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ABSTRACT

We reconsider the topological interpretation of magnetic helicity for magnetic fields in open domains, and relate
this to the relative helicity. Specifically, our domains stretch between two parallel planes, and each of these ends
may be magnetically open. It is demonstrated that, while the magnetic helicity is gauge-dependent, its value in
any gauge may be physically interpreted as the average winding number among all pairs of field lines with respect
to some orthonormal frame field. In fact, the choice of gauge is equivalent to the choice of reference field in the
relative helicity, meaning that the magnetic helicity is no less physically meaningful. We prove that a particular
gauge always measures the winding with respect to a fixed frame, and propose that this is normally the best choice.
For periodic fields, this choice is equivalent to measuring relative helicity with respect to a potential reference field.
However, for aperiodic fields, we show that the potential field can be twisted. We prove by construction that there
always exists a possible untwisted reference field.
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1. INTRODUCTION

Magnetic helicity H (B) = ∫
V

A · B d3x has long been recog-
nized as an important dynamical invariant in ideal magnetohy-
drodynamics, with applications ranging from laboratory plas-
mas to astrophysical objects (Brown et al. 1999). Here A is a
vector potential for the magnetic field B = ∇ × A, and it is a
fundamental property of H (B) that the integral is independent of
the particular gauge chosen for A, provided that V is simply con-
nected and magnetically closed (Bn = 0 on the boundary ∂V ).
Analogous invariants exist for other solenoidal vector fields,
notably the vorticity in fluid mechanics (Moffatt 1969).

Physically, H (B) may be interpreted as a measure of the
average topological linking of the magnetic field lines of B
(Moffatt 1969; Arnol’d 1986; Arnol’d & Khesin 1998). One
way to see this is to consider a special magnetic configuration
where B is confined to two (or more) linked magnetic flux tubes
that are closed and untwisted (see, for example, Moffatt & Ricca
1992). Another way is to write A in Coulomb gauge (∇ ·A = 0),
whence, providing that Bn = 0 on the whole boundary of V, it
has the expression

A(x) = 1

4π

∫
V

B(y) × r
|r|3 d3y, (1)

where r = x − y (Cantarella et al. 2001). It follows that H (B)
may be written as

H (B) = 1

4π

∫
V

∫
V

B(x) · B(y) × r
|r|3 d3x d3y. (2)

This is the flux-weighted average, over all pairs of magnetic
field lines dx/ds = B(x), dy/ds = B(y), of the Gauss linking
integral

L(x, y) = 1

4π

∮
x(s)

∮
y(s)

dx
ds

· dy
ds

× r
|r|3 ds ds ′. (3)

The Gauss integral is integer-valued and measures the net
linking of a pair of closed curves (Ricca & Nipoti 2011).

Unfortunately, the gauge invariance of H relies on the con-
dition Bn|∂V = 0. In astrophysical situations such as the solar
atmosphere, this condition is generally violated. In a seminal pa-
per, Berger & Field (1984) showed how gauge invariance may
be restored by measuring the helicity with respect to a chosen
reference magnetic field B′ sharing the same distribution of Bn
on ∂V . This relative helicity, which we shall denote HB′(B), is
then an ideal invariant under motions that vanish on ∂V . It has
since been widely applied to the open magnetic fields arising in
solar physics (see the review by Démoulin 2007).

This work is motivated by a fundamental question: is there
a topological interpretation of relative helicity in open fields
analogous to the linking number interpretation of H
(Equation (2)) in closed fields? Since the magnetic field lines
are no longer closed curves, they no longer have invariant Gauss
linking integrals. However, one can construct alternative invari-
ants for pairs of curves stretching between two planes, provided
that the end-points are held fixed (Berger 1986, 1993). Indeed,
we will show in Section 4 that it is possible to express both H
and HB′ in terms of these “winding numbers.” The fact that there
are multiple ways of defining such invariant winding numbers
reflects the fact that neither H nor HB′ is uniquely defined for an
open field. Rather, H depends on the choice of gauge, and HB′ on
the choice of reference field. In fact, we argue in Section 5 that
H is no less meaningful than HB′ in an open field, despite the
fact that the latter has been used preferentially in applications.

In solar physics, the non-uniqueness of HB′ has almost uni-
versally been circumvented by choosing B′ to be the unique
potential field Bp matching Bn on the boundary of the domain.
The potential field is well-defined and has the minimum mag-
netic energy of all fields matching the same boundary conditions.
In the case of magnetic fields rooted in a single planar bound-
ary, HBp has been shown explicitly to be an average winding
number (Berger 1986; Démoulin 2006). This physical interpre-
tation has been used to infer the injection of relative helicity
into the Sun’s corona by tracking the winding of magnetic field
lines by their footpoint motions on the photospheric bound-
ary (Démoulin 2007). However, there are two limitations that
prevent HBp from being a perfect helicity measure. The first
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limitation is that, if the boundary conditions Bn|∂V are changing
in time, then the reference field Bp will itself change in time,
and usually in a non-ideal way. This means that the evolution of
the relative helicity will mix up both real topological changes
in B and those simply due to the change of Bp. The second
limitation is that, in a domain with more than one boundary
where Bn �= 0, the interpretation of HBp as measuring the aver-
age winding number breaks down. This is shown in Section 5.
Our central idea in this paper is that these limitations may be
overcome by defining helicity not through HBp , but by fixing
a special gauge in H. Fixing the gauge of H will always cre-
ate an ideal invariant that is (trivially) gauge independent. Our
main contribution is to show in Section 3 how this invariant is
physically meaningful.

It should be mentioned that several authors have pro-
posed other alternatives to the widely used HBp . For example,
Longcope & Malanushenko (2008) have explored different
choices of reference field for relative helicity in sub-volumes
of the solar corona. Low (2006) has proposed a “Lagrangian he-
licity” that decomposes B at some initial time into a toroidal and
a poloidal component, then measures the linking between the
two components mapped back to the initial configuration (see
also Webb et al. 2010; Low 2011). This retains a freedom in the
choice of the initial toroidal–poloidal decomposition. Closer in
spirit to the present paper, Hornig (2006) proposes to define H
completely with a particular choice of gauge, namely ∇⊥·A = 0
on the boundary (where ∇⊥ denotes the component of the gra-
dient tangential to the boundary). Jensen & Chu (1984) also
imposed a gauge condition—that n × A = n × Ap on ∂V —to
uniquely define their version of relative helicity, which has the
form

H JC =
∫

V

A · B d3x −
∫

V

Ap · Bp d3x. (4)

Such gauge conditions are also frequently used to simplify
the calculation of HBp in practice (Démoulin 2007). For the
particular case of a cylindrical domain, Low (2011) intro-
duced an “absolute helicity” that is similarly based on fix-
ing a particular gauge of A (related to a toroidal–poloidal, or
Chandrasekhar–Kendall decomposition). The geometric char-
acterization of the helicity in any gauge which we highlight in
this study allows for comparison of our fixed gauge measure
with these alternatives. It is demonstrated in Section 4.2 that all
choices except the one we propose in this paper measure the
field-line winding in a manner which is not wholly physically
meaningful.

The layout of this paper is as follows. We briefly review
the standard definitions of H and of the relative helicity HB′

in Section 2, before introducing an important special gauge
in Section 3 which we call the “winding gauge.” Section 4
then presents the main contributions of this paper: (1) that H is
physically meaningful in any gauge, and (2) that the winding
gauge best captures our intuitive idea of field line winding. In
Section 5 we investigate how the “winding” helicity relates to
the relative helicity. Conclusions are summarized in Section 6.

2. PRELIMINARIES

Throughout, we shall consider magnetic fields on a domain
V ∈ R

3 where V = Sz × [0, h] for a set of simply connected
regions Sz ⊂ R

2, z ∈ [0, h], whose boundaries ∂Sz vary
continuously with z. An example is shown in Figure 1(a). Each
of the foliating surfaces Sz has the same normal vector ẑ. The
boundary of V consists of the lower boundary surface S0, the

(a) (b) (c)

Figure 1. Domain V and its admissible magnetic field lines. Panel (a) depicts an
example domain. Panel (b) shows (in blue) a set of admissible field lines which
are tangent to the boundary, and a red forbidden field line that is not allowed in
this paper. Panel (c) shows the three possible connectivities that an admissible
field line may have.

(A color version of this figure is available in the online journal.)

upper boundary surface Sh, and the set Ss = {∂Sz|z ∈ (0, h)},
i.e. ∂V = S0 ∪Ss ∪Sh. We define a Cartesian co-ordinate system
{ê1, ê2, ẑ} for V with the pair {ê1, ê2} spanning the surfaces Sz.

We consider magnetic fields B which are either tangent or
zero on the side boundary Ss, but place no restrictions on the
end boundaries S0 and Sh. The conditions on Ss forbid magnetic
field lines from leaving the boundary (see Figure 1(b)). If Bz

has the same sign everywhere in V, then the magnetic field will
essentially be a directional flow through the domain, akin to a
magnetic flux rope. However, our set of admissible magnetic
fields is wider and allows for a mixture of field lines linking the
two end planes, field lines that are looped, and those that are
closed (examples are depicted in Figure 1(c)). It also allows for
fields in a half-space h → ∞, Sz = R

2,∀z ∈ [0,∞). In this
case a reasonable definition of helicity requires that the field
decays to zero toward infinity, implying a looped field of the
type discussed by Demoulin et al. (2006).

2.1. Magnetic Helicity

We shall denote the magnetic helicity by

H (B) =
∫

V

A · B d3x. (5)

In a magnetically open domain V, the helicity depends on the
gauge of A. For under a gauge transformation A → A′ =
A + ∇χ , we find

H → H ′ = H +
∮

∂V

χBn d2x. (6)

So if the normal magnetic field Bn is non-zero anywhere on
the boundary ∂V , we can change H by changing the gauge χ .
For our domain (described above) we have Bn = 0 on the side
boundary Ss, so

H → H ′ = H +
∫

Sh

χBz d2x −
∫

S0

χBz d2x. (7)

2.2. Relative Helicity

The original definition of relative helicity for open magnetic
fields invokes an imagined extension of V to a larger volume
V ∪ Ṽ (Berger & Field 1984), whose outer boundary is a
magnetic surface. Examples of this extended domain are shown
in Figure 2. We let B̃ be some magnetic field on Ṽ such that B̃n
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(a) (b)

Figure 2. Extended volume V ∪ Ṽ in the original definition of relative helicity
by Berger & Field (1984), for two different choices of extension Ṽ . Note that
the field lines of B̃ close the existing field lines.

(A color version of this figure is available in the online journal.)

matches Bn on the boundary of the original volume V, and B̃n

vanishes on the outer boundary of the combined volume. Let

H (B, B̃) :=
∫

V

A · B d3x +
∫

Ṽ

Ã · B̃ d3x, where B̃ = ∇ × Ã.

(8)

Then the relative helicity of B with respect to reference field B′
on V is defined as

HB′(B) := H (B, B̃) − H (B′, B̃), (9)

for any choice B̃ of extension field, where B′ must satisfy the
boundary condition B ′

n|∂V = Bn|∂V .
We can show that the relative helicity HB′(B) is independent

of the choice of extension B̃, and depends neither on the gauge of
A nor on that of A′. To ensure continuity of the vector potential
in H (B, B̃) and H (B′, B̃), we must use different vector potentials
for B̃ in each case. If we choose n × Ã|∂V = n × A|∂V for the
first case, then we have n× Ã′ = n×A+n×∇ψ for the second
case. So

HB′(B) =
∫

V

(A · B − A′ · B′) d3x −
∫

Ṽ

∇ψ · B̃ d3x,

=
∫

V

(A · B − A′ · B′) d3x +
∮

∂V

ψBn d2x.

Now∫
V

(A′ · B − A · B′) d3x =
∫

V

(A′ · ∇ × A − A · ∇ × A′) d3x,

(10)

=
∮

∂V

A × A′ · n d2x, (11)

=
∮

∂V

A × (A′ − A) · n d2x, (12)

=
∮

∂V

A × ∇ψ · n d2x, (13)

=
∮

∂V

(
ψ∇ × A − ∇ × (ψA)

) · n d2x, (14)

=
∮

∂V

ψBn d2x. (15)

The last line follows from Stokes’ Theorem since ∂V is a closed
surface. Hence

HB′(B) =
∫

V

(A + A′) · (B − B′) d3x. (16)

This is often known as the Finn & Antonsen (1985) formula
for relative helicity. Since B̃ appears nowhere in (16), we see
that HB′(B) is independent of the extension B̃. Gauge invariance
readily follows from this formula, for if either A → A + ∇χ or
A′ → A′ + ∇χ , then

HB′(B) → HB′(B) +
∮

∂V

χ (Bn − B ′
n) d2x, (17)

and the last integral vanishes by the boundary condition on B′.
The main limitation of the relative helicity is that it depends on

the choice of reference field B′, and this complicates its physical
interpretation. We return to address this point in Section 5.

3. THE WINDING GAUGE

In Section 4, we will show that H for an open magnetic field
in a domain V such as we consider may be interpreted as an
average winding number, analogous to the interpretation of H for
a closed magnetic field as an average linking integral. Central to
this interpretation will be a specific choice of gauge for A that is
analogous to the Coulomb gauge of Equation (1). The difference
in the open case is that the choice of gauge will now affect the
value of H, not just its integral expression. Nevertheless, this
specific gauge—which we call “winding”—will turn out to be
physically meaningful.

For an open field, we cannot use the Coulomb gauge (1) since
it will generally violate ∇ × A = B when Bn|∂V �= 0. However,
since Bn = 0 on the side boundary of our cylinder V, it is
possible to use a two-dimensional equivalent of the Coulomb
gauge whose horizontal divergence ∇⊥ · A = 0 vanishes (but
not its full three-dimensional divergence). This is what we call
the winding gauge, and may be written

AW(x1, x2, z) = 1

2π

∫
Sz

B(y1, y2, z) × r
|r|2 d2y,

where r = (x1 − y1, x2 − y2, 0). (18)

In this gauge, the vector potential at any point is defined as an
average over the horizontal surface Sz at that height (Figure 3).

Since we have been unable to find it in print, we include here
a proof that ∇ × AW = B for a magnetic field on our domain
V with Bn = 0 on the side boundary. This is similar to the
familiar proof for the three-dimensional Coulomb gauge (e.g.,
Cantarella et al. 2001), but there are some complications.
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(a)

(b)

Figure 3. Vector r used to define the winding gauge and measure the winding
of magnetic field lines. The vector potential AW at a point on the cross-section
Sz (depicted in panel b) is defined by integrating over the cross-section. Also
shown is the angle Θ made by r and the ê1 axis, and used to define the winding
number.

(A color version of this figure is available in the online journal.)

First, one may show by direct differentiation that

r
|r|2 = ∇⊥

x

(
log |r|), (19)

where ∇⊥
x := (∂/∂x1, ∂/∂x2, 0). The subscript x indicates

differentiation with respect to x, as opposed to y. Thus

AW(x) = 1

2π

∫
Sz

B(y) × ∇⊥
x

(
log |r|) d2y (20)

= − 1

2π
∇⊥

x ×
(∫

Sz

B(y) log |r| d2y

)
. (21)

To take the ∇⊥
x operator outside the integral, we have used the

fact that the geometries of the cross-sections Sz vary only as a
function of the z-coordinate.

By writing out the components explicitly, one can verify for
a function f = (f1, f2, f3) that

∇ × ∇⊥ × f = −(∇⊥)2f + ∇⊥(∇ · f), (22)

where ∇ is the full (three-component) operator, and

(∇⊥)2f =
(

∂2f1

∂x2
1

+
∂2f1

∂x2
2

,
∂2f2

∂x2
1

+
∂2f2

∂x2
2

,
∂2f3

∂x2
1

+
∂2f3

∂x2
2

)
.

(23)

Applying this to Equation (21), we can take the derivatives inside
the integral, but for the three-component operator ∇x we must
account for the fact that the shape of Sz may vary in z. Leibniz’
rule adds an extra term depending on v · n, where v(y) = dy/dz
is a “velocity” describing how the boundary Ss changes shape
in z. Since B is tangent to Ss, we can simply take v = B/Bz.
Applying (22) with Leibniz’ rule then gives

∇x × AW(x) = 1

2π

∫
Sz

B(y)(∇⊥
x )2

(
log |r|) d2y

− 1

2π
∇⊥

x

(∫
Sz

∇x · (
B(y) log |r|) d2y

)
+

1

2π
∇⊥

x

∮
∂Sz

Bn(y) log |r| dly. (24)

For the second term, note that

∇x · (
B(y) log |r|) = B(y) · ∇x

(
log |r|) + (log |r|)∇x · B(y),

(25)

= −B(y) · ∇y

(
log |r|) + (log |r|)∂Bz(y)

∂z
, (26)

= −B(y) · ∇⊥
y

(
log |r|) − (log |r|)∇⊥

y · B(y), (27)

= −∇⊥
y · (

B(y) log |r|). (28)

The resulting term becomes a boundary integral and the sum of
the second and third terms of (24) cancel, leaving just the first
term. It may be shown that

(∇⊥
x )2

(
log |r|) = 2πδ(r), (29)

where δ(r) is the two-dimensional Dirac δ-function and (∇⊥
x )2

is the two-dimensional Laplacian. (This is a direct analogue
of a widely used result in three dimensions.) It follows that
∇x × AW(x) = B(x) so that (18) is a valid vector potential.

4. WINDING NUMBER INTERPRETATION OF HELICITY

For a pair of field lines x(s), y(t) that are not closed within V,
the Gauss linking number is not a topological invariant. Instead,
we shall define the winding number L(x, y) between two field
lines in z.

First, consider the case where the z-coordinates of both field
lines are monotonically increasing, as in Figure 4(a). In this
case, we can parameterize both field lines by their z-coordinate.
We define L to be the net rotation of the vector r between x and
y as z increases from 0 to h, so

L(x, y) : = 1

2π

∫ h

0

d

dz
Θ

(
x(z), y(z)

)
dz,

where Θ(x, y) = arctan

(
x2 − y2

x1 − y1

)
. (30)

As Θ is a multi-valued function, the boundary values on S0 and
Sh define L only up to an integer, i.e.,

L(x, y) = 1

2π

(
Θ

(
x(h), y(h)

) − Θ
(
x(0), y(0)

))
+ N, (31)

where N is the integer number of full windings of the joining
vector r = y − x. If the end angles remain fixed, and the field
lines remain monotonic in z, the winding number is invariant
to deformations of the field lines which forbid their crossing
(Berger 1993; Berger & Prior 2006).

In general, the field lines x and y may have respectively n and
m distinct points in z where they turn back on themselves, that
is dxz/dz = 0 or dyz/dz = 0. We split x into n + 1 sections at
these turning points and similarly split y into m+ 1 sections. For
example the blue field line in Figure 4(b) has two such turning
points, so is split into three sections. Sections xi and yj share
a mutual z-range [zmin

ij , zmax
ij ] (which could be an empty set),

and for each of these ranges we can define an angle Θ(xi , yj )
for each vector rij . For example, there are three such vectors
between the blue and red curves in Figure 4(c), because the blue
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(a) (b) (c)

Figure 4. Geometrical interpretation of the winding number. Panel (a) depicts a pair of curves whose z-components are monotonic in z. The vectors r(z) joining the
two curves are shown, along with the angle Θ between r and the x-axis at either end. Panel (b) depicts a pair curves for which we need to define multiple angles Θij ,
owing to the fact that one curve is not monotonic in z. Panel (c) depicts an example cross-section from Panel (b), showing three vectors r1j , j = 1, 2, 3 defining angles
on a particular plane Sz.

(A color version of this figure is available in the online journal.)

curve has three sections passing through this plane. Berger &
Prior (2006) defined the sum

L(x, y) :=
n+1∑
i=1

m+1∑
j=1

σ (xi)σ (yj )

2π

∫ zmax
ij

zmin
ij

dΘ
(
xi(z), yj (z)

)
dz

dz.

(32)
where σ (xi) is an indicator function marking whether the curve
section xi moves up or down in z; for example,

σ (xi) =
{

1 if dxz/dz > 0,

−1 if dxz/dz < 0.
(33)

It was shown that under this extended definition that L(x, y)
remains invariant to all deformations which vanish at the
bounding planes S0, Sh and forbid self-crossings. Importantly,
this remains true whether one or both field lines are anchored
only at one plane, or are closed in V (Berger & Prior 2006). For
example, it could be applied to any pair of curves in Figure 1(c).
It was further shown that for closed curves L has the same
integer value as the Gauss linking integral (3). We re-iterate that
the winding number is not equal to the Gauss linking integral for
open curves. Indeed, the linking number is not an invariant in
such cases, so the winding number framework for topological
classification is applicable to a much larger set of admissible
magnetic fields.

4.1. Winding Gauge

Our goal in this section is to express H as an average pairwise
winding between the field lines that make up the open magnetic
field. First, we will show this for the winding gauge of Section 3,
then we will consider what happens in a general gauge.

If A is written in the winding gauge (18), we will show that the
corresponding helicity H, which we shall denote HW, is related
to the winding numbers by

H W(B) : =
∫

V

AW · B d3x

= 1

2π

∫ h

0

∫
Sz×Sz

d

dz
Θ(x, y)Bz(x)Bz(y) d2x d2y dz.

(34)

So the helicity is the average pairwise winding between all local
portions of field lines. To relate HW to the winding of entire field

lines, consider the flux-weighted winding number

LB(x, y) : =
n+1∑
i=1

m+1∑
j=1

1

2π

∫ zmax
ij

zmin
ij

dΘ
(
xi(z), yj (z)

)
dz

× Bz(xi)Bz(yj )dz. (35)

Like L, this is invariant under deformations that vanish on S0, Sh
and forbid self crossings. (The Bz functions have the same sign
as the σ functions in (32).) Then HW may be formally written
as the average flux-weighted winding number over all pairs of
field lines x(s), y(s), or

H W(B) =
∫

LB(x, y) dx dy. (36)

In the particular case where the z-coordinates of all field lines
are monotonically increasing, HW may be written as an integral
of the original winding number L(x, y) over S0,

H W(B) =
∫

S0

L(x, y)Bz(x)Bz(y) d2x d2y. (37)

In this case, one can also write

H W(B) =
∫

S0

AW(x)Bz(x) d2x, (38)

where the flux function

AW(x) :=
∫

x(z)

AW · B
|Bz| dz (39)

is obtained by integrating the vector potential over a particular
field line x(z). Although we do not dwell on it in this paper,
notice that the flux function AW is also a physically meaningful
ideal invariant. In fact for fields with Bz > 0 everywhere it has
been shown to be more powerful than the helicity HW and able
to distinguish between topologically different magnetic fields
with the same HW (Yeates & Hornig 2013).

To prove Equation (34), consider the helicity density

AW · B = B(x) ·
(

1

2π

∫
Sz

B(y) × r
|r|2 d2y

)
, (40)
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= 1

2π

(
B⊥(x) ·

∫
Sz

Bz(y)
ẑ × r
|r|2 d2y

− Bz(x)
∫

Sz

B⊥(y) · ẑ × r
|r|2 d2y

)
, (41)

= 1

2π

∫
Sz

(
B⊥(x)

Bz(x)
− B⊥(y)

Bz(y)

)
· ẑ × r

|r|2 Bz(y)Bz(x) d2y. (42)

Now, differentiating Θ(x, y) with respect to z yields

d

dz
Θ

(
x(z), y(z)

) = r2
1

|r|2
d

dz

(
r2

r1

)
, (43)

= 1

|r|2
(

r1
dr2

dz
− r2

dr1

dz

)
, (44)

= 1

|r|2
{
r1

(
B2(x)

Bz(x)
− B2(y)

Bz(y)

)
− r2

(
B1(x)

Bz(x)
− B1(y)

Bz(y)

)}
. (45)

Here we have used that x(z), y(z) are segments of magnetic field
lines. Since ẑ × r = (−r2, r1, 0), we arrive at

AW · B = 1

2π

∫
Sz

d

dz
Θ

(
x, y

)
Bz(y)Bz(x) d2y, (46)

and integrating over V gives Equation (34).
It is important to notice that Equation (34) defines H W(B)

uniquely using only B itself, without reference to A. This re-
inforces the fact that HW is a physically meaningful quantity,
despite the absence of an explicit reference field. The interpreta-
tion of HW as an average pairwise winding number is analogous
to the interpretation of H for a closed field as a flux-weighted
average of the linking number between all pairs of field lines.
The fact that the winding number L(x, y) of a closed curve is
equal to the linking number (3) mirrors the fact that, for a closed
field, HW matches the value of H obtained with the Coulomb
gauge (1), owing to the gauge independence of H for closed
fields.

One last note in this section is the fact that the winding number
expression (34) for the topology of open fields was obtained by
Berger (1986) for a field in the half space (decaying at a sufficient
rate toward infinity). In that case it was attributed to the relative
helicity HBp (B) with a potential reference field Bp. As we shall
see in Section 5.2.2, the identification of HBp (B) with average
winding is not always true for the more general set of fields
we consider here, whilst we have seen that HW always has this
interpretation.

4.2. Other Gauges

What is the physical meaning of H in a gauge other than
the winding gauge? In such a gauge we have A′ = AW + ∇χ
for some scalar function χ . It turns out that the choice of χ
corresponds to a particular choice of frame field for defining the
angle Θ.

In (30), we defined Θ as arctan(r2/r1), where r1, r2 are
the components of r with respect to a particular orthonormal

Cartesian frame {ê1, ê2}. But suppose we choose a different
orthonormal frame {ê′

1, ê′
2}, rotated through angle θ with respect

to {ê1, ê2}. Then the components of r with respect to the new
frame are

r ′
1 = r1 cos θ − r2 sin θ, r ′

2 = r1 sin θ + r2 cos θ. (47)

Defining the angle with respect to this new frame gives a
different result

Θ′ := arctan

(
r ′

2

r ′
1

)
= arctan

(
r2/r1 + tan θ

1 − (r2/r1) tan θ

)
= Θ + θ.

(48)
On a particular cross section Sz, the new winding rate relates to
the old winding rate through

d

dz
Θ′(x, y) = d

dz
Θ(x, y) +

d

dz
θ (x), (49)

and the new winding number of the curves x and y is

L′
B(x, y) = LB(x, y) +

n+1∑
i=1

m+1∑
j=1

1

2π

×
∫ zmax

i

zmin
i

d

dz
θ (xi)Bz(xi)Bz(yj ) dz. (50)

This reduces to LB(x, y) if θ is constant (i.e., if we always
measure Θ with respect to the same frame). However, if there is
a net change in θ along the field line x(z), then the new winding
number L′

B(x, y) differs from the old LB(x, y). It should be
pointed out that the new winding measure remains invariant to
ideal motions, but now part of its value is due to a non-physical
quantity: the rotation of the frame field. An example will be
shown in Section 4.3.

To see that our frame field corresponds to a change of gauge,
we can substitute (49) into (34) to find that

1

2π

∫ h

0

∫
Sz×Sz

d

dz
Θ′(x, y)Bz(x)Bz(y) d2x d2y dz

= H W(B) +
Φ0

2π

∫ h

0

∫
Sz

d

dz
θ (x)Bz(x) d2x dz. (51)

Using Equation (7), and if the gauge function χ satisfies∫
Sh

χBz d2x−
∫

S0

χBz d2x = Φ0

2π

∫ h

0

∫
Sz

dθ

dz
Bz d2x dz, (52)

if follows that

H ′(B) = 1

2π

∫ h

0

∫
Sz×Sz

d

dz
Θ′(x, y)Bz(x)Bz(y) d2x d2y dz.

(53)
For example, given the frame field θ (x), one could take the
gauge function

χ (x1, x2, z) = z

2πh

∫ h

0

∫
Sz

d

dz
θ (y)Bz(y) d2y dz, (54)

but there are many possible gauges that will give the same
helicity as a particular frame field.

In summary, Equation (53) shows that the helicity in an
arbitrary gauge is still the average pairwise winding number,

6
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(b)(a) (c)

Figure 5. How a straight field can appear twisted when measured with respect to a rotating frame. Panel (a) depicts a pair of straight field lines (from a field B = ẑ)
and their joining vectors r(z), which have no winding. Panel (b) shows the same figure with a varying basis indicated by the black rotating arrows. The angle between
r and ê′

1 in this basis would rotate with z. Panel (c) shows two field lines of a helical field B = ẑ + (3π/R0)reφ , one of which is straight (at r = 0). The pairwise
winding of these two field lines in the original basis is the same as that of the straight field in the rotated basis.

(A color version of this figure is available in the online journal.)

but now the winding number is measured with respect to a
frame field θ (x) that varies in space. In most situations, it
seems more physically meaningful to measure winding with
respect to a fixed frame, in which case the winding gauge is
most appropriate. A different choice of gauge corresponds to
measuring winding with respect to a varying frame, whereby
even a straight magnetic field may appear tangled. This is
highlighted in the following example.

4.3. Example

To illustrate the idea of Section 4.2, consider the uniform
vertical field B = ẑ, in a circular cylinder of radius R0 and
height h. One may show by direct calculation from (18) that the
winding-gauge vector potential of this field is AW(r, φ, z) =
(r/2)êφ in standard cylindrical coordinates, and hence that
H W(B) = 0. This is consistent with the fact that all field lines
of B are vertical and untwisted, so that all pairwise winding
numbers L(x, y) vanish when measured with respect to a fixed
frame (Figure 5(a)).

However, suppose that we measure the winding numbers with
respect to a frame field θ (z) that varies in z but (for simplicity)
not in r, φ. Then each pair of field lines have the same non-zero
winding number

L′(x, y) = L0 := 1

2π

∫ h

0

d

dz
θ (z) dz, (55)

proportional to the net rotation of the frame. According to
Section 4.2, this corresponds to measuring H with the vector
potential AW + ∇χ , where

χ (z) = z

2πh

∫ h

0

∫
Sz

d

dz
θ (z)Bz d2x dz = πR2

0z

h
L0. (56)

In this new gauge, H (B) will take the non-zero value H ′(B) =
(πR2

0)2L0. For example, in Figure 5(b) we have chosen to rotate
the frame by θ (z) = 3πz (hence if h = 1,L0 = 3/2). In fact, this
is exactly the helicity one would get using the winding gauge but
for a uniformly twisted magnetic field B = ẑ + (2πL0/R0)r êφ

(cf. the calculation in Appendix A), whose field lines are helices,
as depicted in Figure 5(c).

In other words, by defining winding with respect to a twisted
frame field θ , our straight magnetic field appears twisted. If
we choose an arbitrary gauge to define H, we are effectively
changing our definition of “untwisted.” The winding gauge is
the natural choice because then HW is measuring the net winding
with respect to a straight field. We feel that this is an important
issue to highlight as it provides a geometrical insight into the
meaning of the choice of gauge, and consequently a clear reason
for showing preference to a particular gauge. If one were asked
to measure the winding of a pair of field lines, it would be
unnatural to measure the angle made by the two curves Θ with
respect to anything but a fixed frame; yet, as we shall see in the
following section, defining the relative helicity with a potential
reference field is in many cases equivalent to choosing a varying
frame whose net rotation is non-zero.

5. COMPARISON WITH RELATIVE HELICITY

We have shown that the magnetic helicity H of an open
magnetic field may be physically interpreted as an average
winding. Changing the gauge reflects a change in how the
winding numbers are measured, but there is a unique gauge that
measures winding with respect to a fixed frame: the winding
gauge introduced in Section 3. In this section, we compare
the corresponding helicity HW with the relative helicity HB′

that is typically used in solar physics. This comparison helps
us to address the question of whether the potential field Bp is
“untwisted” (in the sense of H W(Bp) = 0), and leads to a proof
of the “equivalence” of standard and relative helicity.

5.1. General relation

Let H W(B) denote the winding helicity of B as defined in
Equation (34), and let HB′(B) be the relative helicity with some
reference field B′. Then we claim that

HB′ (B) = H W(B) − H W(B′). (57)

In other words, the cross term in Equation (16) vanishes if both
A and A′ are written in winding gauge. Note that the winding
gauge is not the only gauge for which the cross-term in (16)
vanishes; for example, this property is shared by the cylindrical

7
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Figure 6. Potential field with HW �= 0, as described in Section 5.2.2. Panel (a) shows magnetic field lines and contours of Bz on S0 and Sh. Panel (b) shows contours
of AW on S0 (color shading), which integrate (weighted by Bz) to give a negative net HW.

(A color version of this figure is available in the online journal.)

helicity of Low (2011) and the gauge choice of Valori et al.
(2012). To prove (57) for the winding gauge, note that∫

V

A′ · B d3x = 1

2π

∫ h

0

∫
Sz×Sz

B(x)

· B′(y) × r
|r|2 d2y d2x dz, (58)

= − 1

2π

∫ h

0

∫
Sz×Sz

B′(y) · B(x) × r
|r|2 d2y d2x dz, (59)

= 1

2π

∫ h

0

∫
Sz×Sz

B′(x) · B(y) × r
|r|2 d2y d2x dz, (60)

=
∫

V

A · B′ d3x. (61)

Of course, the choice of winding gauge for either A or A′ does
not change the value of the relative helicity: only the choice of
reference field B′ does this. It is clear from (57) that choosing
a reference field with vanishing H W(B′) will make the relative
helicity equal to H W(B), so that it inherits the same physical
meaning.

5.2. Untwisted Reference Fields

A magnetic field with H W(B) = 0 might be described
as “untwisted” in a well-defined physical sense. If we use
such a field as the reference field in the relative helicity, then
Equation (57) shows that the relative helicity reduces to HW.
It is therefore interesting to find that the most commonly used
reference field—the potential field in V—does not always satisfy
H W(B) = 0. In this section we assume (for concreteness) that
V is a circular cylinder {0 � r � R0, 0 � φ < 2π, −L � z �
L}. For consistency, we continue to denote the lower and upper
boundaries by S0 and Sh, and the side boundary by Ss.

5.2.1. Periodic Boundary Conditions

For a periodic magnetic field, i.e., when Bz(r, φ, L) =
Bz(r, φ,−L), a simple choice of reference field with H W(B′) =
0 is the vertical field Bv(r, φ, z) = Bz(r, φ,−L)ẑ, which is
readily seen to have H W(Bv) = 0. We can use Bv to prove that
the potential field Bp also has H W(Bp) = 0 for a periodic field.

Our strategy is to prove that HBv (Bp) = 0. Since we know
that H W(Bv) = 0, we can then use Equation (57) to conclude
that H W(Bp) = 0. To calculate HBv (Bp), let

Bp = ∇
(

∂ψ

∂z
+ B0z

)
, where ∇2ψ = 0. (62)

This representation is general and lets us write the vector
potential (in cylindrical coordinates) as

Ap = ∇ × (ψ ẑ) +
rB0

2
eφ. (63)

(A similar representation in spherical coordinates was used by
van Ballegooijen et al. 2000.) For the reference field, we choose
the gauge Av(r, φ, z) = A

p
φ(r, φ,−L)eφ . In these gauges, we

have

HBv (Bp) =
∫

V

Ap · Bp d3x +
∮

∂V

Ap × A · n d3x. (64)

The first term gives∫
V

Ap · Bp d3x =
∫

V

(
∇ × (ψ ẑ) +

rB0

2
eφ

)
· ∇

(
∂ψ

∂z
+ B0z

)
d3x, (65)

=
∮

∂V

(
∂ψ

∂z
+ B0z

)
n · (∇ψ) × ẑ d2x, (66)

=
∫

Ss

(
∂ψ

∂z
+ B0z

)
∂ψ

∂φ
dφ dz, (67)

8
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=
∫

Ss

∂ψ

∂z

∂ψ

∂φ
dφ dz + B0

∫ L

−L

z

(∫ 2π

0

∂ψ

∂φ
dφ

)
dz. (68)

The last integral vanishes by periodicity in φ. The surface
integral in (64) vanishes on Ss due to our choices of gauge,
leaving ∮

∂V

Ap × A · n d3x =
∫

Sh−S0

Ap
rA

v
φ d2x, (69)

=
∫

Sh−S0

Ap
rA

p
φ d2x, (70)

=
∫

Sh−S0

1

r

∂ψ

∂φ

(
−∂ψ

∂r
+

rB0

2

)
r dφ dr, (71)

= −
∫

Sh−S0

∂ψ

∂φ

∂ψ

∂r
dφ dr

+
B0

2

∫ R0

0
r

(∫ 2π

0

∂ψ

∂φ
dφ

)
dr. (72)

Again the last term vanishes by periodicity in φ. Overall, we are
left with

HBv (Bp) =
∫

Ss

∂ψ

∂z

∂ψ

∂φ
dφ dz −

∫
Sh−S0

∂ψ

∂φ

∂ψ

∂r
dφ dr. (73)

In fact, each of these integrals vanish. To see this, note that,
since ∇2ψ = 0, the derivatives inside the integrals may each be
written as a Fourier series of the form

∂ψ

∂r
=

∑
m

fm(r, z)
(
Am sin(mφ) + Bm cos(mφ)

)
. (74)

By orthogonality of the trigonometric functions, products for
different m vanish and we are left with integrals of the form

∑
m

∫ L

−L

mgm(r, z)

(∫ 2π

0

(
Am sin(mφ) + Bm cos(mφ)

)
× (

Am cos(mφ) − Bm sin(mφ)
)
dφ

)
dz (75)

(and similar with z replaced by r). However, these integrals
also vanish when integrated between 0 and 2π . Therefore
HBv (Bp) = 0, and it follows that H W(Bp) = 0 for a periodic
field in a cylindrical domain.

5.2.2. Aperiodic Boundary Conditions

If the magnetic field is aperiodic, i.e., Bz(r, φ, L) �=
Bz(r, φ,−L), then the proof in Section 5.2.1 fails because there
is no longer a straight, vertical magnetic field that matches the
boundary conditions. In fact, for an aperiodic potential field,
one might expect that the differing boundary conditions on S0
and Sh could introduce a “twist,” in the sense of a net winding
measured with respect to a fixed frame. To show that this is in-
deed the case, we present a specific example, studied previously
by Janse & Low (2009) and Low (2011). Let Bp be the specific
field defined by the potential

ψ(r, φ, z) = J1(k0r)

k2
0

(
sinh(k0z)

sinh(k0L)
sin φ +

3 cosh(k0z)

2 cosh(k0L)
cos φ

)
,

(76)

Figure 7. Potential field in a coiled domain, calculated using a finite-element
method. Selected field lines show that this potential field is uniformly twisted,
at a rate corresponding to the writhe of the axis curve. Consequently it has
non-zero winding helicity HW(B) ≈ 0.16.

(A color version of this figure is available in the online journal.)

as in Equation (62), and let R0 = L = 1. Here J1 is a Bessel
function of the first kind, and the constant k0 must be chosen so
that Br |Ss

= 0, which requires that R0k0J0(k0R0) − J1(k0R0) =
0. We take the smallest solution k0 ≈ 1.8412. This results in
different distributions of Bz on S0 and Sh, namely

Bz(r, φ,−L) = 1.3 + J1(k0r)
(
1.5 cos φ − sin φ

)
, (77)

Bz(r, φ, L) = 1.3 + J1(k0r)
(
1.5 cos φ + sin φ

)
. (78)

These are shown in Figure 6(a), along with a selection of field
lines. The asymmetry between the two boundaries introduces
a visible “twist” into the overall field, despite the fact that
∇ × Bp ≡ 0. We have calculated the flux function AW for
this field using Equation (39), by numerically computing the
pairwise winding numbers between a sample of field lines. This
is shown in Figure 6(b). Integrating this flux function over S0,
weighted by Bz(r, φ,−L), we find that H W ≈ −0.09. For this
particular example, our numerical HW converges to the same

9
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Figure 8. Magnetic field with HW = 0, constructed according to the method in Appendix A. Panels (a), (b) show the magnetic field and AW for k = 0, while panels
(c), (d) show corresponding plots for a non-zero value of k, chosen so that HW ≈ 0. Here we took R0 = L = 1, z1 = −0.5, z2 = 0.5.

(A color version of this figure is available in the online journal.)

value as the cylindrical helicity defined by Low (2011), which
for this field is

H = −6πLJ 2
1 (k0R0)

k2
0 sinh(k0L)

. (79)

However, as we show in Appendix B, the gauge ACK used by
Low differs, in general, from AW. Therefore they are measuring
winding with respect to different frames.

In summary, this example shows that an aperiodic potential
field may have non-zero HW. In Section 5.3, we will see one
way of constructing an alternative field that has H W = 0.

5.2.3. Twisted Domains

Even if the boundary conditions are periodic, the potential
field may inherit winding due to the shape of the domain.
Figure 7 shows an example where the potential field has non-
zero HW owing to the coiled shape of the domain, despite

the fact that we have uniform boundary conditions Bz = 1
on both S0 and Sh. Up to an integer, L(x, y) is the difference
Θ(x, y)(h) − Θ(x, y)(0), and it may be seen from the field lines
plotted in Figure 7 that the field is uniformly twisted (i.e.,L(x, y)
is the same for all pairs of field lines). As this domain is tubular,
we can decompose HW into the sum of twisting T (the rotation
of field lines about the central axis of the tube), and writhing W
(a quantity measuring the self-winding of the tube’s axis); see
Berger & Prior (2006). Here we have numerically confirmed
that the helicity HW of the domain is equal to the writhe W , and
hence T = 0, meaning that the field has no internal twist about
its axis. The writhing is a property of the axis shape alone, so in
this case the potential-field helicity HW is entirely determined
by the shape of the domain. In general, aperiodic boundary
conditions and/or non-potential fields on such domains will
also have internal helicity from the twisting and braiding of
field lines along the tube’s length. It is possible for a field to

10
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have H W = 0 on such a domain, but in this case it would
require some internal twisting, unlike the cylindrical domain.

5.3. Equivalence of relative helicity and standard helicity

In what follows we once again restrict ourselves to a circular
cylinder V = {0 � r � R0, 0 � φ < 2π, −L � z � L}
to provide clarity to the arguments. To substantiate our claim
that the standard magnetic helicity and the relative helicity have
equal physical meaning, we can use Equation (57) to prove that
the gauge choice in H (B) and the choice of B′ in HB′(B) are
equivalent. Our result may be formulated as follows.

1. Given any reference field B′, we can always find a gauge in
which H (B) = HB′(B).

2. Conversely, given an arbitrary gauge for H (B), we can
always find B′ such that HB′(B) = H (B).

To prove part 1, note that in any gauge we can write

H (B) = H W(B) +
∫

Sh

χBz d2x −
∫

S0

χBz d2x, (80)

where A = AW + ∇χ . From Equation (57) we know that
HB′(B) = H W(B) − H W(B′), so we can simply choose the
gauge to be

χ = −
(

z + L

2LΦ0

)
H W(B′), (81)

which is a function of z only. To prove part 2, note that we can
give H (B) an arbitrary real value by changing gauge. Applying
Equation (57) again, we must then show the existence of a
reference field B′ such that H W(B′) takes any arbitrary value.
We show one way to explicitly construct such a reference field
in Appendix A.

One application of the technique in Appendix A is to
construct a reference field with vanishing HW. To illustrate
such a construction, let V be the same circular cylinder as in
Section 5.2, and take the same boundary conditions (77), (78)
as for the potential field in Section 5.2.2. That potential field was
“twisted,” with H W �= 0. By choosing the arbitrary constant k
appropriately in the field Bk (see Appendix A), we can construct
an alternative magnetic field with H W = 0. For this example,
we have chosen z1 = −0.5, z2 = 0.5, and f (z) = exp(−100z2).
The constructed fields with k = 0 and with the (roughly)
optimum value of k ≈ 4.14 are shown in Figure 8. This field
is likely not the only possible field with H W = 0 (even its
topology, as captured by the AW distribution, is likely not
unique). Nor is it likely to be a stable equilibrium. It is presented
here simply to prove that a field with H W = 0 exists for arbitrary
boundary conditions on the cylinder. Note that while H W = 0,
indicating that the average pairwise winding of the field lines
vanishes, it is clear that AW �= 0, so that individual field lines
do see a net winding.

6. CONCLUSIONS

To summarize, we have shown that, for open magnetic
fields between two parallel planar boundaries, the helicity
H has a physical meaning in any gauge: it is the average
pairwise winding number of magnetic field lines with respect
to some frame field. We have shown how this gauge freedom
is equivalent to the freedom of choice of reference field in
the commonly used relative helicity for such fields. Moreover,
there is a unique choice of gauge that always measures winding
with respect to a fixed frame. This is the “winding” gauge of

Equation (18). We propose that the helicity in this gauge (HW) is
a physically motivated measure of the topological linking in an
open magnetic field, that is uniquely defined and does not depend
on choice of an arbitrary reference field. In effect, it always
measures winding with respect to a straight field. As we have
demonstrated in Section 4.2, from a geometrical perspective
any other choice is unnecessary as it adds a contribution to the
helicity arising from the rotation of the reference frame used
to measure winding. This quantity has no physical meaning.
Using the relative helicity with a potential reference field may
or may not measure the same helicity HW, depending on the
boundary conditions. If it differs from HW then the relative
helicity measure necessarily includes a contribution due to a
rotating reference frame.

As a result, we make the following practical recommendation.
In magnetic fields having more than one boundary with Bn �= 0,
one should calculate HW, rather than using the relative helicity
with potential field as a reference. For a cylindrical domain
whose end boundaries S0 and Sh are the same shape, and if
the boundary conditions on Bn are the same on both ends (i.e.
are periodic), then the two helicities are equal. This is because
the potential field itself then has vanishing HW in such a field,
meaning that it is untwisted with respect to a straight field.
However, if these conditions are not met then the potential field
will generally have H W �= 0, so that the relative helicity does
not match HW. For example, we have shown that this may arise
if the boundary conditions are aperiodic (Section 5.2.2) or if the
domain boundary has a complex shape (5.2.3). We envisage that
the absolute measure provided by HW will be particularly useful
when analyzing the time evolution of magnetic configurations
where Bn on the boundary is changing, or when comparing
different magnetic fields. An example of the latter would be
the comparison of different magnetic active regions in the solar
corona (Valori et al. 2012).

In practical terms, there are several ways to calculate H W(B)
for a given magnetic field B. Using (57), one can calculate
the relative helicity with respect to a reference field known
to have vanishing HW (for example, Appendix A shows how
to construct such a reference in the cylinder). Or, one can
evaluate the vector potential by numerically evaluating (18),
then computing

∫
V

AW · B d3x. But the most straightforward
method will generally be to utilize the physical interpretation
and calculate HW directly from B using (34), evaluating pairwise
winding numbers of field lines. We have implemented this
numerically for the examples in Figures 6 and 8.

It is interesting to observe that there are some similarities
between the winding gauge choice and the gauges chosen by
Hornig (2006) and by Low (2011) in their suggested “universal”
or “absolute” helicities. Hornig (2006) fixes H with the gauge
condition that ∇⊥ · A = 0 everywhere on the boundary ∂V
(here ∇⊥ denotes the component of the gradient tangential to
the boundary). On S0 and Sh, this condition is satisfied by AW

(this is seen directly from Equation (21)), but it is not satisfied
in general by AW on Ss. Low (2011) defines an absolute helicity
H (for V a cylinder) by taking the gauge

ACK = ∇ × ψ ẑ + ηẑ, (82)

which corresponds to a Chandrasekhar–Kendall representation
of B for functions ψ , η. Our AW may also be written in this
form with

ψ = − 1

2π

∫
Sz

Bz(y) log |r| d2y, η = AW
z . (83)
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However, Low applies specific boundary conditions to uniquely
define ψ and η, and these are not the same as for AW in general
(see Appendix B). Another gauge condition, suggested by Valori
et al. (2012), is that Az = 0; this does not uniquely specify the
gauge, and the resulting freedom is used to make HBp ≡ H .
However, we show in Appendix B that the winding gauge AW

may have AW
z �= 0, so in general this measure differs from HW.

We conclude in general that these proposed gauges measure the
field-line winding in a non-physical rotating frame, yielding (in
general) a different helicity measure from HW.

We conclude with some remarks about the generality of
our results. We have assumed that our domain V is simply
connected and lies between two parallel planar boundaries S0,
Sh. Furthermore, these parallel boundaries are the only part of
the boundary where we allow Bn �= 0. These restrictions are
necessary so that the winding gauge AW is well-defined. In
making the restriction that S0 and Sh are planar and parallel,
we are essentially identifying a distinguished direction (ẑ)
that is perpendicular to the cross-sections Sz on which AW is
defined. This distinguished direction is also needed for defining
winding numbers L(x, y), along with a choice of coordinate
frame {ê1, ê2} on each cross-section. Extending the definitions
of AW or L to a domain with curved boundaries S0, Sh would
require choosing a foliation of curved cross-sectional surfaces
throughout V, complicating the definition of what it means
for two curves to have non-zero winding number. We hope
to address these complications in future.

A.R.Y. was supported by STFC consortium grant
ST/K001043/1 to the universities of Dundee and Durham, and
C.P. by an Addison-Wheeler postdoctoral fellowship. We thank
the referee for interesting suggestions that have improved the
paper. Figure 7 used iFEM (Chen 2009) and DistMesh (Persson
& Strang 2004).

APPENDIX A

CONSTRUCTION OF A MAGNETIC FIELD
WITH ARBITRARY H W

In this Appendix, we give one method for constructing a
magnetic field B in a circular cylinder V to match arbitrary
normal distributions on S0 and Sh which have a non-zero net
flux, such that H W(B) is an arbitrary real number. Denote the two
normal distributions by Bz|S0 = g0(x, y) and Bz|Sh

= gh(x, y).
We assume that Br |Ss

= 0, so conservation of flux requires
that

∫
S0

g0 d2x = ∫
Sh

gh d2x. We begin by assuming that Bz can
only have one sign on both boundaries, that is to say g0(x, y)
and gh(x, y) are either both positive definite or both negative
definite.

The basic idea of our construction is to divide V into three
distinct subdomains V1 = V ∩ {z | z ∈ [−L, z1]}, V2 =
V ∩ {z | z ∈ [z1, z2]}, and V3 = V ∩ {z | z ∈ [z2, L]}. We
utilise the property that H W is additive in z, i.e.,

H W(V ) = H W(V1) + H W(V2) + H W(V3). (A1)

This follows from the winding-number interpretation in
Section 4. In V2 we will choose a magnetic field whose winding
helicity is known and can be controlled. In V1 and V3 we will
show how to construct magnetic fields that map the boundary
flux distributions (on S0 and Sh) to uniform flux distributions
on the intermediate surfaces Sz1 and Sz2 , so as to match on to
the chosen field in V2. These two fields will contribute some

fixed H W(V1) + H W(V3) that depends only on g0, gh, and not on
the choice of field in V2. By choosing the field in V2 appropri-
ately, we will obtain any desired H W(V2) and hence any desired
H W(V ). An example magnetic field computed with this method
is shown in Figure 8.

1. Volume V2. In this region, we shall set

B(V2) = B0 + Bk, (A2)

where B0 = B0ẑ and Bk = kf (z)(−x2ê1 + x1ê2). Here k is an
arbitrary constant, f (z) is an arbitrary function of z (for now),
and (x1, x2, z) are Cartesian coordinates. This field corresponds
to an overall twist that varies in z. Let A0 and Ak be vector
potentials for B0 and Bk in the winding gauge. Then

H W(V2) =
∫

V2

(A0 + Ak) · (B0 + Bk) d3x. (A3)

From the definitions of B0, Bk and the winding gauge, we have
immediately that A0 · B0 = 0 and Ak · Bk = 0. We also find that

A0 · Bk = kB0f (z)

2π

∫
Sz

x2(x2 − y2) + x1(x1 − y1)

(x1 − y1)2 + (x2 − y2)2
d2y,

(A4)

Ak · B0 = kB0f (z)

2π

∫
Sz

−y2(x2 − y2) − y1(x1 − y1)

(x1 − y1)2 + (x2 − y2)2
d2y.

(A5)

Therefore, we get an explicit expression for the winding helicity

H W(V2) = πkB0R
4
0

2

∫ z2

z1

f (z) dz. (A6)

In particular, by varying k we may obtain any real value for
H W(V2). We shall choose the function f (z) so that Bk matches
smoothly to zero at z = z1 and z = z2.

2. Volumes V1 and V3. It suffices to consider V1 (a similar
construction will work in V3). Our strategy is to first prescribe
Bz to be some function λ(r, φ, z) that interpolates between
λ(r, φ,−L) = g0(r, φ) and λ(r, φ, z1) = B1 (constant), then
find suitable Br, Bφ such that ∇ · B = 0. (We work in polar
coordinates.) For this, it is convenient to write B = λv, where
v = vr (r, φ, z)er + vφ(r, φ, z)eφ + ẑ. Then from ∇ · B = 0
we get

1

λ

dλ

dz
= −∇ · v, (A7)

where the derivative is taken along field lines r(z), φ(z) (cf.
Yeates et al. 2012). The chain rule gives

∂ ln λ

∂r
vr +

1

r

∂ ln λ

∂φ
vφ +

∂ ln λ

∂z
= −1

r

∂

∂r
(rvr ) − 1

r

∂vφ

∂φ
. (A8)

Since we have one equation for the two unknowns vr , vφ , there
is some freedom remaining. In order to satisfy Br = 0 on the
side boundary Ss, we shall simply choose vr ≡ 0 throughout V.
(This means that all field lines of our constructed field will lie
on concentric cylinders.) In that case, (A8) reduces to

∂ ln λ

∂φ
vφ + r

∂ ln λ

∂z
= −∂vφ

∂φ
. (A9)

12



The Astrophysical Journal, 787:100 (13pp), 2014 June 1 Prior & Yeates

At fixed r, z, this is an ordinary differential equation, readily
solved to find

vφ(r, φ, z) = λ(r, φ, z)

λ(r, 0, z)

(
vφ(r, 0, z) − 1

λ(r, 0, z)

∫ φ

0
r
∂λ

∂z
dφ

)
.

(A10)
For each r and z, the value vφ(r, 0, z) is an arbitrary constant;
we may set all of these to zero. Finally, we shall impose the
additional requirement on λ that ∂λ/∂z|Sz1

= 0. This will
ensure that vφ = 0 on Sz1 , so that our magnetic field in
V1 continuously matches to that in V2. Our construction is
completed by finding a suitable interpolant λ(r, φ, z). For each
r, φ, we may choose λ to be the unique quadratic function Q(z)
such that Q(−L) = g0(r, φ), Q(z1) = B1, Q′(z1) = 0. This is

λ(r, φ, z) = B1 +
(z1 − z)2

(z1 + L)2

(
g0(r, φ) − B1

)
. (A11)

Finally we note that, since the value of the helicities on H W(V1)
and H W(V3) have no dependence on k, we can simply choose k
such that H W(V ) takes any desired value.

We now relax our assumption on the sign of the functions
g0 and gh, allowing both signs, although our construction
will require that the net flux

∫
S0

g0 d2x is non-zero. The field
representation λv is not valid where the function λ is zero
and consequently our argument on the domains V1 and V3 for
mapping the Bz distributions from g0 and gh to a constant
on the planes Sz1 , Sz2 breaks down. To remedy this, we
observe that the argument has no essential dependence on the
relative size of the three domains. Thus we shrink the domain
V1 ∪ V2 ∪ V3 to allow for an additional domain at each end,
i.e., V0 = V ∩ {z | z ∈ [−L, za]}, V1 = V ∩ {z | z ∈ [za, z1]},
V2 = V ∩ {z | z ∈ [z1, z2]}, V3 = V ∩ {z | z ∈ [z2, zb]} and
V4 = V ∩ {z | z ∈ [zb, L]}. On the domain V0 we set B to the
unique potential field satisfying Br = 0 on Ss, Bz = g0 on S0,
and Bz = B1 (constant) on Sza

. Similarly, on V4 we set B to be
the equivalent potential field with Bz = B1 on Szb

. The same
construction as before may then be used on V1, V2, and V3. Since

H W(V ) =
4∑

i=0

H W(Vi), (A12)

and only H W(V2) depends on k, we can simply alter k to obtain
any desired value of H W(V ).

APPENDIX B

DEMONSTRATING ACK �= AW WITH LOW’S
SPECIFICATION OF ψ

The gauge choice used by Low (2006, 2011) in (82) is such
that the function η ≡ ACK

z is zero on the boundary of the discs
Sz. We demonstrate here that there is at least one admissible
field on the cylinder for which AW

z �= 0 at some point on the
boundary Ss, so that ACK �= AW. The field

B = −x2
2 ê1 + x1x2ê2 + (B0 − x1z)ẑ. (B1)

is divergence free and tangent to the side boundary of
the cylinder. At the particular point (0,−R0) on the
side boundary, one may show by direct calculation that
AW

z (0,−R0) = R3
0/8.
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