5 can be used for both these purposes.

The main issues not addressed in this paper are (i) the potential systematic bias
resulting from differential attrition (by type of case) from longitudinal studies, (ii)
the concerns arising from the claim that QCA is more liable than correlational
approaches to incorporate random variables into a solution (Krogslund, Choi, &
Poertner, 2013), and (iii) the consequences of changing the membership function
used in the calibration of fuzzy sets. Concerning (i), we have discussed elsewhere
how the weights of types of cases can affect consistency and coverage (Cooper &
Glaesser, 2015). Any differential drop-out from a cohort will, via its effects on case
weights, change these summary measures. Linking the attrition/weights issue with
the bootstrapping approach employed in this paper might be a valuable and informa-
tive exercise. Concerning (ii), it would be interesting to compare QCA’s response to
random variables with those of other more conventional approaches. Concerning
(iii), Thiem (2014a) has recently reported some results concerning membership func-
tions, focussing on their effects on coverage, but this is another area where more
work would be very welcome.

Disclosure statement
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Notes
1. As with most longitudinal surveys, there has been attrition. The issue of attrition in the

context of set-theoretic analysis is one we intend to address in future work. We bracket
it out here where our concern is mainly with the stability of a given solution. We simply
use all cases where we have data on these variables.

2. Breen and Goldthorpe (1999) note that this test cannot be regarded as simply measuring
‘innate’ ability.

3. Consistency assesses the extent to which the evidence supports the claims that a condi-
tion, or a configuration of conditions, is sufficient for the outcome (Ragin, 2008).
Coverage assesses the empirical importance of this route to the outcome.

4. Membership in fuzzy sets ranges from none (0) to full (1). At the crossover point of .5
cases are as much in as out of the set.
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5. The techniques we use to explore the calibration of ‘ability’, and error in its measure-
ment, could, in principle, be applied to our other conditions and our outcome. However,
in the case of sex, there is an obvious way to allocate membership. In the case of social
class, it could also be argued, certainly from within the European sociological tradition,
that there are more constraints of an ontological kind to bear in mind than in the case of
measured ability. As far as our outcome measure, highest qualifications achieved, is con-
cerned, there might be an argument for taking its population distribution into account
when calibrating it, given its partly ‘positional’ nature (Hirsch, 1977). We bracket out
these considerations.

6. Highest qualification at age 33 orders qualifications into six categories, from ‘no quali-
fication’ to ‘degree or higher’. We have fuzzified it as follows (Cooper, 2005): No quali-
fication: 0; CSE 2-5/NVQ1: .17; O Level/NVQ2: .42; A Level/NVQ3: .67; Higher
qualification/NVQ4: .83; Degree/higher/NVQ5,6: 1.0 .

7. This variable is derived from the variable n2385 (father or father figure’s occupation,
coded to Socio-Economic Groups) taken at respondent’s age 16. Following Breen and
Goldthorpe (1999), and Heath and McDonald (1987), we derive an approximation to
the Goldthorpe 7-class schema. The latter is fuzzified as follows (Cooper, 2005): Upper
service class: 1, lower service class: .83, routine non-manual: .583, petty bourgeoisie:
.583, supervisors etc.: .417, skilled manual: .17, semi- and unskilled manual: 0.

8. See Thiem (2014a) for a recent discussion of the direct method.
9. This threshold determines which configurations pass from the truth table into the min-

imised solution.
10. Using a threshold of .8 for quasi-sufficiency.
11. Equivalently, ABILITY*(MALE + CLASS) ⇒ACHIEVEMENT.
12. Of the 101 versions of ability, one (the original) will have real measurement error and

the other 100 this plus our added simulated error.
13. Given a fully populated truth table of 8 rows, 6 of which are above the lowest threshold

of .7 used in these solutions, there are no more than 6 possible solutions, and so the 18
discussed here will be distributed across no more than these 6 ‘possibles’.

14. We are assuming here that the 155 that employed the original ability measure them-
selves include real measurement error, which is why we continue to include these 155
here.

15. Running these analyses again, but ignoring the output generated using thresholds lower
than .8, produces the same pattern of results.

16. Our sample of 6666 cases has been taken from a longitudinal study in which there has
been attrition. We have taken the view of most scholars who employ these data that the
nature of this attrition is not such that large biases are introduced into analyses. Also,
our purpose here is methodological – to illustrate how bootstrapping can be used with
QCA in the large n context. In future work we intend to address this issue of drop-out
and its effects on large n QCAs.

17. A similar issue arises with regression estimates, of course. Under resampling, as signifi-
cance levels change, an interaction term may be entered into some solutions but not others.

18. Given space constraints, we will not report parallel results for PRI here.
19. There are two main alternative solutions. CLASS*ABILITY +MALE*ABILITY +

MALE*CLASS appears when the consistency for row 7 in Table 7 creeps above .8,
and CLASS*ABILITY when the consistency for row 6 falls below it.

20. We should also note, re possible limited diversity, that the lowest number of cases in
any truth table row resulting from our samples of size 1000 is 44. For samples of 1500
it is 74. For samples of 6666 it is 387.

21. In this paper we have concentrated our attention on sufficiency analyses. However, the
same issues characterise analyses of necessity. Given an already calibrated fuzzy set
capturing levels of educational achievement, ‘ability’ calibrated with a high crossover
will be much less likely to be considered as necessary for achievement than ‘ability’
calibrated with a lower crossover value. Assessments of necessity will also vary with
the threshold chosen and as measurement error changes. We see no reason therefore
why the techniques used here shouldn’t be applied to assessments of necessity.

22. Thiem’s (2014b) concerns about Hug’s (2013) use of simulations to assess QCA are
also relevant here.
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