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We look at solutions [both Bogomol’nyi-Prasad-Sommerfield (BPS) and non-BPS] of the CPN−1 model
on R × S1 (with twisted boundary conditions), in particular by using a conformal mapping technique, and
we show how to interpret these solutions by decomposing them into expressions describing constituent
solitons. We point out the problems that may arise (for non-BPS solutions) when one naively looks at the
clustering properties of these solutions. This could lead to misunderstandings when studying extrapolations
between small and large compactification radii.
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I. INTRODUCTION

TheCPN−1 nonlinear sigmamodel on the Euclidean plane
R2 has holomorphic and antiholomorphic solutions which
saturate the Bogomol’nyi-Prasad-Sommerfield (BPS) bound
and minimize the action in any given topological sector [1].
WhenN > 2 there are also additional solutions,which are not
BPS and which are only unstable saddle points of the action.
These solutions have been extensively studied in the past on
the R2 and S2 backgrounds [2–5]. There exists a solution
generating techniquewhich allowsone to construct thesenon-
BPS solutions from the holomorphic (or antiholomorphic)
ones by acting on them, several times, with certain operators
P�. A number of theorems have been rigorously established,
in particular the proof that this procedure is complete, in
the sense that all such solutions can be obtained by the
repeated action of one of these operators on the holomorphic
(or antiholomorphic) solutions.
Some recent papers have revitalized the interest in non-

BPS solutions of sigma models defined on Euclidean space
and, in particular, also on the cylinder R × S1 [6–8].
Compactification deforms the original quantum field theory
(QFT) by introducing an infrared cutoff, thus bringing the
theory to a region in which it becomes tractable as a
semiclassical quantum mechanical system. The main goal
of these approaches is to try to provide a rigorous math-
ematical definition of the QFT by invoking the principle of
continuous connection between small and large compacti-
fication radii [9–11]. Establishing this continuous connec-
tion is probablyoneof themaindifficult points that have tobe
clarified to achieve the success of this program.
Holomorphic solutions of the CPN−1 sigma model on

R × S1 have been studied in [12–14] and they have many
properties in common with instantons on R3 × S1. In the
CPN−1 the boundary conditions are parametrized by N real
angles θI . The “strictly” periodic boundary conditions
correspond to the case when all the angles are equal.

When the angles are maximally separated, i.e. θI ¼ 2πI=
N, we say that we have the so-called “twisted” boundary
conditions. Continuity between small and large compacti-
fication radii works very well in the holomorphic sector. As
the size of the compactifieddirection is varied,while keeping
the soliton size fixed, the action and the number of zero
modes around a given solution remain constant. However,
the properties of the solutions do change. For example, for a
generic choice of the angles θI , a soliton (topological charge
one) may split into “partons” which carry a fraction of the
topological charge.
For the twisted boundary conditions a one-soliton splits

into N partons which carry 1=Nth of the topological charge
and are related by a residual ZN symmetry. This is a crucial
effect which allows us to relate the strong-coupling effects
of the original QFT defined on the plane to this modified
theory in a weak-coupling regime and thus to investigate
their properties in a semiclassical expansion.
The main goal of this paper is to extend these studies to a

nonholomorphic case, i.e. to study in detail the nonholo-
morphic solutions onR × S1, placing particular emphasis on
trying to understand how in this case they interpolate
between small and large compactification radii. In Sec. II
we rephrase some known results about the compactified
CPN−1 sigma model by using a conformal mapping tech-
nique and mapping from R × S1 to R2. This approach will
allow us to establish some new results on the properties of
nonholomorphic solutions. In Sec. III we recall some facts
about the operators P� which will be very useful in order to
study the properties of the nonholomorphic solutions on
R × S1. Section IV discusses the behavior of such non-
holomorphic solutions in the embedding and clustering
limits and shows that, in many aspects, this behavior is
different from the behavior of the holomorphic solutions.

II. CPN−1 SIGMA MODEL ON A PLANE
AND ON A CYLINDER

The complex projective space CPN−1 model can be
parametrized by a vector with N complex components
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n ¼ ðn1;…; nNÞ of unit norm n†n ¼ 1 supplemented by
gauging away the overall Uð1Þ phase n≡ eiαn. The action
of such a sigma model on the Euclidean plane ðx1; x2Þ is

S ¼
Z

d2xDμn†Dμn; (2.1)

where the covariant derivative is Dμ ¼ ∂μ − iAμ and the
gauge field is a composite of the field n itself and is given
by Aμ ¼ −in†∂μn. The Euler-Lagrange equations for the
field n are given by

DμDμn − ðn†DμDμnÞn ¼ 0 (2.2)

together with the constraint n†n ¼ 1. The action is clas-
sically conformally invariant, so any conformal transfor-
mation maps solutions of the Euler-Lagrange equations
into other solutions. We will use this property very
frequently in this paper.
A cylinder can be obtained from a plane by imposing on

it periodicity in one direction, say x1 ¼ x1 þ L and we can
set L ¼ 1 by conformal rescaling. The CPN−1 field can be
taken to be “almost” periodic, that is, periodic up to a
unitary matrix transformation Ω ∈ UðNÞ:

nðx1 þ 1; x2Þ ¼ Ωnðx1; x2Þ: (2.3)

We can diagonalize Ω and recast it into a canonical form

Ω ¼ diagð1; eiθ1 ;…; eiθN−1Þ (2.4)

with θ1 ≤ � � � ≤ θN−1. There are, in general, N fixed
points of this transformation in CPN−1 which
are n ∝ ð0;…; 1;…; 0Þ.
Note that, being the classical theory scale invariant,

solutions depend only on the ratios of physical length
scales, for example the ratio of the instanton size λ and of
the compactification period L. The two limits, of small and
large compactification periods, which are properly defined
by changing L while keeping the instanton scale λ fixed,
can be equivalently studied by keeping the length of the
period fixed while changing λ. Hence in this paper we
frequently refer to the limit λ → 0 with L ¼ 1 as the
decompactification limit.
Next we parametrize the CPN−1 space by using a

vector w with N − 1 complex components wj where j ¼
1;…; N − 1 defined by

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jwj2

p �
1

wj

�
: (2.5)

Strictly speaking, in this formulation, we need more
patches in order to cover entirely the CPN−1 space. This
can be done by using also uj ¼ 1

wj
. The metric in the wj

coordinates is the Fubini-Study one

gīj ¼ ∂ ī∂j log ð1þ jwj2Þ; (2.6)

where jwj2 ¼PN−1
j¼1 jwjj2. By defining, for simplicity,

w̄ · v ¼ gījw̄īvj, the action of the sigma model can be
rewritten as

S ¼
Z

d2x ð∂μw̄ · ∂μwÞ: (2.7)

It is convenient to introduce complex coordinates to
parametrize the plane z ¼ x1 þ ix2, z̄ ¼ x1 − ix2 and intro-
duce corresponding complex derivatives ∂ ¼ ð∂x1 − i∂x2Þ=ffiffiffi
2

p
, ∂̄ ¼ ð∂x1 þ i∂x2Þ=

ffiffiffi
2

p
. Then the action becomes

S ¼
Z

d2z ð∂̄w · ∂w̄þ ∂w · ∂̄ w̄Þ: (2.8)

Note that (2.8) is already in a Bogomol’nyi form. For
example, for holomorphic solutions ∂̄w ¼ ∂w̄ ¼ 0 and so
the first term vanishes while the second term, by using (2.6),
becomes a total derivative ∂w · ∂̄ w̄ ¼ ∂∂̄ log ð1þ jwj2Þ.
The action can then be calculated by using the divergence
theorem in two dimensions and is given byS ¼ 2πk, where k
is the maximal degree of the rational functionswi (assuming
no overall factors).
In a toric formulation the CPN−1 space corresponds to a

N − 1 dimensional real torus fibered over a N − 1 real
dimensional simplex. An example for CP2 is presented in
Fig. 1. The torus shrinks to a circle on the edges of the
simplex and shrinks to a point on the vertices, which can be
chosen to be the fixed points of Ω.
Next we consider the case of the CP1 sigma model

on the cylinder [12]. The boundary conditions (2.4) are
parametrized by one phase θ and BPS solutions are
given by a single holomorphic function wðzÞ with
periodicity wðzþ 1Þ ¼ eiθwðzÞ. Linearity of the holo-
morphic solutions allows us to construct the generic
one-instanton solution by summing 1=ðz −mÞ poles placed
on a one-dimensional lattice:

FIG. 1. Toric diagram for CP2.

S. BOLOGNESI AND W. ZAKRZEWSKI PHYSICAL REVIEW D 89, 065013 (2014)

065013-2



w ¼
X∞

m¼−∞

λeimθ

z −m
: (2.9)

This sum is formally divergent but it can be regularized,
for example by computing its derivative first, which is
convergent

dw
dz

¼ −
X∞

m¼−∞

λeimθ

ðz −mÞ2 ; (2.10)

and then fixing the integration constant by requiring the
symmetry wðz̄Þ ¼ w̄ðzÞwhich is the one respected by every
single term in (2.9). For periodic and twisted boundary
conditions this sum gives, respectively,

w ¼ λπ

tan ðπzÞ for θ ¼ 0; periodic; (2.11)

w ¼ λπ

sin ðπzÞ for θ ¼ π; twisted: (2.12)

Note that for generic θ the value of CP1 at x2 ¼ ℑðzÞ →
�∞ is not the one of the single instanton poles 1=ðz −mÞ,
which would give n ∝ ð1; 0Þ. This happens only for the
special case of θ ¼ π for which we have a maximal
cancellation due to the alternating phases of the poles.
Let us now study in detail the twisted solution in (2.12)

and add a generic real parameter awhich corresponds to the
position in the x2 coordinate

w ¼ λπ

sin ðπðz − iaÞÞ : (2.13)

We can isolate a parton inside the instanton by sending λ to
infinity while keeping b1 defined by

b1 ¼ aþ log ð2πλÞ
π

(2.14)

fixed. This limit gives us

w → −ieiπðz−ib1Þ for λ → ∞; b1 ¼ fixed: (2.15)

This limiting field corresponds to a kink in the x2
direction, which interpolates between the fixed points of
Ω, n ∝ ð1; 0Þ at x2 → þ∞ and n ∝ ð0; 1Þ at x2 → −∞. In
the x1 direction it is just rotating with a phase eiπx1 so it
maps the fundamental period of the cylinder into half of the
CP1 sphere and thus it represents a parton of topological
charge 1=2. Note that, in general, this solution is para-
metrized only by two moduli: the position of the kink b1
and a global phase which can also be added.
Note that we can also isolate the other parton if we define

its position as

b2 ¼ a −
log ð2πλÞ

π
(2.16)

and then we send λ to infinity but this time keeping b2
fixed:

w → þie−iπðz−ib2Þ for λ → ∞; b2 ¼ fixed: (2.17)

The charge of this kink is the opposite of the previous
one since it interpolates between n ∝ ð0; 1Þ at x2 → −∞
and n ∝ ð1; 0Þ at x2 → þ∞. The phase rotation in the x1
direction is also opposite e−iπx1 and thus the topological
charge is the same as before. So as log λ ≫ 1, the soliton
(2.13) splits into two partons, each carrying half of the
topological charge, and located at the positions (2.14) and
(2.16) [i.e. with the distance 2 log ð2πλÞ=π between them].
The solution becomes almost translationally invariant in the
x1 coordinate, as we can always perform a phase rotation
on it.
We now show that there is another quick route to arrive at

the same result. We take the conformal mapping

xþ ¼ e−i2πz=h; h ∈ Z; (2.18)

which maps the cylinder with identification z≃ zþ h onto
the plane xþ. For the strictly periodic boundary conditions,
i.e. for θi ¼ 0, we can choose h ¼ 1 since the function is
already periodic on the fundamental period of the cylinder.
For generic boundary conditions, h must be taken to be the
smallest integer for which the matrix Ω satisfies

Ωh ¼ 1N;N: (2.19)

Note that this is possible only if θi are rational multiples of
π. With this trick we can map the problem onto the plane xþ
by imposing strict periodicity in argðxþÞ. For example for
the twisted boundary in the CP1 case we have to choose
h ¼ 2 so that the cylinder contains two of the fundamental
periods. For CP2 with twisted boundary conditions we
have to choose h ¼ 3; the corresponding map for this
example is shown in Fig. 2.
Next we rederive the previous results for the twisted

boundary conditions in the CP1 case from the xþ plane
perspective. The one-instanton solution (2.12) in the xþ
plane corresponds to two solitons located at �eπa; i.e. w is
given by

w ¼ −2πλeπa
�

1

xþ þ eπa
þ 1

xþ − eπa

�
: (2.20)

In general, all solutions in the xþ plane have the following
Z2 symmetry:

wð−xþÞ ¼ −wðxþÞ: (2.21)

Note that in the w plane we have a branch cut for the
inverse function of (2.20). This cut goes from w ¼ −2iπλ to
w ¼ 2iπλ. This cut is crossed each time we move by one
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fundamental period of the cylinder. The widening of the cut
as λ → ∞ is another manifestation of the fractionalization.
This can be derived from a solution on the cylinder with

twisted boundary conditions and vice versa. It is also
possible to have a single instanton with the Z2 symmetry in
the xþ plane, but only if we fix its position to be at the
origin. In particular, the following one-soliton solutions in
xþ are allowed:

w ¼ eπb1

xþ
; w ¼ −eπb2xþ: (2.22)

They correspond, respectively, to the two partons (2.15)
and (2.17). So the partons on the z cylinder correspond
to one-solitons in the xþ plane and fractionalization is
just a consequence of the choice h ¼ 2 for the conformal
mapping (2.18).
We can use this technique to describe partons in CP2.

The twisted boundary conditions correspond to

Ω ¼ diagð1;ω;ω2Þ (2.23)

with ω ¼ ei2π=3. So to go further we have to choose a
conformal transformation (2.18) with h ¼ 3 in order to
have strict periodicity in argðxþÞ. Thus we have to restrict
our attentions to solutions which have the following Z3

symmetry:

�
w1ðωxþÞ
w2ðωxþÞ

�
¼
�

ωw1ðxþÞ
ω2w2ðxþÞ

�
: (2.24)

Thus one-soliton solutions in the xþ plane with this Z3

symmetry are given by

�
w1

w2

�
¼
�
ζ=xþ
0

�
;

�
w1

w2

�
¼
�

0

ζxþ

�
; (2.25)

which are the direct generalizations of (2.22) and ζ is an
arbitrary complex number. Each of these solutions in the z
cylinder case corresponds to a parton with fractional charge
1=3, and again this follows directly from the choice h ¼ 3
we have made earlier. The first parton is described by a kink
that interpolates from n ∝ ð1; 0; 0Þ to n ∝ ð0; 1; 0Þ and the
second one interpolates from n ∝ ð0; 1; 0Þ to n ∝ ð1; 0; 0Þ.

We also have another possibility, which cannot be seen in
the w patch and which corresponds to n being of the form

n ∝

0
B@

0

1=xþ
ζxþ

1
CA: (2.26)

This expressions corresponds to a third parton which
interpolates from n ∝ ð0; 1; 0Þ to n ∝ ð0; 0; 1Þ. All these
three partons together cover the perimeter of the toric
diagram in Fig. 1.
We have thus seen that the conformal map (2.18) is a

convenient tool to analyze solutions on R × S1. In particu-
lar, it maps the infinite chain of solitons to a finite number
of them related by some form of theZh symmetry. Also, the
fractionalization has a simple interpretation here. There is
no actual fractionalization in the xþ plane, but there can be
in the z cylinder case due to the map (2.18) when h is
greater than one.
So far we have just rederived some known results

[12–14], but for the nonholomorphic solutions this map
will be particularly useful to perform the required compu-
tations and to derive new results.

III. NONHOLOMORPHIC SOLUTIONS
AND THEIR GENERATORS

Given a generic N vector fI its corresponding state in
CPN−1 in the n formulation is

nI ¼
fI
jfj : (3.1)

Note that this choice corresponds to (2.5) in which fI was
obtained from w by multiplying it by all denominators of
the components of w (and then dropping all common
factors).
The Pþ operator is defined to act on f as follows:

ðPþfÞI ¼ ∂þfI −
f†J∂þfJ
jfj2 fI: (3.2)

Thus the Pþ operator retains only the part of ∂þfI which is
orthogonal to fI . Its related vector Pþn is given by

ðPþnÞI ¼
ðPþfÞI
jPþfj

: (3.3)

It is easy to see that Pþn only changes by an irrelevant
overall phase if the vector f is multiplied by an arbitrary
function. As is well known [2] the Pþ operator maps a
solution of the CPN−1 sigma model into another solution;
that is, if n solves the Euler-Lagrange equations (2.2), then
so does Pþn [2].
It is convenient to introduce a wedge product

formulation. We define f∧∂þf to be

z x+

FIG. 2. Conformal map for CP2 with twisted boundary
conditions.
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ðf∧∂þfÞIJ ¼ fI∂þfJ − fJ∂þfI (3.4)

and similarity for ðf∧∂þf∧∂2þfÞIJK. In this formulation
the Pþ operator (3.2) is given by

ðPþfÞI ¼
f†Jðf∧∂þfÞIJ

jfj2 (3.5)

and its repeated action

ðP2þfÞI ¼
ðf∧∂þfÞ†JKðf∧∂þf∧∂2þfÞIJK

jf∧∂þfj2
: (3.6)

In the CP2 case the wedge products simplify considerably.
We can introduce a vector B and a function A defined as
follows:

ðf∧∂þfÞIJ ¼
1

2
ϵIJKBK;

ðf∧∂þf∧∂2þfÞIJK ¼ ϵIJKA: (3.7)

With these definitions we find that, up to overall factors,
which cancel in n,

ðPþfÞI ∝ −
ϵIJKf

†
JBK

jfj2 ;

ðP2þfÞI ∝ −
B†
IA

j∂þfj2
: (3.8)

The expressions for the actions of the corresponding
solutions are given by

S½n� ¼ R1; S½Pþn� ¼ R1 þ R2; (3.9)

where

R1 ¼
jPþfj2
jfj2 and R2 ¼

jP2þfj2
jPþfj2

: (3.10)

All this is true also in a general CPN−1 model. For CP2 we
also have S½P2þn� ¼ R2 and so

S½Pþn� ¼ S½n� þ S½P2þn�: (3.11)

Moreover for the CP2 case the expressions for R1;2
simplify further:

R1 ¼
jBj2
jfj4 and R2 ¼

jAj2jfj2
jBj4 : (3.12)

As is well known, for CP1 there are only holomorphic

and antiholomorphic solutions. If f ¼
�
1

w

�
with w

holomorphic, then

Pþf ∝
�−w̄

1

�
; (3.13)

and so the action of Pþ on k solitons creates k antisolitons
and a further action of Pþ on the antisolitons produces
vacuum. We can characterize a generic solution by a pair of
integers ða; bÞ, where a is the number of solitons and b the
number of antisolitons. In this terminology, the chain of the
operations of the Pþ operator gives

ðk; 0Þ→Pþ ð0; kÞ→Pþ ð0; 0Þ: (3.14)

For CP2 there are in addition also non-BPS solutions. A
one-soliton solution can always be treated as lying in a CP1

space embedded into CP2. So the action of the Pþ operator
on such a field configuration does not produce any non-
trivial non-BPS solutions. To obtain non-BPS solutions the
initial configuration has to contain at least two solitons.
Consider a CP2 holomorphic solution describing k

solitons which in the w patch is given by

�
w1

w2

�
¼
Xk
α¼1

 ζα
xþ−ξα
ϱα

xþ−ξα

!
: (3.15)

The complex numbers ζα, ϱα, ξα parametrize a moduli
space of dimension 6k. This is the most generic k-soliton
solution with n ¼ ð1; 0; 0Þ fixed at infinity. To compute the
polynomial vector f we first find the corresponding n as
defined in (2.5) and then bring all terms to a common
denominator so that the final vector takes the form

f ¼

0
B@

Q
k
α¼1ðxþ − ξαÞP

k
α¼1 ζα

Q
k
β≠αðxþ − ξβÞP

k
α¼1 ϱα

Q
k
β≠αðxþ − ξβÞ

1
CA: (3.16)

The first component of f has degree kwhile the others have
at most degree k − 1. We know from (3.8) that P2þf ∝ B†

with B given in (3.7), so P2þf contains only antisolitons and
their maximal number is 2k − 2. The chain of actions of the
Pþ operator for CP2 is thus in general

ðk; 0Þ→Pþð2k − 2; kÞ→Pþð0; 2k − 2Þ: (3.17)

Note that 2k − 2 is an upper bound on the possible
number of anti-instantons in the P2þf solution, but for some
configurations the number of antisolitons that are generated
can be smaller. The simplest example is the case in which
all the k solitons can be embedded into a CP1 ⊂ CP2 for
which (3.14) must be true. The moduli space of k solitons
in CP2 has dimension 6k while the moduli space of k
solitons embedded in a generic CP1 has dimension 4kþ 2
(the extra 2 comes from the different embeddings).
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Moreover, there are other submanifolds where b, the
dimension of this subspace, satisfies 0 < b < 2k − 2.
For example, if we impose the conditionsX

α

ζα ¼ 0 and
X
α

ϱα ¼ 0; (3.18)

then we have at most 2k − 3 solitons. To have at most
2k − 4 solitons we have to impose alsoX

α≠β
ζαξβ ¼ 0 and

X
α≠β

ϱαξβ ¼ 0 (3.19)

andsoonup toaminimumofk − 1. Sowehave a sequenceof
nested manifolds of dimension 6k − 4d which have at most
2k − 2 − d antisolitons in P2þf with d ¼ 0; 1;…; kþ 1.
Note that the manifold of dimension 4kþ 2 of solutions
embeddable in CP1 is not completely contained in the
previous ones, as it is clear, for example, by considering
the dimensionality of the smallest manifold whose dimen-
sion is 2k − 4. The reason for this is that reducing the degree
of polynomials in f is not the only way to reduce the number
of instantons. This can be achieved also by arranging for all
f1;2;3 to have a common factor. Such conditions are easy to
discuss in each concrete case butmuch harder to describe for
a general configuration.

IV. EXAMPLES: EMBEDDING, CLUSTERING
AND DECOMPACTIFICATION LIMITS

The conformal mapping (2.18) maps solutions of the
Euler-Lagrange equations into other solutions, and this is
true not only for the holomorphic or antiholomorphic
solutions but also for the non-BPS ones. So all the solutions
on the cylinder are mapped into the subset of solutions in
the xþ plane which satisfy a certain Zh constraint. The
theorems proved in [2–4] which assumed the finiteness
of the total action can then be applied too and we also know
that the P� operators generate all solutions.
To see how this works let us first take two solitons in the

xþ plane of size λ located at positions �1. In the w
formulation they are given by

 
w1

w2

!
¼
 cλ

xþ−1

sλ
xþ−1

!
þ
 cλ

xþþ1

−sλ
xþþ1

!
; (4.1)

where we have abbreviated s ¼ sinðαÞ, c ¼ cosðαÞ. Each
soliton is separately embedded in a CP1 ⊂ CP2, but the
configuration is not the most general two-soliton solution
of CP2. The angle α parametrizes the different orientations
of these embeddings. In particular, the whole solution can
be embedded in a unique CP1 only for the special cases
α ¼ 0, π=2. These solutions describe a Z2 symmetric
configuration corresponding to the boundary condition

Ω ¼ diagð1;−1; 1Þ; (4.2)

which can be obtained via the conformal mapping (2.18)
with h ¼ 2. This case is simpler than the one with the
twisted boundary conditions and realizes all the phenomena
that are of interest to us. The vector f, with polynomial
components, corresponding to (4.1) is

f ¼

0
B@

x2þ − 1

2cλxþ
2sλ

1
CA: (4.3)

Computing B and A, defined in (3.7), we get

B ¼

0
B@

−4scλ2

4sλxþ
−2cλðx2þ þ 1Þ

1
CA and A ¼ 4cλðx2þ − 1Þ: (4.4)

The two antisolitons, at the end of the chain (3.17), by using
(3.8), are given by

P2þf ∝

0
B@

2sλ

−2sx−=c
x2− þ 1

1
CA ¼

0
B@ 2~s ~λ

2~c ~λ x−
x2− þ 1

1
CA: (4.5)

The last equality in (4.5) involves rewriting the previous
expression in a form similar to (4.3) but in a different w
patch and with a different angle ~α and of different size ~λ.
We again abbreviated ~s ¼ sinð ~αÞ and ~c ¼ cosð ~αÞ. The
relation between the new angle and size and the old ones
is given by

~α ¼ − arctan ðλcÞ; ~λ ¼ −t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2λ2

p
: (4.6)

So the two antisolitons, at the end of the chain, are always
located at fixed positions �i and have their relative
orientation and size determined by ~α, ~λ.
The first interesting limit to explore is when the relative

orientation of the two solitons goes to zero. This limit
corresponds to the case (3.14) in which the whole hol-
omorphic solution can be embedded into a unique CP1 and
thus no antisolitons are created. We know that this is the
case when α is strictly zero but we want to see how, when
the limit is taken, the two solitons disappear. Taking the
limit corresponds to letting

α → 0

λ fixed
⇒

~α → − arctanðλÞ
~λ → 0:

(4.7)

Note that as ~λ → 0 the two solitons, while remaining at
fixed positions �i, become singular (and disappear as
“delta” functions). So the limit is not continuous from the
point of view of the action
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4π ¼ lim
α→0

S½P2þnðα; λÞ� ≠ S½P2þnð0; λÞ� ¼ 0: (4.8)

The other embedding limit corresponds to α → π=2. This
time, the two antisolitons disappear by becoming infinitely
wide:

α → π=2
λ fixed

⇒
~α → 0
~λ → ∞:

(4.9)

Another interesting limit is that of the clustering, which
corresponds to sending the distance between the two
solitons to infinity while keeping their sizes and their
relative angle fixed. By conformal invariance the clustering
limit is equivalent to the limit λ → 0 while keeping the
distance fixed, and thus we can use the solutions of
the form (4.1). This limit, on the antisolitons P2þf, has
the following effect:

α fixed
λ → 0

⇒
~α → 0
~λ → −t; (4.10)

where t is some number. Note that the antisolitons remain
of the fixed size in this limit. Note also that this obser-
vation demonstrates that the action of the operator Pþ
is highly nonlocal and, in particular, the states it produces
may not obey the clustering property. The two original
solitons, after computing Pþ, have an effect on each other
which does not decrease or disappear as their distance is sent
to infinity.
The above mentioned analysis has been done on the final

step of the chain, that is, on P2þf. The intermediate step
Pþf is, in general, a mixture of the two initial and the two
final solitons. So we expect the two limits (4.7) and (4.10)
to produce the same result. Some examples of S½Pþn� are
given in Fig. 3 for different values of α and λ. The tools
described in Sec. III allow us to confirm this also
analytically. Computing R1 and R2 defined in (3.12) for
the solution (4.3) gives us

R1 ¼
4λ2ð4s2c2λ2 þ 4s2jxþj2 þ c2jx2þ þ 1j2Þ
ð4s2λ2 þ 4c2λ2jxþj2 þ jx2þ − 1j2Þ2 ;

R2 ¼
4c2s2λ4ðjx2þ − 1j2 þ 4c2λ2jxþj2 þ s2λ2Þ
ð4s2c2λ4 þ 4s2λ2jxþj2 þ c2λ2jx2þ þ 1j2Þ2 : (4.11)

The action S½Pþn� is the sum of these two terms, and
thus a sum of the action of the initial solution R1 and of the
final one R2. For example, in the clustering limit λ → 0, we
have

R1 ∼
4λ2ð4s2jxþj2 þ c2jx2þ þ 1j2Þ

ð4s2λ2 þ 4c2λ2jxþj2 þ jx2þ − 1j2Þ2 ;

R2 →
4c2s2jx2þ − 1j2

ð4s2jxþj2 þ c2jx2þ þ 1j2Þ2 : (4.12)

The first term R1 corresponds to the original solitons
located at �1 shrinking to zero while the second term
describes the other two solitons located at�i which remain
of fixed size and which do not disappear.
Next we move to the twisted boundary conditions (2.23).

A one-soliton solution in the z cylinder corresponds in the
xþ plane to the following three-solitons with Z3 symmetry:

�
w1

w2

�
¼
 cλ

xþ−1

sλ
xþ−1

!
þ
 

ω2cλ
xþ−ω

ωsλ
xþ−ω

!
þ
 ωcλ

xþ−ω2

ω2sλ
xþ−ω2

!
; (4.13)

where α, as before, is an angle parametrizing the CP1 of
each soliton embedded into CP2. The polynomial vector f
and P2þf for this solution are given by

f ¼

0
B@

x3þ − 1

3cλxþ
3sλ

1
CA ⇒ P2þf ∝

0
B@

3λs

−3x2−t
1þ 2x3−

1
CA: (4.14)

To interpret this result we need to decompose P2þf into
its antisoliton components. For this we need to use a
different w patch in which

FIG. 3 (color online). Action density for Pþf with f given by the two-soliton example (4.3). Pþf is a mixture of two anti-
solitons located at xþ ¼ �1 and of two solitons located at xþ ¼ �i. The three plots correspond, respectively, to
ðα; λÞ ¼ ð0.4; 0.5Þ; ð0.01; 0.5Þ; ð0.4; 0.005Þ. The second plot corresponds to the α small case, thus very close to the embedding limit
(4.7). The third one corresponds to the λ small case thus very close to the clustering limit (4.10).

CLUSTERING AND DECOMPOSITION FOR NON-BPS … PHYSICAL REVIEW D 89, 065013 (2014)

065013-7



n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j ~wj2

p
0
B@

~w1

~w2

1

1
CA; (4.15)

as then P2þf can be decomposed into the following three
antisolitons:

 
~w1

~w2

!
¼
 ω2 ~c ~λ

x−−ρ

~s ~λ
x−−ρ

!
þ
 

~c ~λ
x−−ωρ

~s ~λ
x−−ωρ

!
þ
 ω~c ~λ

x−−ω2ρ

~s ~λ
x−−ω2ρ

!
; (4.16)

where ρ ¼ ω1=2=21=3, so that

P2þf ∝

0
B@

3~λ ~c =jρj
6x2− ~λ ~s

1þ 2x3−

1
CA: (4.17)

The positions of the antisolitons are fixed and the new angle
~α and size ~λ are given by

~α ¼ − arctan

�jρj2
λc

�
; ~λ ¼ t

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2c2

jρj4

s
; (4.18)

and we see that ~λ → 0 as α → 0 and ~λ → t=2 as λ → 0.
Note that the applications of the Pþ operator generates the
following chain:

ð3; 0Þ→Pþ ð3; 3Þ→Pþ ð0; 3Þ (4.19)

for which the soliton numbers are smaller than in (3.17)
since (4.13) satisfy the constraint (3.18). The intermediate
configuration Pþf is a mixture containing six solitons in
total. The embedding limit (α → 0 with λ fixed) and the
clustering limit (λ → 0 with α fixed) have the same features
as in the previous example; some examples are shown in
Fig. 4. When α → 0, π=2 the antisolitons disappear by
becoming very peaked or very spread out. In the clustering
limit λ → 0 the antisolitons remain of fixed size.

Dabrowski and Dunne in [6] considered some fraction-
alized non-BPS solutions on R × S1, and the simplest
example is given by Pþ acting on two partons with different
orientations inside CP2. In the xþ plan this corresponds to
the solution

�
w1

w2

�
¼
 ζ

xþ
ξ
x2þ

!
; (4.20)

which is the most general two-instanton solution which
satisfies the Z3 constraint (4.16) and has n ∝ ð1; 0; 0Þ at
infinity. For ζ ¼ 0 we have two coincident axial sym-
metric solitons embedded in the same CP1 and for ζ ≠ 0
they have different orientations. We can then use the
scale invariance to fix, for example, ξ ¼ 1 and this fixes
the center of mass of the two partons to be, in the
cylinder coordinates, at ℑðzÞ ¼ 0. The other parameter
ζ represents the distance, which is d ¼ 2 log jζj=π
for large jζj, and the relative phase between the two
partons. Following the same procedure as in the previous
examples, we find f and P2þf to be given by

f ¼

0
B@

x2þ
ζxþ
ξ

1
CA ⇒ P2þf ∝

0
B@

ξ�

−2ξ�x−=ζ�

x2−

1
CA; (4.21)

which thus tells us that at the end of the chain we have
two antisolitons. The Pþn is thus a (2,2) soliton solution
which in the z cylinder corresponds to four total partons.
The P2þf is very similar to f so it can be interpreted in
the same way but in a different patch and with

~ξ ¼ ξ�; ~ζ ¼ −
2ξ�

ζ�
: (4.22)

Note that as ζ → 0 we have ~ζ → ∞ so in the embedding
limit the two antisolitons disappear by going to infinite
distance in ℑðzÞ.

FIG. 4 (color online). Action density for Pþf for f given by the three-soliton example in (4.14). Pþf is a mixture of three anti-
solitons located at 1, ω, ω2 and three solitons located at ρ, ρω, ρω2. The three plots correspond, respectively, to
ðα; λÞ ¼ ð0.8; 0.5Þ; ð0.015; 0.5Þ; ð0.8; 0.01Þ. The second plot corresponds to the α small case; the third one to the λ small case.
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Finally we consider a four-soliton configuration. This
case will allow us to demonstrate an even more severe
pathology of the clustering decomposition. This time we
consider four solitons with the Z2 symmetry (4.2):

�
w1

w2

�
¼
 cλ

xþ−a

sλ
xþ−a

!
þ
 cλ

xþ−b

sλ
xþ−b

!
þ
 cλ

xþþa

−sλ
xþþa

!
þ
 cλ

xþþb

−sλ
xþþb

!
:

(4.23)

This configuration consists of two solitons located at a
and b and embedded in the same CP1 together with their
Z2 symmetric partners located at −a and −b. So all
together we have two clusters each composed of two
solitons which are separately embeddable into CP1. The
relative angle α, as before, parametrizes the relative
embedding of the two clusters. The polynomial vector f
is now

f ¼

0
B@

ðx2þ − a2Þðx2þ − b2Þ
2cλxþð2x2þ − a2 − b2Þ
2sλðaþ bÞðx2þ − abÞ

1
CA: (4.24)

To study the clustering limit we consider

a ¼ 1þ iϵ and b ¼ 1 − iϵ;

λ; ϵ → 0 keeping
λ

ϵ
; α ¼ fixed: (4.25)

This is equivalent to sending the two clusters to an infinite
distance from each other. In this limit two of the anti-
solitons remain at a fixed position and have a finite limiting
size as before (see first line of Fig. 5). To detect the other
four antisolitons we have to zoom into the individual
clusters (see second line of Fig. 5). In this case we follow
one cluster by zooming the lengths so that they do not
change as λ → 0. The other four antisolitons are

FIG. 5 (color online). The first line is the action density for Pþf of the Z2 symmetric configuration with four antisolitons plus six
solitons (4.23) for the values ðα; λÞ ¼ ð0.2; 0.25Þ; ð0.2; 0.025Þ and ϵ ¼ 1.6λ. The second line is obtained by zooming into the right-hand
cluster for the same values of ðα; λÞ.
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individually clustering with the four solitons and then
follow them to the same positions, but shrinking to zero
size (becoming δ functions).
The discontinuities we have found are intrinsic proper-

ties of the non-BPS solutions and not only of the Pþ
operator. To see this very clearly let us take a generalized
version of (4.23) given by

�
w1

w2

�
¼
 eiϕ cos ðαþβÞλ

xþ−a

e−iϕ sin ðαþβÞλ
xþ−a

!
þ
 eiϕ cos ðα−βÞλ

xþ−b

e−iϕ sin ðα−βÞλ
xþ−b

!

þ
 eiϕ cos ðαþβÞλ

xþþa

−e−iϕ sin ðαþβÞλ
xþþa

!
þ
 eiϕ cos ðα−βÞλ

xþþb

−e−iϕ sin ðα−βÞλ
xþþb

!
: (4.26)

The angles α and ϕ describes the relative orientation
between the two clusters inside CP2, while the angle β
describes the relative orientation between the two solitons
within each cluster. We want to consider the clustering limit
of Pþf by using (4.25) and keeping β fixed and, in general,
being different from 0, π=2. In this limit the two clusters
flow separately to two non-BPS solutions of 2þ 2 total
solitons each. By computing explicitly P2þf we can see that
there are now six antisolitons, in general, and that the
number of very thin ones (corresponding to δ functions)
can, at most, be reduced to five by the choice of the relative
orientation α ¼ π=2; thus this number can never drop to
four which would be required to have good clustering
properties.
Having studied the clustering properties for a number

of examples of non-BPS solutions, we can now turn our
attention to the same problem for the CPN−1 model on
R × S1 (with twisted boundary conditions) and study the
correspondence between the solutions at large and small
compactification radii in this model. We have already
said that, by conformal mapping, the planar limit
(or decompactification limit) of this model is equivalent
to what we called before the clustering limit in the xþ
plane. As the BPS solutions are continuously connected,
the dimension of their moduli space and of the action
remain the same during the change of the compactifica-
tion radius. A number of discontinuities, however, arise
for the non-BPS solutions. The first class of them is
exemplified by the clustering limit of the examples (4.1)
and (4.13). These solutions, when pulled back to the z
cylinder, do not flow to a localized solution in R2. There
is always a residual contribution on the opposite side of
the cylinder coordinates, even when its radius is sent to
infinity. This shows that the set of solutions on the
cylinder is slightly "larger" than the set of solutions in
the plane; there is no one-to-one correspondence between
the two formulations.
The example (4.26) demonstrates another kind of dis-

continuity. In this case, after the mapping to the z cylinder,

we have a local non-BPS solution which can never be
recovered smoothly from a non-BPS solution on the
cylinder. So not only there are more solutions on R × S1

than on R2, but also there are not, in general, continuous
mappings between them.

V. CONCLUSION

In this paper we have discussed and compared the
solutions of the CPN−1 nonlinear sigma model on the
plane and on the cylinder. We used a conformal mapping
technique to rederive some results concerning the holo-
morphic solutions on R × S1 with twisted boundary con-
ditions. We then discussed some aspects of the generators
of nonholomorphic solutions and showed some disconti-
nuities in these equations that arise in various limits. In
particular, the examples we studied in Sec. IV show some
pathological features of the clustering limit for non-BPS
solutions due to the nonlocality of the Pþ operator. Thus if
we take k solitons, divide them into two groups or clusters
k1 þ k2 ¼ k and send these two clusters to infinite dis-
tances while keeping fixed their internal structure, the naive
expectation would be that their mutual influence vanishes
in this limit. However, for the Pþ operator this is not true; in
other words, Pþ of the k solitons is not equal to Pþ of the
two individual clusters, even when we send these clusters to
infinite distances.
This also implies that the decompactification limit of

R × S1 for the non-BPS solitons is not in general continu-
ous for generic non-BPS solutions. So the set of solutions
of the CPN−1 sigma model on the plane R2 cannot be
continuously related to the set of solutions on the cylinder
R × S1. Any extrapolation of results from small to big radii
for the non-BPS solutions must carefully address these
issues.
Of course, since these discontinuities arise only in the

non-BPS sector, they would not affect the one-soliton
sector in any CPN−1 model, which is always BPS. So for
example it would not affect the results discussed in
[9–11] which concern the first contribution to the trans-
series due to one single parton. But to be able to use the
compactification method to compute the whole series, or
to even prove the existence of a well defined series, a
more detailed analysis of these discontinuities for non-
BPS solutions would be required. Note that here we are
using the concept of continuity in the strong sense with
the natural topology being provided by the action. Trying
to define convergence in a weaker sense, if properly
formulated, may help in further developments. This
problem is currently under active consideration.
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