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Abstract  

This study describe the general aspects of the Structural Equation Models as well as some extensions which have been 

proposed; these extensions looking for relax the underlying assumptions and generalize the technique.  Then, based on a 

simplified model we consider the three stages to make an application; after we present path analysis which is a way to 

analyse Structural Equations Models and a special case called Confirmatory Factor Analysis. Finally we make an 

application based on the study monitoring the Future as an example of Confirmatory Factor Analysis. 
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Introduction 

The Structural Equation Models (SEM) is a full setting which 

permits modeling the relations amongst observed and 

unobserved variables, in this framework the causality is an 

underlying condition. In the history, the starting point of the 

SEM is not clear because has been applied in sociology, 

psychology and economics; one of the first approaches was the 

path analysis, which is a method to analyze SEM. The method 

includes a graphical representation or path diagram, based on it 

and considering some writing rules an equation system can be 

proposed. The equation system establishes the relations between 

the covariance of the observed variables and parameters of the 

model, finally we consider the classification of the effects. 

 

With the time many extensions of the initial concept has been 

proposed, trying to give a broader scope and relaxing some of 

the assumptions.  In this study we present the general model and 

some extensions; then, focus on a simplified model we describe 

the fitting process and finally make an application
1
. 

 

Material and Methods 

General Model and Some Extensions: The Structural 

Equation Models are developed to scrutinize the hypotheses of 

no relations between observed variables and non-observed 

(latent) variables. This type of model contains a system of 

structural equations to express the relationship between 

variables. There are three kinds of variables which we use in 

SEM, which are the responses, the predictors and the latent or 

unobserved variables. In this chapter we present the general 

model assuming continuous latent variables and some 

extensions proposed based on the general model. 

 

General Model Continuous Latent Variable: The model 

includes a random dependent variable vector y and a random 

independent variable vector x ; each variable can be continuous 

or categorical. The observed variables in the vectors x  and 

y are assumed to be generated by a set of continuous latent 

variables. 

 

Suppose η  be a system of linear structural equations consist of 

m latent dependent (endogenous) variables and ξ  be a system 

of n latent independent variables, then 

ζξηη +Γ+= B
                

(1) 

 

Where B (m x m) is a regression matrix with zero in the 

diagonal and BI − non singular, ξ (n x 1) is the vector of latent 

independent variables, Γ (m x n) is a regression matrix of latent 

independent variables and ζ is the vector of residuals (latent 

errors); in the model, ( ) κξ =E , with covariance matrix of ξ  

denoted by Φ , ( ) 0=ζE  and the covariance matrix of ζ  is 

denoted by Ψ .  

 

Also assuming linear relations for *y , a set of p latent response 

variables, and for *x , a set of q latent variables 

εη

δξ
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+Λ=

y

x
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               (2) 

 

Where yΛ (p x m) is a matrix of coefficients relating the latent 

response variable *y  toη  and 
xΛ (q x n) is a matrix of 

coefficients relating *x  to the latent variable ξ.  ɛ (p x 1) and 

δ (q x 1) are random vectors of residuals (errors measurement) 

for *y  and *x  respectively with mean vector zero and 
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variance covariance matrices are εΘ
 

and δΘ .  

Assumingε uncorrelated withη
 
and ξ , and δ  uncorrelated 

withξ δ . Also δ , ε  and ζ  are mutually uncorrelated. 

 

Now we establish the relation amongst observed and un-

observed latent variables. When the observed variables in the 

vectors x  and y  are continuous, the identity transformation is 

used, that is xx =* , yy =*  and it will be explained later 

there are less considerations to specify the model. 

 

On the other hand, when the observed variables are categorical 

we assume a monotonic relation between the latent and the 

predicted variable. That is, suppose that *z  is a latent variable 

based on the observed variable z  which has C categories, then 

*z  is defined as follows: 
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 (3) 

 

The system describe throughout the equations 1 and 2 is called a 

Structural Equation Model.  This system can be considered a 

general system in the sense that the observed variables can be 

categorical or continuous and one different structure is allowed 

for each set of observed variables x  and y .  

 

For the categorical dependent variables Muthén distinguishes 

two cases related with the identifying the distribution of 

observedvariables
1
.In the first case, the joint distribution of the 

latent variables ( )**, xy  is completely specified, under this 

approach we must to estimate the following parameters arrays: 

yτ , xτ , yΛ , xΛ , εΘ , δΘ , B , Γ , κ , and Ψ .  Under this 

approach the assumption of multivariate normality for the latent 

variable is required due to the number of parameters involved. 

 

Now, in the second case x  is fixed, that is we do not impose any 

model structure to x , the conditional distribution ( )xyf /*  is 

specified, and the parameters arrays to estimate are: yτ , yΛ , 

εΘ , B , Γ , and Ψ .  Considering this case, the multivariate 

normality assumption for the latent variable can be relaxed. 

   

For the estimation Muthén mention basically two approaches, 

one based on the Maximum Likelihood Estimation and the 

second one based on Weighted Least Squares, the last one due 

to the heavy computations that involve Maximum Likelihood 

when the variables are categorical
1
. 

The previous general model can be extended to more than one 

populations, in fact the general model presented by Muthén is 

considering that the observational units come from g  different 

populations where for each population can be formulated a 

SEM
1
. 

 

Some extensions to the general model have been proposed 

relaxing the multivariate normality assumption for latent 

variables that is, considering some of the continuous distribution 

or even discrete latent variables, or including additional levels, 

that is multilevel structural equations models.  In the following 

section we describe some of the generalizations which have 

been proposed based on a general multilevel models. 

 

Some Extensions: Consider a general multilevel model 

framework, which unifies factor and random coefficient 

models
2
. Under this approach the response model for the level-2 

units is given by: 

εηβ +Λ+= jjjj Xy
                  

         (4) 

 

The subscript j refers to the level-2 units (clusters in random 

effects model). The interpretation of the terms involved in the 

equation 4 is different depending on the context (factor model or 

the random model).  For instance, in random effects models the 

matrix jΛ  is the design matrix of the random effects, denoted 

by jZ  whereas in Factor model is called by factor loading 

matrix and is denoted by Λ . 

 

Then the following model represents the structural relation of 

the latent variables 

jjjj wB ζηη +Γ+=
                           

 (5) 

 

As in the previous section, the equation 5 denotes a linear model 

for the latent variables; in order to relax this assumption some 

non-linear approaches have been proposed.  Under this 

approach the latent explanatory variables jξ  can determine the 

latent response variables jη through a structural model given 

by: 

( )jjjjjj gB ξαζαηη ≡+Γ+=
            

(6) 

 

The multivariate normality is considered for jξ  and jζ , where 

( )
jg ξ  is a deterministic vector function. As it was mention 

before in the general model Muthén assumed multivariate 

normality for the latent variables, another possible extension of 

the general model is to assume that latent variables follow 

another continuous distribution or even a discrete distribution; 

then the structural model is defined throughout the probabilities 

that one unit belong to a specific latent category, for the discrete 
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case the probability can be modeled using a multinomial log it 

model which may depend on a linear function of the covariates.  

In this case mathematical expectation of the latent variable is 

zero
1
. 

 

Other issue is the specification of the distribution of the latent 

errors ζ (also called disturbances). For continuous 

disturbances, the most common distribution is multivariate 

normality with mean zero and not necessary the same 

covariance matrix in each level.  Despite of the inference is in 

many cases robust to the departures of the normal error some 

authors have proposed flexible parametric distribution such us 

mixture of normal distribution among them
3
. 

 

For discrete disturbances, again a multinomial log it models can 

be used, and finally a mixed continuous and discrete 

distribution. One possibility would be include both types of 

distribution for the latent variables in the response model or the 

second one is include only discrete latent variables in the 

response model and continuous latent variable in the structural 

model. 

 

Until now we have briefly described the general Structural 

Equation Model and some extensions; to applied SEM 

distinguishes four stages
2
, the first one is the identification of 

the model, then the estimation, after the predicting of the latent 

variables and the model selection. 

 

However, we are going to focus in a simplified scenario 

describing three of the four stages to fit a model, one way to 

analyze a SEM and one special case. 

 

SEM For Continuous Observed Variables: In this context the 

response variables y  are also called endogenous and the 

explanatory variables x  are the exogenous variables.  In this 

section we assume the join distribution of the vector 

( )xyz =  which include both sets of observed vectors is 

multivariate normal with order qpN += ; we consider 

continuous latent variables with ( ) 0=ηE .  Under this 

framework our main interest is explain the variability of the 

observed variables  z as a functional form of the parameters and 

obtain the smallest difference between the variability of the 

model and the observed variability. The three phases considered 

for this model are identification, estimation and evaluating of 

the fit. 

 

Identification is talking about whether each and every model 

parameter could be estimated by variance covariance 

information of observed data. If there are single unique estimate 

for each parameter, then the model is called just identified 

model. If one or more parameters have more than one estimate, 

then the model is called over identified model. Of the observed 

variance covariance information are not sufficient for estimation 

of parameters, then it called under identified model. 

Estimation: The parameter estimation of SEM is based on the 

covariance matrix ( Σ ) of the observed variables. If the 

specified SEM is correct and with the known population 

parameters then ∑ will become ∑(θ), where Σ  can be 

determine from the free model parameters in terms of its 

functional form. 

 

But in real, ∑ should be estimated by observed covariance 

matrix S .From a process of iterations with a set of initial 

values, the covariance matrix can be estimated close enough to 

the observed matrix. After each iteration, resulted matrix is 

compared with the observed variance covariance matrix. 

Numbers of criterion are used in this purpose. 

 

Maximum likelihood method, which assumes multivariate 

normality, is the one widely used which is minimizing the 

function
4
: 

 
and it can be shown that asymptotically is 

distributed as chi square with 

degrees of freedom where t is the 

number of free parameters.  

 

There are several other methods developed for this purpose as 

un-weighted least squares, generalized least squared, etc. 

 

Evaluation of Fit: “A model is said to fit the observed data to 

the extent that the covariance matrix it implies is equivalent to 

the observed covariance matrix (elements of the residual matrix 

are near zero”
5
. 

 

Several methods are used to assess the goodness of fit of SEM. 

Here we describe two overall measures of fit; Goodness of Fit 

Index (GFI) and Adjusted Goodness of Fit Index (AGFI) which 

is proposed by Joreskog and Sorbom
6
. Both indexes fall 

between zero and one and the values closer to one implies the 

better fit. 

 
 

Numerator is the minimum value of the fitting function F for the 

formulated model and the denominator is the minimum value of 

the fitting function F when no model is formulated. Thus, GFI is 

measured “how much better the model fit as compared to no 

model at all”
7
. 

 
C = number of non-redundant variances and co-variances of 

observed variable, = degrees of freedom of the hypothesized 

model 

 

Moreover, squared multiple correlation coefficients could be 

used to assess the reliability of observed variables in the system 

of structural equations. SEM is used in various kinds of 
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scenarios. In this particular report we will consider most widely 

used path analysis and confirmatory factor analysis by 

presenting specific features and applications. 

 

Path Analysis: One method to analyse a system of structural 

equation is Path Analysis. Three major steps could be identified 

in path analysis. 

 

Path diagram: Decomposition of covariance and correlations: 

Identifying direct, indirect and total effects very first step in 

graphical representation of relationships between endogenous, 

exogenous and latent variables is the path diagram. here are 

some specific notations for path diagrams. Observed 

(endogenous and exogenous) variables are representing by 

boxes. Latent variables are representing by circles. And 

moreover, the structural relationship between variables is 

figured out as follows; 

: X is structurally influenced Y, but not vice versa 

: Y is structurally influence X, but not vice versa 

: X structurally influence Y and Y structurally influence 

X 

 

In path analysis, we consider all variables as observed variables. 

As an example, following system contains two predictor 

variables and three response variables. Path diagram and 

relevant system of structural equations are below. 

 

 

 

 

 

 

 

 
 

Figure-1 

Path Diagram for example 1 
Source

8
: Structural Equation Modelling 

 

The system of structural equations could be defined as follows. 

 

 

 
 

The matrix representation of the system is: 

 

 
 

It is important to note that one predictor variable could be an 

explanatory variable in a regression equation of another 

predictor variable. The measurement errors of endogenous 

variables are assumed to distribute as normal with zero mean 

and the variance covariance matrixψ . And exogenous variables 

are assumed to measure without error.   

In the path analysis, covariance or correlation between two 

variables could be decomposed as a function of the parameters 

in the system. In broad, the covariance of X and Y can be 

decomposed into the sum of products of structural coefficients 

of all the variables with direct path to Y and the covariance of 

these variables with X. This is known as the first low of path 

analysis
8
. 

 

As an example, for above system of equations, the covariance of 

2X  and 
2Y  can be expressed as follows. 

. Since 

.Then  

 

The influence of one variable on other variable could be divided 

in to two parts such as direct effect and indirect effect. As an 

example, for the same system of equation, the direct effect of 

2X  on 
2Y  is

22γ . The indirect effect of X2 on 
2Y  is coming via 

1Y . It can be given by 
12 21γ β . Total effect is the sum of direct 

and indirect effects. 

 

Confirmatory Factor Analysis: Major reason of factor 

analysis is to explain the relationship between number of 

variables in terms of a small number of underlined, but 

unobserved random variables, called factors or latent variables
9
. 

Exploratory factor analysis (EFA) is one of the two widely use 

techniques, while the other one is Confirmatory Factor Analyses 

(CFA).  

 

There are some differences between two methods. EFA does not 

have any detailed initial model, that is, observed or latent 

variables are not specified initially and each of the latent 

variables related to the all observed variables.  Whereas a 

detailed and identified initial model is required for CFA; here 

we discuss about the elements of CFA. Path diagram is an 

important step in model formulation. Similar notations are valid 

in this case as we discussed earlier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure-2 

Path Diagram for a CFA Model 

Source
4
: Structural Equations with Latent Variables p. 227. 

1δ
2δ 3δ 4δ 5δ

6δ
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The figure-2 is the path diagram for a CFA model which 

contains six observed variables and two latent variables. 1ξ is 

the unobserved latent variable which is represented by observed 

X1, X2 and X3. And 2ξ is the latent variable for X4, X5 and X6. 

In addition, iδ are measurement errors of exogenous variables. 

In CFA we assume that exogenous variables are measured with 

an error which is distributed normally with zero mean. Unlike 

the path analysis model, in CFA we are dealing with two kinds 

of variability
8
. First is the variability associated with latent 

variables and other one is associated with iδ . 

 

The measurement model specification: 

 

 

 

 

 

 
 

The matrix notation of the model is: 

 
Or, 

 
 

X is a (q X 1) matrix of observed variables. XΛ is the (q X s) 

matrix of model parameters. And also assume that ξ is normally 

distributed vector with zero mean and covariance matrix given 

by . And is the 4 X 4 covariance matrix ofδ . 

Parameter estimation methods and testing the goodness of the 

model is similar which we discussed in Estimation and 

Evaluation of Fit. 

 

Results and Discussion 

An Application for the Confirmatory Factor 

Analysis(Monitoring the Future Study):The data set 

comprises of the factors that determine the use of alcohol and 

marijuana, collected from 1608 students of high school during 

2001. The data was taken from Monitoring. The Future (MTF) 

study, carried out by Institute for Social Research at the 

University of Michigan. The survey has done with 8
th

- and 10
th

- 

grade students using four questionnaires which each have score 

questions about demographics and drug use. Consider the 

following as observed variables:  

 

ALCLIFS(X1): Mention the numbers occasions have you had 

alcoholic beverages to drink in your lifetime? 

ALC12MOS(X2): Mention the numbers occasions have you had 

alcoholic beverages to drink in the past 12 months? 

 

ALC30DS(X3): Mention the numbers occasions have you had 

alcoholic beverages to drink in the past 30 days? 

XMJLIFS(X4): Mention the numbers occasions have you used 

marijuana in your lifetime? 

XMJ12MOS(X5): Mention the numbers occasions have you 

used marijuana in the past 12 months? 

XMJ30DS(X6): Mention the numbers occasions have you used 

marijuana in the past 30 days? 

TICK12MO(X7): Within the last 12 months, how many times 

have you received a ticket (or been stopped and warned) for 

moving violations? 

ACCI12MO(X8): Within the last 12 months, how many times 

you were involved in an accident while driving? 

Three latent variables are used as alcohol usage (AlcUse ), 

marijuana usage (MarjUse ) and social characteristics 

(Social ) of the student. Measurement model for the study can 

be formulated as below. 

Model 1: 

   

  

 

 
 

In the matrix notation; 

 
 

In the system, each equation gives a linear relationship between 

observed variables and unobserved (latent) variables with 

estimable random error term. Structural coefficients, which 

are quantifying the structural relationship, have to be estimated. 

Moreover, latent variables are assumed to be associated each 

other and independent error terms also assumed. LISREL 8.80 

has used as a statistical software for the analysis. 

 

In the analysis of model 1, we found another important and 

common scenario in SEM, which is the estimated error 

variances, became negative!!! This is known as “Heywood 

Cases” which implies the misspecification of the model 

(improper solutions).  

 

Due to the above drawback of the first model, a reduced model 

is analysed for the illustration purpose for the same data set. 

 

Model 2: 
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System considers the all assumptions and definitions made for 

model 1. 
 

Path diagram with estimated loadings is given below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-3 

Path Diagram for Model 2 

 

GFI and AGFI are used to examine the fit of the model. Both 

indexes give values close to 1 (0.9824 and 0.9382, respectively) 

which implies the better fit of the data. Most of the exogenous 

variables obtained a considerably large squared multiple 

correlation coefficients (60% as an average) which imply the 

reliability of each variable in the system (Table-A, Appendix). 

The variable XMJLIFS(X4) has perfect reliability (R
2
 = 0.97). 

Variables ALCLIFS(X1), ALC30DS(X3) and XMJ30DS(X6) 

have moderate and acceptable reliabilities (R
2
 is 0.78, 0.59 and 

0.47 respectively)
7
. Table-1 Presents the parameter estimators 

for factor loadings and their standard errors.  

 

Table-1 

Un-standardized Factor Loading Estimations 

Variable 
Factor 

Loading 

Estima

te 

Std. 

Error 

T 

Value 

ALCLIFS(X1) 11λ  1.99 0.05 39.44 

ALC30DS (X3) 31λ  1.06 0.037 28.46 

XMJLIFS(X4) 42λ  2.23 0.045 50.03 

XMJ30DS(X6) 62λ  0.94 0.072 12.99 

TICK12MO(X7) 73λ  0.63 0.051 12.41 

ACCI12MO(X8) 83λ  0.33 0.028 11.74 

 

Table-2 

Squared Multiple Correlation Coefficients 

Variables Error Variance R
2
 

ALCLIFS(X1) 1.11 0.78 

ALC30DS(X3) 0.76 0.59 

XMJLIFS(X4) 0.15 0.97 

XMJ30DS(X6) 1.01 0.47 

TICK12MO(X7) 0.48 0.45 

ACCI12MO(X8) 0.35 0.24 

 

Table-3 

Standardized Estimates for Factor Loadings 

Variables Factor Loading Estimate 

ALCLIFS(X1) 11λ  0.8811 

ALC30DS(X3) 31λ  0.7728 

XMJLIFS(X4) 42λ  0.9842 

XMJ30DS(X6) 62λ  0.6833 

TICK12MO(X7) 73λ  0.6767 

ACCI12MO(X8) 83λ  0.4878 

 

Table-4 

Correlation Matrix of Latent Variables 

 AlcUse MarjUse Social 

AlcUse 1 - - 

MarjUse 0.65 1 - 

Social 0.45 0.33 1 

 

Table-5 

Correlation Matrix of Observed Variables 

 

ALC

LIFS 

(X1) 

ALC3

0DS 

(X3) 

XMJ

LIFS 

(X4) 

XMJ3

0DS 

(X6) 

TICK1

2MO 

(X7) 

ACC

I12

MO 

(X8) 

ALCLIFS

(X1) 
5.06 - - - - - 

ALC30DS

(X3) 
2.10 1.88 - - - - 

XMJLIFS

(X4) 
2.92 1.46 5.11 - - - 

XMJ30DS

(X6) 
1.12 0.75 2.09 1.89 - - 

TICK12M

O(X7) 
0.51 0.39 0.44 0.20 0.88 - 

ACCI12M

O(X8) 
0.27 0.18 0.26 0.12 0.21 0.46 

 

Table-1 shows that all un-standardized estimates for factor 

loadings are significant at 5% level. Standardized structural 

coefficients, which are presented in the table-3 in appendix, are 

used to assess the relative importance of observed variables on 

the latent variables they related
7
. The variable XMJLIFS(X4) is 
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the most reliable and strongest indicator for the latent variable 

“Marijuana Usage”. As an average all observed variables seems 

to be considerably reliable indicators for their related latent 

variables except variable ACCI12MO for the latent variable 

“Social Behaviours”. The table-4 in the appendix shows the 

considerable correlations between latent variables. 

 

As a whole, considered three factors are seems to be significant 

to represent the information which contained by 6 observed 

variables and can be used in further analyses, but considering 

seriously the amount of information loss. 

 

Conclusion 

The nature of the causality considering three conditions 

isolation, association and direction of the causality
4
.In order to 

establish the causal relation between two variables let say 
1x  

and 
1y , we assume that the disturbance or latent error is 

unrelated with the explanatory factor, this is known as pseudo-

isolation; another requirement is the association between the 

two observed variables (
1x  and 

1y ), and finally we require 

establish the direction of the causality for the three factors, 
1x  

and 
1y  and the latent variables, which variable is the cause and 

which is the affected. When we propose a SEM we are taking 

into account these conditions; and we can check if our model 

really “fit” the data, but this is not enough as stated: 

 

“If a model is consistent with reality then the data should be 

consistent with the model.  But if the data are consistent with a 

model, this does not imply that the model corresponds to 

reality”
4
. 

 

The models are an approximation to the reality, and there is not 

“formal” statistical test to check the three requirements of the 

causal model are well described in the model. 

 

Structural Equation Models is a broad topic with applications in 

different fields; some special cases are random effects models 

and factor analysis. Many extensions of the general model have 

been proposed however, still there is a big research area 

especially in multilevel models when non-contiguous responses 

are considered. 
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