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Abstract

In this paper, we consider a model where producers set their prices based on their

prediction of the aggregated price level and an exogenous variable, which can be a demand

or a cost-push shock. To form their expectations, they use OLS-type econometric learning

with bounded memory. We show that the aggregated price follows the random coeffi cient

autoregressive process and we prove that this process is covariance stationary.
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1 Introduction

Econometric Learning was designed to model the forecast of the future economic variables in

forward looking models. In contrast to the Rational Expectations Theory, which imposes a
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very strong assumption that the agents know the structure of the model, Econometric Learning

only assumes that agents behave as professional econometricians. They collect the available

data and use OLS regression to produce the forecast. As more data becomes available, this

econometric forecast often converges to the rational expectations equilibria (Sargent, 1993). Al-

though econometric learning relaxes many assumptions of the rational expectations mechanism,

we think that one of them could still be too strong. In particular, it assumes that agents have

access to the entire history of the variables, and they use all of them to form the forecast. Not

only does that assumption require infinite memory, it also neglects the cost of data collection

and processing.

Several papers facilitate the assumption of infinite memory and consider the case when the

memory is bounded (for a survey, see Chevillon and Mavroeidis, 2014). However, the majority

of the results are proven for non-stochastic models (Evans and Honkapohja, 2000). The only

exception known to us is Honkapohja and Mitra (2003) who investigate learning with bounded

memory in a stochastic environment. However, they consider a very special case of learning

the intercept parameter, and their model does not account for the possibility of using some

exogenous independent variables when the expectation is formed.

This paper picks up the research from Honkapohja and Mitra (2003) and explores the dy-

namic properties of econometric learning with bounded memory in a stochastic environment.

We expand that paper by adding a stochastic exogenous variable which can be used for econo-

metric forecasts.

The introduction of stochastic independent variable makes the mathematical framework

more complex as compared to Honkapohja and Mitra (2003) where the model evolves according

to a simple autoregressive process (AR). In this paper, the model is more complex since the

transition matrix has random coeffi cients (the random coeffi cient autoregressive model, RCAR,

as in Nicholls and Quinn, 1982). It is also more complex than Conlisk (1974), since our

transition matrices are autocorrelated. Nevertheless, we proved the stationarity of the model.

In addition, we formulate a suffi cient condition for stationarity which can be more generally

applied in the RCAR literature.

This paper is structured as follows. In Section 2 we present the model and introduce OLS-

type learning with finite memory. In Section 3 we prove that the RCAR process of price

movement is covariance-stationary. Section 4 concludes the paper.
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2 The model

We consider a model where producer j sets the current price pt(j) depending on the expected

aggregated level of price pet and the exogenous but not completely observable state variable w̃t :

pt(j) = α + βpet + δw̃t (1)

where α, δ are known constant parameters and w̃t is the estimated value of the exogenous cost

push shock which can negatively affect the profit. The cost push shock wt is not observed in

period t; however, every producer has access to the historical data of its past realisation of

{ws}.

This model is very similar to the cobweb model as presented in Kaldor (1934), Ezekiel (1938)

and more recently in Evans and Honkapohja (2003). It is known to be stable when |β| < 1. We

will restrict our analysis to this particular case. In equilibrium, each producer sets the same

price, that is pt = pt(j).

2.1 OLS Learning

As wt is the only state variable, the producer expects the aggregated price to depend on the

variable

pt = α2 + β2wt, (2)

where α2 and β2 are unknown parameters with producer estimates based on available historical

data {ps, ws} . The price expectation is then

pet = α̂2,t−1 + β̂2,t−1w̃t (3)

where α̂2,t and β̂2,t are estimated coeffi cients and w̃t is a proxy for wt. The classical OLS-type

learning model assumes that agents forecast future prices by running the OLS regression using

equation (2) and that at time t, the available information set consists of the entire history of

prices and the exogenous state variable {ps, ws}t−1s=0. Coeffi cients α̂2,t and β̂2,t are OLS estimators

on the information set {ps, ws}ts=0.
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2.2 Learning with Bounded Memory

Learning with bounded memory in our paper simply means that the agent is only using a

limited number of observations T to form expectations.1 The forecast will be made using the

same OLS algorithm as in the classical case (3); however, we assume that only a finite set of

historical data, {ps, ws}t−1s=t−T , is used to estimate the coeffi cients. Consequently, the estimators

α̂2,t and β̂2,t are defined as follows:

β̂2,t−1 =

∑T
i=1

[
(wt−i − wt−1)(pt−i − pt−1)

]∑T
i=1 [(wt−i − wt−1)2]

, (4)

α̂2,t−1 = pt−1 − β̂2,t−1wt−1, (5)

wt−1 =
1

T

T∑
i=1

wt−i, (6)

pt−1 =
1

T

T∑
i=1

pt−i. (7)

Finally, as the agents cannot observe the realization of wt at the time when they set their

prices, the forecast w̃t is used. The forecast is based on available historical data {ws}t−1s=t−T , and

consists of the weighted sum as in Mitra and Honkapohja (2003). Formally, w̃t can be written

as

w̃t =
t−1∑
i=1

γi,twt−i, (8)

where γi,t is the expected probability that wt = wt−i and therefore,

t−1∑
i=1

γi,t = 1. (9)

Our set up covers an extensive range of models. For example, if wt follows a Markov process

with high persistency, the best prediction for wt is wt−1. In this case, γ1t = 1, and γit = 0 for

i > 1. In particular, for T = 2, γ1 = 1, γ2 = 0, the price pt follows a simple autoregressive

process with pet = pt−1. If wt is i.i.d. distributed, the best proxy for wt might be wt−1. In this

case, γi,t =
1
T
, and the price pt follows the AR(T ) process with pet = pt−1. Our model will also

work if γi,t corresponds to precautionary predictors with larger weights attached to the worse

realisations as in the Robust Control or The Ambiguity Aversion theories.

1This is similar to Honkapohja and Mitra (2003) where a simplified version of the model without state
variable is considered.
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The complete model consists of (1), (3), (8), (4), (5), (6) and (7). Our aim is to show that

pt is stationary for all T > 1.

First, we show that the aggregated price pt follows a Random Coeffi cient Autoregressive

(RCAR) process.

Proposition 1 The actual price follows an autoregressive process of order T with random

coeffi cients as in (10)

pt = α + β

(
T∑
i=1

Zi,tpt−i

)
+ δw̃t (10)

where

Zi,t =
1

T
+
(wt−i − wt−1)

((∑T
i=1 γi,t (wt−i − wt−1)

))
∑T

i=1 [(wt−i − wt−1)2]
. (11)

3 Stationarity of Bounded Memory Learning

Proposition 1 allows us to write our model in the RCAR representation.

yt = εt +Mtyt−1, (12)

where Mt = βZt + S and S is a lower shift matrix,

yt =


pt

pt−1

....

pt−T+1

, Zt =


Z1,t Z2,t ... ZT,t

0 0 ... 0

.... ... ... ...

0 0 ... 0

 and εt =


α + δw̃t

0

....

0

 .

We begin our investigation of stationarity of the model (12) by setting up additional prop-

erties of coeffi cients Zi,t.

Lemma 2 For any realisation of wt, i)
∑T

i=1 Zi,t = 1 and ii)
∑T

i=1 Z
2
i,t ≤ 1.

Proof. It is convenient to define ki,t =
(wt−i−wt−1)(∑T

i=1
(wt−i−1−wt−1)2

) 1
2
. Then, according to (11), Zi,t =

1
T
+ k′i,tγ

′
tkt, where ki,t can be any number with the following restrictions

T∑
i=1

ki,t = 0, (13)

T∑
i=1

k2i,t = 1. (14)
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Now we can compute:

T∑
i=1

Z2i,t =
T∑
i=1

(
1

T
+ ki,tγ

′
tkt

)2
=
1

T
+ (γ′tkt)

2
. (15)

Maximisation of (15) subject to constraints (13) and (14) implies (γ′kt)
2 =

∑T
i=1 γ

2
i,t− 1

T

(∑T
i=1 γi,t

)2
at the maximum. Evaluating (15) entails

∑T
i=1 Z

2
i,t =

1
T
+ (γ′kt)

2 ≤ 1
T
+
(
1− 1

T

)
= 1.

Lemma 2 also implies that |Zi,t| < 1. For further discussion, it is convenient to define a

randommatrixGt,n =
∏
k=1,n

(Mt−k). To show that it is finite, we will first establish the boundaries

for every element of such a matrix.

Proposition 3 Consider matrix Mt−k such that Mt−k = βZt−k + S, where S is a lower shift

matrix, |β| < 1 and element zi,j of matrix Zt−k satisfies

|z1,j| ≤ 1,

zi,j = 0, if i > 1.

Then, for any memory length T and β̃ ∈ (β, 1), there exists a finite boundary cT such that for

any n, every element of the product of n matrixes, Gt,n, is bounded in absolute value by cT β̃
n

and therefore

|Gt,n| < cT β̃
n
J,

where J is a T × T matrix of ones.

Proof. See Appendix 5.

Having established these results, we could investigate the stationarity of yt by proving the

existence of the unconditional expectations E [yt] and E [yty′t].

Proposition 4 Process (12) is covariance stationary if there exist unconditional expectations

of E [|εt|] and E [|εtε′t|] .

Proof. To prove stationarity, we will iterate the backward expression (12):

yt = εt +Mtyt−1 = εt +Mtεt−1 +MtMt−1yt−1 =

∞∑
k=0

Gt,kεt−k. (16)
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First, we will prove that the expectation of yt is finite by applying Proposition 3:

E [yt] < E [|yt|] < E

[ ∞∑
k=0

|Qt,k||εt−k|
]
< JcTE

[
|εt|

∞∑
k=0

β̃
n

]
=

cT

1− β̃
J [E|εt|] .

Thus, we have proved that E [|yt|] is finite if E [|εt|] exists. To complete the proof, we need to

show that E [yty′t] is also finite:

yty
′
t = εtε

′
t +Mtyt−1ε

′
t + εty

′
t−1M

′
t +Mtyt−1y

′
t−1M

′
t . (17)

We iterate it backwards to obtain:

yty
′
t =

∞∑
k=0

Qt,k
[
εt−kε

′
t−k +Mt−kyt−k−1ε

′
t−k + εt−ky

′
t−k−1M

′
t−k
]
Qt,k.

Finally, we will show that the expectations of the absolute value of the product are bounded2:

E [|yty′t|] = E
∞∑
k=0

[
|Qt,k|

[
|εt−kε′t−k|+ |Mt−k||yt−k−1||ε′t−k|+ |εt−k||y′t−k−1||M ′

t−k||
]
|Qt,k|

]
< c2TJ (E [|εtε′t|] + JE [|yt|]E [|ε′t|] + E [|εt|]E [|y′t|] J) J

∞∑
k=0

β̃
2K

= c2TJ (E [|εtε′t|] + JE [|yt|]E [|ε′t|] + E [|εt|]E [|y′t|] J) J
1

1− β̃
2 .

Another interesting implication of Proposition 3 is that the spectral radius of Mt is smaller

than one.

Lemma 5 For any realization of the stochastic matrix Mt, its eigenvalues are less than one in

absolute value.

Proof. Consider Gn = (Mt)
n . Applying proposition 3 we can claim that |Gn| < cT β̃

n
J :

lim
n→∞

(Mt)
n = 0

2We use that |Mt| < J.
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which is necessary and suffi cient for eigenvalues to be less than one in absolute value.

4 Conclusion

In this paper, we have investigated properties of econometric (OLS-type) learning with a

bounded memory. We have shown that the eigenvalues of the transition matrix lie in the

unit circle for any length of memory T. Furthermore, we have found that the price pt follows a

covariance stationary process. Our results could be tested in a DSGE framework, similarly to

Berardi and Galimberti (2014).
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5 Appendix: Proof of Proposition 3

For any memory length T , and constant β̃ > β, there exists a boundary cT such that every

element of the product of n matrices Mt is bounded in absolute value by cT β̃
n
:

|Gt,n|ij =
∣∣∣∣∣ ∏
i=1,n

(Mt−i)

∣∣∣∣∣
ij

< cT β̃
n
, (18)

where the matrix Mt can be represented as follows

Mt = βZt + S, (19)

where Zt has the form of

Zt =


Z1,t Z2,t ... ZT−1,t

0 0 ... 0

.... ... ... ...

0 0 ... 0

 , (20)

where each element Zi,t is smaller than 1 in absolute value, |Zi,t| < 1; and S is the lower shift

matrix

S =



0 0 ... 0 0

1 0 ... 0 0

0 1 ... 0 0

.... ... ... ... ...

0 0 ... 1 0


. (21)

Proof. First we will compute the product

G =
∏
i=1,n

(Mt−i) = (βZt−1 + S) (βZt−2 + S) .... (βZt−n + S) (22)
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using the property of matrix S. For any matrix A, the first row of SA is zero. Moreover, if the

first k rows of A are zeros, then the first of k + 1 rows of SA are also zeros.

To compute the product (22) we need to sum up the products of n matrixes, each of them

is either Z or S. However, if S appears more than T − 1 times, the product is zero. Therefore,

we can restrict our attention to only those cases when S appears less than T times.

The number of products with S being exactly on k places is n!/k!/(n − k)! and therefore, the

total number of non-zero products is less than n!/((T − 1)!(n− T + 1)!) ∗ (T − 1).

Moreover, we can claim that every component is a matrix with elements less than (βz)n−T ,

where z = max
i
|Zi,t| ≤ 1. Therefore, every element of

[(βZt−1 + S) (βZt−2 + S) .... (βZt−n + S)]ij <
n!

(T − 2)!(n− T + 1)!β
n−T < nTβn−T .

Consider the sequence {an} , defined as an = nTβn−T ,

an+1
an

=

(
n+ 1

n

)T
β.

Let β̃ ∈ (β, 1), then we can find n∗(β̃, T, β), such that for any n > n∗,

an+1
an

=

(
n+ 1

n

)T
β < β̃, (23)

in particular

n∗ = ceil

( β̃
β

)1/T
− 1

−1 .

It follows from (23) that for any positive k

an∗+k < β̃
k
an∗ = β̃

k
n∗Tβn

∗−T . (24)

To complete the proof we define cT

cT = max
n≤n∗

(
anβ̃

−n)
.
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