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Abstract 

Improving the availability of wind turbines (WT) is critical to minimising the cost of wind energy, 

especially offshore. The development of reliable and cost-effective gearbox condition monitoring 

systems (CMS) is of concern to the wind industry, because gearbox downtime has a significant 

impact on WT availabilities. Timely detection and diagnosis of developing gear defects is essential to 

minimise unplanned downtime. One of the main limitations of most current CMSs is the time-

consuming and costly manual handling of large amounts of monitoring data, therefore automated 

algorithms would be welcome. This paper presents a fault detection algorithm for incorporation into 

a commercial CMS for automatic gear fault detection and diagnosis. Based on experimental evidence 

from the Durham condition monitoring test rig, a gear condition indicator was proposed to evaluate 

the gear damage during non-stationary load and speed operating conditions. The performance of 

the proposed technique was then successfully tested on signals from a full-size WT gearbox that had 

sustained gear damage, and had been studied in a National Renewable Energy Laboratory’s (NREL) 

programme. Results show that the proposed technique proves efficient and reliable for detecting 

gear damage. Once implemented into WT CMSs, this algorithm can automate data interpretation, 

reducing the quantity of information that WT operators must handle. 
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1. Introduction 

The European Wind Energy Association estimates that by 2020 230GW of wind capacity will be 

installed in Europe and 735GW will be installed by 2050 [1]. These targets cannot be met without 

large-scale offshore wind development in increasingly remote and hostile locations. In these 

environments installation is more difficult and expensive and access to the wind farms for 

maintenance is also limited. Due to the reduced site accessibility and the high cost of specialist 

personnel and equipment involved offshore operation and maintenance (O&M) costs can be 

quantified as three to five times higher than those on land [2]. O&M costs are estimated to account 

for up to 30% of the energy generation costs, with a considerable part, around 70%, caused by 

unexpected failures [3]. These high figures make the energy produced less competitive compared to 

conventional sources and emphasize the need for optimizing the O&M strategy for offshore wind 

farms to reduce turbine downtime and increase availability. Achieving high WT availability is 

paramount to providing affordable and cost-effective wind energy. Offshore, the reactive 

maintenance strategies often employed onshore are largely impractical due to difficulties in wind 

farm access as a result of harsher environmental conditions. The adoption of Condition-Based 

Maintenance (CBM) can contribute significantly to minimize offshore O&M costs by lowering the 

number of inspection visits and corrective maintenance actions [4]. This maintenance approach 

involves repair or replacement of parts based on their actual condition and the individual operating 

history of the particular machine, rather than on a schedule based on predicted operating conditions 

of the average machine [5]. The development of reliable and cost-effective condition monitoring 

techniques, with automatic damage detection and diagnosis of WT components, plays a pivotal role 

in establishing technically and economically viable CBM strategies, especially for unattended WTs 

located in remote and difficult-to-access locations. Autonomous on-line CMSs allow early warning of 

mechanical and electrical defects to prevent major component failures. Faults can be detected while 

the defective component is still operational and thus necessary repair actions can be planned in 

time.  
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2. Wind Turbine Gearbox Condition Monitoring 

Among the various WT components, the gearbox has been shown to cause the longest downtime [6] 

and is the most costly to maintain throughout a turbine’s 20-year-plus design life [7]. Gearbox faults, 

with high replacement costs, complex repair procedures, and revenue loss caused by long 

downtime, are widely considered a leading issue for WT drive train condition monitoring (CM) [5, 8, 

9]. Common WT gearbox failure modes are bearing faults and gear tooth damage [10]. The 

stochastically varying torque on the gearbox is considered to be a major root cause for bearing and 

gear wear, driving gearbox failure modes and affecting gearbox life. Typical gear faults include 

pitting, scuffing, chipping and more seriously, cracks [11]. A recent study [12] has shown that the 

gearbox alone could be responsible for up to one-third of all lost onshore WT availability. This 

problem is exacerbated offshore where harsh weather and sea conditions could prevent 

maintenance or component replacement for long periods of time. Few reliability data are still 

publicly available for offshore WTs. However, 3 years of available data from Egmond aan Zee wind 

farm in the Netherlands show how the gearbox downtime caused 55% of the total wind farm 

downtime [13].  

The main WT Operator concerns about gearbox reliability, particularly offshore, are:  

 High replacement costs following a failure;  

 Complex repair procedures that incur high logistics costs and require favourable weather 

conditions [10];  

 High revenue losses caused by long downtime between failures and repair completion. 

Consequently, the gearbox has become an essential subject for current commercial WT CMS. Timely 

and reliable detection and diagnosis of developing gear defects within a gearbox is an essential part 

of minimizing unplanned downtime of WTs. WT CMS application was requested by insurance 

companies in Europe in the late 1990s, following a large number of claims triggered by catastrophic 

WT gearbox failures [14], although these root causes have largely been eliminated by changes in WT 
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design. Today, a number of commercial WT CMSs are available to the wind industry and they are 

largely based upon experience of monitoring conventional rotating machines. A cost-benefit analysis 

has shown that the lifetime savings derived from early warning and avoidance of impeding failures 

of the critical WT components would more than offset the lifetime cost of a CM system [11].  

A survey carried out by the UK Supergen Wind Energy Technologies Consortium [15] shows that the 

most popular CM approach for the gearbox is vibration monitoring using traditional Fourier 

transform analysis of high frequency data to detect fault-specific frequencies. However, applying 

vibration-based CM to WTs presents a few unique challenges. WTs are variable load and speed 

systems operating under highly dynamic conditions, usually remote from technical support. This 

results in CM signals which are dependant not only on component integrity but also on the operating 

conditions. One limitation of the conventional Fast Fourier Transform (FFT) analysis is its inability to 

handle non-stationary waveform signals which may not yield accurate and clear gearbox features. In 

order to acquire directly comparable data and to allow spectra to be recorded in apparently 

stationary conditions, a number of commercial CMSs can be configured to collect the vibration 

spectra within limited, pre-defined speed and power ranges [15]. To overcome the problems of 

conventional FFT-based techniques and find improved solutions for WT CM, a number of advanced 

signal processing techniques, including wavelet transforms, time-frequency analysis and Artificial 

Intelligence (AI) techniques, have been also researched recently [8, 16-18]. However, most new 

techniques are unsuitable for on-line CM use, because they are computing intensive, and have not 

been demonstrated yet in operating WTs.  

One major limitation of the current commercial available CMSs is that very few operators make use 

of the alarm and monitoring information available to manage their maintenance because of the 

volume and complexity of the data. In particular, the frequent false alarms and the costly specialist 

knowledge, required for manual interpretation of the complex vibration data, have discouraged WT 

operators from making wider use of CMS. This happens despite the fact that these systems are fitted 

to the majority of large WTs (>1.5 MW) in Europe [18]. Moreover, with the growth of the WT 
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population, especially offshore, the manual examination and comparison of the CM data will be 

impractical unless a simplified monitoring process is introduced. 

Current efforts in the wind condition monitoring industry are aimed at automating data 

interpretation and improving the accuracy and reliability of diagnostic decisions, especially in the 

light of impending large-scale, offshore wind-farm generation. This study attempts to target this 

research area by experimentally defining an algorithm that could be incorporated into current CMS 

for automatic gear fault detection and diagnosis. This algorithm could reduce the quantity of 

information that the WT operators must handle, providing improved detection and timely decision-

making capabilities. 

The paper initially investigates the effect of gear tooth fault severity on the gearbox vibration 

signature using experimental results obtained from the 30 kW Wind Turbine Condition Monitoring 

Test Rig (WTCMTR) at Durham University. A frequency tracking algorithm that automatically detects 

and diagnoses gear tooth faults is proposed and discussed. The performance of the proposed 

technique is then tested using 750 kW gearbox data sets from the National Renewable Energy 

Laboratory’s (NREL) Wind Turbine Gearbox Condition Monitoring Round Robin project [19]. These 

vibration signals were collected from a real WT gearbox that had sustained gear damage during its 

field test.  

3. Experimental Methodology 

3.1. Durham Wind Turbine Condition Monitoring Test Rig 

Experimental research was performed on a 30 kW WTCMTR at Durham University, shown in Figure 

1, which has been designed to act as a model for a WT drive train. The rig features a 54 kW DC motor 

driving a 3-phase, 4-pole, 30 kW wound rotor induction generator (WRIG) through a two-stage 

helical-gear parallel shaft gearbox. The first low-speed (LS) stage teeth 66/13 and second high-speed 

(HS) stage 57/58 provide an overall gear ratio of 5:1 (4.9894:1). A complete description of the test rig 

and instrumentation can be found in [20]. 
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Figure 1: Durham WTCMTR: (a) Schematic diagram; (b) main components, instrumentation and 
control systems [20]. 

The WRIG has external variable resistors connected to the rotor circuit that allowed a super-

synchronous generator speed variation of 100 rev/min, from 1500 to 1600 rev/min, with a 

corresponding maximum power output of 3.6 kW. The DC motor was driven at constant and wind-

like variable speed conditions to cover the allowed speed range. Variable speed machine testing was 

performed using driving data derived from a 2 MW WT model [20]. Vibration data from a single-axis, 

vertically mounted accelerometer located on the gearbox high speed stage (HSS) were processed 

using an SKF WindCon unit 3.0, a commercial CMS producing FFT spectra, as currently used on full-

size operational WTs. The sensor used was a piezoelectric accelerometer with integral electronics 

and a sensitivity of 500 mV/g.  

3.2. Experimental Procedure and Data Observation 

In a geared transmission system a main vibration source is the meshing action of the gears. The 

geometry of the gear profile has a crucial effect on the vibration behaviour. In practice, as the teeth 

deform under load, a meshing error is introduced even when the tooth profiles are perfect. In 

addition there are geometric deviations from the ideal profiles, due to gear manufacturing errors 

[16]. The most important components in gear vibration spectra are the tooth meshing frequencies 

and their harmonics, together with side-bands (SB) caused by modulation phenomena due to mean 

geometric errors on the tooth profiles, machining errors and wear. The gear meshing frequency is 
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defined as the product of the number of teeth on the gear and its turning speed. For gearboxes in 

good condition, the SB level generally remains constant with time. Therefore, the increment in the 

number and amplitude of such SBs may indicate a fault condition [17].  Local tooth damage produces 

short-duration impacts that add amplitude and frequency modulation effects to the meshing 

vibration, and in turn generate a higher level of SBs around the mesh harmonics. Moreover, the 

spacing of the SBs is related to their source and thus contains important diagnostic information [21]. 

In particular, the localised modulation effect takes place only during the engagement of the faulted 

teeth, but repeated once each revolution of the gear. As a consequence, the spectrum presents a 

large number of SBs of the tooth meshing frequency and its harmonics spaced by the faulted gear 

rotational frequency. Typically, the more damage that occurs, the more energy there is in the SBs 

[22]. In particular, previous literature on vibration analysis has shown that monitoring the second 

harmonic of gear mesh and its SBs allows early detection of gear wear [23]. 

Experiments were conducted to investigate the progression of a tooth defect on a high speed shaft 

(HSS) pinion, which was introduced into the WTCMTR at variable-speed and generator load. The 

behaviour of a healthy pinion and of four faults of increasing severity were investigated by 

introducing progressive damage to the leading contact edge of one tooth of the gearbox pinion. 

These are called seeded-fault tests. Figure 2(a) shows the healthy pinion, Figures 2(b), (c), and (d) 

show early stages of tooth wear, while Figure 2(e) depicts the entire tooth missing. Vibration data 

from the accelerometer were processed by WindCon assuming a fixed sampling frequency and 

producing FFT spectra with an overall frequency range of 5 kHz in the 1500-1600 rev/min HSS active 

range. The accelerometer measurement point in WindCon has been configured to provide vibration 

spectra which refer to a measurement time window of 1.28 sec. The produced spectra have 6400 

resolution lines for a 5 kHz bandwidth with a resulting frequency resolution of 0.78125 Hz/Line. 

WindCon’s built-in diagnostic tools have been used to assist with the analysis of the spectra by 

tracking the machine component-specific, speed-dependent fault frequencies, their harmonics and 

SBs. 



Page 8 of 21 
 

 

Figure 2: HSS pinion conditions investigated during the seeded-fault tests: (a) healthy; early stage 
of tooth wear: (b) 3-mm x 2-mm chip; (c) 5-mm x 5-mm chip; (d) 7-mm x 5-mm chip; (e) missing 

tooth. 

Normalised order spectra (X) were used to facilitate the comparison of spectra and to identify the 

effect of a faulty tooth on the 30 kW gearbox vibration signature. A local gear defect, such as a 

cracked tooth, generates a disturbance each revolution. Basically a spectral order is introduced as a 

non-dimensional frequency parameter. If the frequency axis is normalised to the shaft rotation 

frequency any cyclic event synchronised with the shaft rotation will produce a spectral component 

at a fixed position even under variable speed conditions. The advantage of this approach is that it is 

easier to focus on a specific cyclic mechanism. During the tests performed on the Durham WTCMTR 

the HSS speed signal was recorded simultaneously with the vibration data by the WindCon software. 

The WindCon’s frequency unit has a built-in tool allowing the operator to switch easily and 

automatically between Hz or Order frequency units. This is done by dividing the FFT frequency in Hz 

by the HSS rotational speed,     , at which the spectrum was collected. The FFT spectra produced 

were compared under similar machine operating conditions. Measured data showed that the 

presence of a HSS pinion faulty tooth results in clear and prominent      SB components of HS stage 

meshing frequency second harmonic, HSmeshxf ,2 , in the vibration signal. For this reason, monitoring 

the second harmonic narrowband window has been assumed as the most reliable and consistent 

indicator of HSS pinion fault [24].  Figure 3 shows the zoom-in view of the measured HSS order 

vibration spectra around the HSmeshxf ,2  second harmonic, given by 

Xxf HSmesh 1162 ,        (1) 
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for healthy, early stages of tooth wear and missing tooth conditions at a typical operating speed of 

1560 rev/min and 51% of maximum generator output.  

 

Figure 3: 30 kW gearbox FFT vibration spectra during the seeded-fault tests in the [110-120]X HSS 
Order frequency bandwidth. 

The spectra show an increase in signal harmonic content as a result of abnormal gear-set behaviour 

due to the progressive damage introduced to the gearbox HSS pinion. The presence of the faulty 

pinion can be clearly seen in the HSmeshxf ,2  harmonic which is heavily modulated by the HSS speed, 

HSSf , given by  

XfHSS 1        (2) 

Ten SBs of the HSmeshxf ,2  harmonic, iSB , calculated as 

   XixfSB HSmeshi  ,2                       (3) 

where 5,4,3,2,1 i , are visible in the spectra. The severity level of the tooth damage affects 

the SB amplitudes. Furthermore, the gear mesh centre harmonic, surrounded by the SBs, denotes 

which gear mesh the damaged gear is passing through. These two pieces of information indicate that 
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the damaged component is passing through the HS stage gear mesh and is mounted on the HSS 

shaft.  

3.3. Algorithm Definition 

The seeded-fault tests conducted in this study show that the presence of meshing frequency 

harmonic SBs and their amplitudes could be valuable for detecting and diagnosing gear defects. 

However, the manual analysis of the spectra, needed to compare the changes in amplitudes for 

different conditions, requires significant time-consuming work due to the great number of frequency 

bands to be monitored. This calls for intelligent monitoring strategies that are able to detect faulty 

signal in an automatic way. The suggestion is to track the overall power of the spectra associated 

with the HSmeshxf ,2  SB frequency window. Based on the experimental evidence, a gear condition 

indicator, the SB Power Factor (SBPF) algorithm, has been proposed to evaluate the gear damage 

during the WT non-stationary load and speed operating conditions [24]. The SBPF algorithm sums 

the Power Spectrum amplitudes of the HS stage meshing frequency second harmonic and its first 5 

SB peaks on each side. It has been calculated using 

 





5

5

, )()2(
i

iHSmesh SBPSAxfPSASBPF      (4) 

where )2( ,HSmeshxfPSA  and )( iSBPSA , with 5,4,3,2,1 i , are the power spectrum 

amplitudes of the HSmeshxf ,2  harmonic and of its first 5 SBs spaced at the HSS rotational speed, 

respectively, shown in Figure 4. The proposed algorithm facilitates the monitoring analysis, reducing 

each FFT spectrum to only one parameter for each data acquisition and avoiding time-consuming 

manual spectra comparison.  
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Figure 4: Typical FFT Power Spectrum around the 2xfmesh,HS harmonic in the case of faulty HS 
Pinion. 

3.4. Results 

The influence of the fault severity and the variable load operating conditions on the SBPF values has 

been investigated by performing variable speed tests on the WTCMTR at a load up to 3.6 kW. The 

resulting SBPF values are shown in Figure 5 against the load, expressed as a percentage of the 

maximum generator output in this condition, for HSS pinion healthy conditions, for early stages of 

tooth wearing, and for a missing tooth. No frequency averaging has been performed on the data 

before the extraction of SBPF values. 

The results show that the SBPF magnitude is proportional to the magnitude of the gear fault level. 

This is because as damage develops on a gear tooth passing through the gear mesh, the SBs increase 

in amplitude, resulting in larger SBPF values. The trend of the obtained SBPF values can be fitted by 

an exponential curve, relating vibration spectra power increase with machine load. In the full range 

of the load investigated, the SBPF values for the missing tooth case are higher than both the healthy 

and early tooth wear cases, indicating clear fault detection. The proposed algorithm works 

successfully even at the early stages of the tooth failure, showing a higher effectiveness at 

percentage loads above 20%.  
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Figure 5: Influence of the fault severity and the variable load operating conditions on the SBPF 
values during the seeded-fault tests. 

 

4. Algorithm Validation 

4.1. NREL Wind Turbine Gearbox Condition Monitoring Round Robin Project 

To validate the performance and reliability of the proposed SBPF algorithm on a full-size gearbox, 

the algorithm has been tested on data from the NREL Wind Turbine Gearbox Condition Monitoring 

Round Robin project [19]. Vibration data collected from two identical 750 kW WT gearboxes, tested 

on the NREL dynamometer test stand in Figure 6, were used in this study. A complete description of 

the NREL test-bed and instrumentation can be found in [25]. The gearboxes have an overall ratio of 

1:81.491 and feature one low-speed (LS) planetary stage and two parallel stages, an intermediate- 

speed (IS) and high-speed (HS) stage, respectively. Table 1 provides details of the NREL gearbox 

nomenclature for the internal elements and the gear teeth number.  
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Figure 6: NREL dynamometer test stand with 750 kW gearbox installed.  
 Photo by Lee Jay Fingersh / NREL 16913.  

Table 1: NREL 750 kW gearbox nomenclature and teeth number. 

Gear Element Location 
Number 
of Teeth 

Mate 
Teeth 

Ratio 

Ring Gear LS Planetary  Stage 99 39  

Planet Gear  LS Planetary  Stage 39 99  

Sun Pinion LS Planetary  Stage 21 39 5.71 

 

Intermediate Gear  IS Parallel stage 82 23  

Intermediate Pinion IS Parallel stage 23 82 3.57 

 

HSS Gear  HS Parallel stage 88 22  

HSS Pinion HS Parallel stage 22 88 4.0 

Overall Ratio: 81.491 

Baseline data were collected on the dynamometer test stand from a healthy test gearbox, which had 

no operational experience. Data then were collected from the dynamometer re-test of an identical 

gearbox after its internal components had sustained damage from its field test. This gearbox first 

finished a run-in in the NREL dynamometer and was then sent to a nearby wind farm for a field test. 

The test gearbox was installed on a three-blade, stall-regulated, upwind WT with a rated power of 

750 kW and a rated wind speed of 16 m/s. In the field, two oil loss events occurred and led to some 

damage to gears and bearings inside the test gearbox. The gearbox was then removed from the field 
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and retested under controlled conditions in the NREL test stand. During the re-test, various 

condition monitoring data were collected, including measurements of vibration and oil debris. Once 

the dynamometer retest was completed, the gearbox was disassembled and a detailed failure 

analysis was conducted [26]. Severe scuffing of the HS shaft gear set was one of 12 instances of 

damage found during the failure analysis. Figure 7 shows the damaged HSS pinion. 

 

Figure 7: Pinion damage on the 750 kW gearbox HSS. Photo from GEARTECH /NREL 19743. 

4.2. Vibration Data Analysis  

The task of this study was to validate the SBPF analysis of vibration data to detect and diagnose HSS 

pinion damage using data collected by two independent accelerometers, AN6 and AN7, mounted 

radially on the gearbox intermediate-speed shaft (ISS) and HSS, respectively. Both of these sensors 

were integrated-circuit piezoelectric-type accelerometers with a sensitivity of 100 mV/g.  

The available data-set refers to an HSS speed of 1800 rev/min and to 50% of rated power, which is 

the highest test load applied to reduce the chances of a catastrophic gearbox failure. For each 

accelerometer, it contains:  

 For the healthy gearbox: 1 single FFT spectrum collected by a commercial CMS at 5 kHz for a 

duration of 1.6 sec. 

 For the faulty gearbox: 40 kHz raw vibration data collected continuously for 10 minutes. 

The data-set presented some challenges for deriving an SB amplitude comparison system baseline. 

This was overcome by windowing data from the faulty gearbox through a 1.6 sec time window and 

then processing the data using the built-in FFT algorithm in MATLAB. For each accelerometer, the 

resulting 375 FFT spectra have then been consistently compared against the available healthy 
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spectrum, presenting the same frequency resolution. Figure 8 a) and b) show an example of the 

zoom-in view of the healthy and faulty HSS order vibration spectra around the HS stage meshing 

frequency second harmonic,  HSmeshxf ,2 , given by 

Xxf HSmesh 442 ,        (5) 

for the AN6 and AN7 accelerometer data, respectively. 

In both cases, when comparing the degraded gearbox to the nominal baseline healthy gearbox, the 

increase in energy content of the HSmeshxf ,2  harmonic and its SBs can be clearly seen. In the faulty 

spectrum, the HS meshing frequency second harmonic is heavily modulated by the HSS rotational 

speed, XfHSS 1 . The SB spacing indicates severe damage in the HSS pinion.  

 
 

Figure 8: Vibration FFT spectra and SBPF plots for 2 accelerometer positions on healthy (green) and 
faulty (red) identical 750 kW gearboxes. 
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4.3. Algorithm Implementation 

To quantify these observations from the vibration data, SBPF values were extracted from the 

baseline spectrum and the 375 degraded gearbox spectra. The results are shown in Figure 8 c) and d) 

for AN6 and AN7, respectively. In both cases, the SBPF magnitude is much larger for the degraded 

gearbox compared to the baseline gearbox, representing an average value of 0.021 (gP)2 and 0.013 

(gP)2, respectively. From the SBPF methodology, there is a strong indication that there is damage on 

the high-speed shaft pinion. These results, on a full-size 750 kW gearbox, provide further credibility 

to the SBPF algorithm, already proven on the 30 kW WTCMTR, for timely detection and diagnosis of 

gear damage.  

In this case, the use of vibration signals collected from two independent accelerometers located in 

strategic positions on the gearbox casing improves the confidence in the SBPF fault detection and 

diagnosis capability, eventually reducing false alarms. This is particularly interesting when 

considering than one issue around CMS data interpretation is to rely on a single signal, which could 

lead to false alarms from the monitoring process [10].  

5. Discussion 

Experimental work on the low-power Durham WTCMTR has allowed the implementation of 

repeated seeded-fault conditions under controlled conditions. The developed SBPF algorithm allows 

the assessment of gear fault severity by tracking progressive tooth gear damage during variable 

speed and load operating conditions of the test rig. The performance of the proposed technique has 

then been successfully tested on signals from a field test of a full-size WT gearbox that has sustained 

gear damage. 

The SBPF detection sensitivity to tooth damage has been calculated by determining, for each load 

condition, the percentage change of the SBPF value. For each case, the SBPF detection sensitivity 

(%SBPF) between faulty and healthy conditions has been defined as  

 100% 



h

hf

SBPF

SBPFSBPF
SBPF      (6)  
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where 
hSBPF  and fSBPF  are the SBPF values for the healthy and faulty cases, respectively. Table 2 

summarises the average SBPF detection sensitivities to HSS pinion damage for the 30 kW Durham 

gearbox and the 750 kW NREL gearbox data-sets. 

Table 2: Durham (30 kW) and NREL (750 kW) gearbox average SBPF detection sensitivity.  

Gearbox 
HSS Pinion Fault 

Severity  
Accelerometer 

Location 
Average %SBPF 

Durham - 30 kW 
seeded-fault tests 

Early Stages of 
Tooth Wear 

HSS Vertical 100% 

Missing Tooth HSS Vertical 320% 

NREL - 750 kW 
gearbox datasets 

Severe Scuffing  AN6 ISS Radial  1140% 

Severe Scuffing AN7 HSS Radial  1251% 

In the case of the Durham 30 kW gearbox data-set, the sensitivity analysis shows that the SBPF 

technique proves successful in the detection of both early and final stages of gear tooth damage, 

with average detection sensitivities of 100% and 320%, respectively. It is evident the influence of the 

fault severity on the SBPF detection sensitivity values; the more damaged is the pinion the easier is 

to discriminate the fault. 

In the case of the NREL data-set, although the gearbox damage was more complex than in a typical 

operational WT [19] and the data-set provided refers to only one speed and load operational 

condition, the SBPF detection and diagnostics technique proves successful in the detection of HSS 

pinion damage, with an average detection sensitivity of 1140% and 1251% for the AN6 ISS radial and 

AN7 HSS radial accelerometers, respectively. Because the analysed data-set contains multiple 

gearbox progressed faults, it is believed that in the SBPF diagnostic performance could be improved 

when deployed in the field, bearing in mind the smaller number of faults usually presented during 

the early stages of gearbox fault evolution. 

The proposed SBPF algorithm facilitates the monitoring analysis, reducing each FFT spectrum to only 

one parameter for each data acquisition. By automating the condition monitoring of the gears, SBPF 

reduces the quantity of vibration information that WT operators must handle, providing improved 

detection and timely decision-making capabilities. SBPF can be monitored over time, trended, and 



Page 18 of 21 
 

compared to one or more predetermined threshold levels to provide warnings and alarms to 

operators. 

The knowledge of the gearbox load is fundamental to apply effectively the SBPF technique. The 

current commercial available CMSs usually provide information on the turbine load. This will allow 

the SBPF technique to work in context with the gearbox load. Otherwise, in case the turbine load is 

not available, the Operator has to take SBPF measurements only when the machine is at its full load. 

The SBPF methodology, based on the analysis of the dynamics of the gears, can easily be scaled to 

higher WT power levels. However, this would probably imply an increase in the spectral background 

noise because of the higher complexity of WT drive trains compared to the small-scale WTCMTR.  

For gearbox parallel stages, SBPF is easily applicable to the harmonics of each fundamental gear 

mesh frequency using both gear and pinion SBs, once the multi-stage gearbox configuration and the 

number of teeth of each gear element are known. This information allows for the calculation of the 

gear damage features, such as the meshing frequencies, their second harmonic and the spacing of 

the SBs due to gear wear modulation phenomena for each stage, and the extraction of the 

corresponding SBPF values. For planetary stages, the analysis of the SB patterns could be more 

complicated because of the low mechanical transmissibility from gear components and the multiple 

contact points between each planet gear meshing and the sun and ring gear. 

6. Conclusions 

This paper has proposed an experimental side-band algorithm for automatic WT gear tooth fault 

detection and diagnosis, which has been validated by analysing vibration signals from a full-size WT 

gearbox with HSS pinion faults. The following specific conclusions arise: 

 The SBPF algorithm proved effective in detecting the presence of gear damage introduced 

into a 30 kW Test Rig gearbox, i.e., damage location, and in identifying the precise damaged 

gear, i.e., damage diagnosis, with a detection sensitivity of 100% to 320%.  
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 The SBPF successfully allowed the assessment of gear fault severity on the Test Rig by 

tracking progressive tooth damage, from the early stages of development, during variable 

speed and load conditions.  

 The experimentally defined SBPF technique has also been successfully tested against 

vibration data from an NREL 750 kW WT gearbox, which had experienced severe high-speed 

shaft gear set scuffing, with a detection sensitivity of 1140% and 1251%.  

 Confidence in the NREL gearbox results is enhanced by the strong SBPF detection and 

diagnosis evidence from two independent accelerometers. 

 The proposed methodology is relatively simple to implement into a commercial WT CMS for 

automatic gear fault detection and diagnosis.  

 The generation of SBPF trends from the vibration spectra and the definition of magnitude 

thresholds for the fault severity levels could indicate to a WT operator when a maintenance 

action needs to be performed.  

 SBPF can be easily adapted to detect gear damage on all the WT gearbox parallel stages, 

while its applicability to planetary stages still requires more investigation.  

 Compared to the conventional FFT approach used in current commercial vibration-based 

CMSs, requiring time-consuming visual spectra analysis, the SBPF approach enables 

automatic detection and diagnosis of gear faults with low risk of false alarms. This will lead 

to increased accuracy of WT drive-train vibration-based condition monitoring. 
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