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We show that Solar System tests can place very strong constraints on K-mouflage models of gravity,
which are coupled scalar field models with nontrivial kinetic terms that screen the fifth force in regions
of large gravitational acceleration. In particular, the bounds on the anomalous perihelion of the Moon
imposes stringent restrictions on the K-mouflage Lagrangian density, which can be met when the
contributions of higher-order operators in the static regime are sufficiently small. The bound on the
rate of change of the gravitational strength in the Solar System constrains the coupling strength β to be
smaller than 0.1. These two bounds impose tighter constraints than the results from the Cassini
satellite and big bang nucleosynthesis. Despite the Solar System restrictions, we show that it is
possible to construct viable models with interesting cosmological predictions. In particular, relative to
ΛCDM, such models predict percent-level deviations for the clustering of matter and the number
density of dark matter haloes. This makes these models predictive and testable by forthcoming
observational missions.
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I. INTRODUCTION

K-mouflage is one of the three types of screening
mechanisms [1], together with chameleon and
Vainshtein, for scalar modifications of gravity with a
conformal coupling to matter [2]. Roughly speaking,
these three mechanisms can be distinguished by what
triggers their implementation: K-mouflage operates in
regions where the gravitational acceleration is large
enough; chameleons [3,4] are at play when the
Newtonian potential is large; and Vainshtein [5] is active
when the spatial curvature becomes significant. For
the cases of K-mouflage and Vainshtein, Newtonian
gravity can be preserved deep inside the so-called
K-mouflage or Vainshtein radii [6,7], which are defined
as the distances from the center of a spherical source
within which the nonlinearities of the scalar field
Lagrangian become significant and, therefore, the screen-
ing effects come into play. These two mechanisms share
in common the fact that the screening efficiency (roughly
determined by the size of these radii) depends solely
on the properties of the gravitational source, as opposed

to chameleons, for which there is also a dependence
on the density of the environment where the sources
live.
The existence of screening mechanisms, however, gives

only the models a chance to pass Solar System tests of
gravity [8]. In other words, it is still necessary to investigate
further the conditions that make the screening mechanisms
efficient enough to cope with the current observational
bounds. For instance, even well within the K-mouflage
radius, the total force may still exhibit a non-Newtonian
component (i.e. a radial dependence that differs from 1=r2),
which albeit small, could still be large enough to induce
detectable perturbations in the orbits of planets and moons.
Currently, Lunar Laser Ranging experiments [9–12], con-
strain the anomalous perihelion of the Moon at the 10−11

level, which can then be used to constrain the K-mouflage
Lagrangian density term, KðχÞ [cf. Eq. (3)]. The function
KðχÞ is a nonlinear function (to ensure screening) of the
kinetic energy term χ ¼ −ð∂φÞ2=2M4, where φ is the
K-mouflage scalar field andM4 is the dark energy scale. In
this paper, we shall use the anomalous perihelion of the
Moon to determine the constraints on the shape of KðχÞ for
static configurations of φ. The static regime is that relevant
for very small scales like the Solar System [13], which in
our metric sign convention (see next section) implies χ < 0.
In this regime, we shall also make use of the bounds
imposed by the Cassini satellite [14] on the magnitude of
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fifth forces in the Solar System and check that we satisfy
the constraints provided by laboratory experiments.
On cosmological scales, the dynamics of φ become

important, χ > 0, which broadens the range of tests that can
be used to constrain K-mouflage models. On the one hand,
in the Jordan frame, where matter couples to gravity
minimally, Newton’s constant becomes locally time de-
pendent due to the cosmological evolution of the scalar
field [15]. We shall show that this can be used to place
constraints on the coupling strength β [cf. Eq. (7)] by using
the results from the same Lunar Laser Ranging experiment
mentioned above, which currently constrains the rate of
change of the gravitational strength at the 10−12 yr−1 level
[16]. On the other hand, the formation of large-scale
structure is also affected by the K-mouflage field
[17–19]. Although the precision of cosmological data is
not as good as that from local tests, one can still impose
some constraints by requiring that the cosmological behav-
ior should not differ too much from standard ΛCDM.
In this paper, we first identify the requirements on the

static (χ < 0) and dynamical (χ > 0) branches for
K-mouflage models to comply with the current data, and
then we attempt to design KðχÞ functions that interpolate
between these two branches in observationally and theo-
retically viable manners. A main result of this paper is that,
although the small-scale constraints do limit significantly
the functional forms allowed for KðχÞ, it is nevertheless
possible to construct functions that exhibit percent-level
modifications on the growth of structure relative to ΛCDM.
This is mainly because on larger scales the K-mouflage
screening effect becomes less efficient, which can have an
impact on the nonlinear matter power spectrum and halo
mass functions, as we show using the results from semi-
analytical models of structure formation. The size of the
differences to ΛCDM are within the ballpark of future
observational missions such as Euclid [20] or LSST [21],
which makes these models predictive and therefore
testable.
The paper is organized as follows. In Sec. II, we

introduce K-mouflage models and we summarize their
main properties. In Sec. III, we focus on the small-scale
regime (χ < 0), which applies to Solar System scales, and
where we consider the constraints from the anomalous
perihelion of the Moon and the result from Cassini. We
briefly recall the main aspects of the cosmological evolu-
tion and growth of large-scale structure in K-mouflage
models in Sec. IV. In Sec. V, we analyze the connection
between the time dependence of the gravitational strength
and the cosmological evolution of φ. In Sec. VI we
summarize all the constraints and we build models that
satisfy them. Section VII is devoted to the analysis of the
cosmological dynamics of both the background and the
matter density perturbations in the models constructed in
Sec. VI. Finally, we conclude in Sec. VIII. We discuss
superluminality and causality issues in the Appendix.

II. THE K-MOUFLAGE MODEL

Following previous works [13,17–19], we consider
scalar field models where the action in the Einstein frame
has the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ LφðφÞ

�

þ
Z

d4x
ffiffiffiffiffiffi
−~g

p
~Lmð ~ψ ðiÞ

m ; ~gμνÞ; ð1Þ

where g is the determinant of the Einstein-frame metric

tensor gμν, and ~ψ ðiÞ
m are various matter fields defined in the

Jordan frame. This also defines the Einstein-frame
Newton’s constant as 8πG ¼ M−2

Pl . The K-mouflage scalar
field φ is explicitly coupled to matter through the Jordan-
frame metric ~gμν, which is given by the conformal rescaling

~gμν ¼ A2ðφÞgμν; ð2Þ

and ~g is its determinant (here and throughout, quantities
with a tilde are defined in the Jordan frame). In this paper,
we consider models with a nonstandard kinetic term

LφðφÞ ¼ M4K

�
X
M4

�
with X ¼ −

1

2
∂μφ∂μφ: ð3Þ

We use the signature ð−;þ;þ;þÞ for the metric. Here,M4

is an energy scale of the order of the current energy density
of the Universe (i.e., set by the cosmological constant), to
recover the late-time accelerated expansion of the Universe.
It is convenient to introduce the dimensionless kinetic

energy χ by,

χ ¼ X
M4

¼ −
1

2M4
∂μφ∂μφ: ð4Þ

Then, as described in Ref. [17], the canonical behavior
[i.e., K ∼ χ ∝ −ð∂φÞ2=2], with a cosmological constant
ρΛ ¼ M4, is recovered at late time in the weak-χ limit if we
have

χ → 0∶ KðχÞ≃ −1þ χ þ…; ð5Þ

where the dots stand for higher-order terms. We shall
impose this limit on all the models that we analyze. The
Klein-Gordon equation that governs the dynamics of the
scalar field φ is obtained from the variation of the action (1)
with respect to φ

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p ∂μφK0� − d lnA
dφ

ρE ¼ 0; ð6Þ

which differs from the usual Klein-Gordon equation by
having an extra term due to the coupling of the scalar field
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to matter, and where ρE ¼ −gμνTμν is the Einstein-frame
matter density. A prime denotes partial differentiation with
respect to χ, e.g. K0 ¼ dK=dχ. For simplicity, we assume
that β ¼ MPld lnA=dφ is a constant, which implies

AðφÞ ¼ eβφ=MPl : ð7Þ

The normalization of the first two terms in Eq. (5) only
defines the normalization of the constant M4 and of the
field φ (except for its sign), and therefore it does not imply
any loss of generality. Similarly, the sign of β in Eq. (7) can
be absorbed in the sign of φ, and therefore we can choose
β > 0 without any loss of generality.
For observationally interesting cases, we have jA − 1j ≲

0.1 (see for instance Refs. [17–19] or the discussion in
Sec. V). Therefore, higher-order terms in lnAðφÞ would
only make small quantitative changes with a negligible
impact on our conclusions. Next, we shall first analyze the
solutions to the Klein-Gordon equation for spherically
symmetric static configurations. Then we investigate the
solutions in a cosmological setting, where the dynamics of
φ become important.

III. LOCAL DYNAMICS

In this section we study the model predictions for Solar
System scales, where we work in the Einstein frame. We
assume the fields are static, which is a valid approximation
since we consider time scales that are much shorter than the
cosmological ones. In this case, Āðφ̄Þ, associated with the
slow running of the cosmological background, is approx-
imately constant and the Einstein and Jordan frames are
equivalent.1 To simplify notations we drop the subscript
“E” in this section and we denote c as the speed of light.
One can split the scalar field as

φlocalðr; tÞ ¼ φ̄ðtÞ þ φðrÞ; ð8Þ

where φ̄ is the uniform value associated with the cosmo-
logical background and φðrÞ is the perturbed component on
which we focus in this section. The cosmological back-
ground plays no role in this section, apart from setting the
value of the coupling factor β≃ d ln Ā=dφ̄.

A. Static case

For a source with density ρ, the static Klein-Gordon
equation becomes (see Ref. [13] for details)

∇r · ð∇rφK0Þ ¼ βρ

c2MPl
; ð9Þ

with χ ¼ −c2ð∇rφÞ2=ð2M4Þ, from which one can obtain a
first-order algebraic equation for ∇rφ

∇rφK0 ¼ 2βMPl

c2
ð∇rΨN þ∇r × ~ωÞ; ð10Þ

where ΨN is the Newtonian potential, given by the usual
Poisson equation

∇2
rΨN ¼ 4πGρ; ð11Þ

and ~ω is a divergence-free potential vector (which must be
determined along with φ).
The right-hand side of the Poisson equation also involves

the fluctuations of the scalar field energy density δρφ, but as
shown in Ref. [13], this would only introduce negligible
effects compared to the fluctuations of the matter density.
The spatial fluctuations of the coupling function AðφÞ

can also be neglected in most cases [see Refs. [13,18] and
Eq. (54) below], except in the Euler equation or the
geodesic equation (19) below, which involve the gradient
of AðφÞ that gives rise to the fifth force associated with
the scalar field gradient. In a similar fashion, we work in the
weak gravitational field and nonrelativistic limit, so that the
metric fluctuations ΨN only appear in the Euler equation or
the geodesic equation (19) below through the gradient
∇rΨN. For the spherical configurations we consider here,
~ω ¼ 0, which allows one to analyze the dynamics of the
system and the scalar force due to φ in a more straightfor-
ward manner.
The fifth force generated by the K-mouflage field is

given by [13]

Fφ ≡ −
βc2

MPl
∇rφ ¼ −

2β2

K0 ∇rΨN: ð12Þ

The K-mouflage screening mechanism relies on the fact
that, in the nonlinear regime, i.e. deep inside the
K-mouflage radius, the factor K0 becomes large, which
suppresses the fifth force relative to the Newtonian one,
FN ¼ −∇rΨN (note that jFφj ∼ jFN=K0j). The implemen-
tation of the screening can be illustrated in a few steps (see
also Ref. [13]). For a spherical matter distribution ρðrÞ with
mass profile

MðrÞ ¼
Z

r

0

dr04πr02ρðr0Þ; ð13Þ

the Klein-Gordon equation (10) can be written as

dφ
dr

K0 ¼ βMðrÞ
c2MPl4πr2

; with χ ¼ −
c2

2M4

�
dφ
dr

�
2

:

ð14Þ

We define the “K-mouflage screening radius” RK by
[13,18]

1In Sec. V, we shall relax the static approximation when we
study the slow time variation of Newton’s gravitational strength
in the Jordan frame.
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RK ¼
�

βM
4πcMPlM2

�
1=2

; ð15Þ

whereM ¼ MðRÞ is the total mass of the object of radius R.
Then, by introducing the rescaled dimensionless variables
x ¼ r=RK , mðxÞ ¼ MðrÞ=M and ϕðxÞ ¼ φðrÞ=φK , with

φK ¼ M2RK=c; ð16Þ
the integrated Klein-Gordon equation (14) becomes

dϕ
dx

K0 ¼ mðxÞ
x2

; with χ ¼ −
1

2

�
dϕ
dx

�
2

; ð17Þ

which can also be written as

ffiffiffiffiffiffiffiffiffi
−2χ

p
K0ðχÞ ¼ mðxÞ

x2
: ð18Þ

A unique solution of the Klein-Gordon equation is always
guaranteed when

ffiffiffiffiffiffiffiffiffi
−2χ

p
K0ðχÞ is a monotonic decreasing

function over χ < 0, which grows up to þ∞ as χ → −∞.
This is assumed in the following2 and it implies
K0 þ 2χK00 > 0. A test particle outside the matter distri-
bution evolves according to the nonrelativistic equation of
motion

d2r
dt2

¼ −∇rΨN −
βc2

MPl
∇rφ; ð19Þ

which becomes the same as in standard gravity, provided
one interprets the equation with a total potential that is the
sum of the fifth force one δΨ

δΨ ¼ βc2

MPl
φ; ð20Þ

with the Newtonian potential ΨN. For a spherical body we
can consider radial trajectories and the scalar field gradient
is given by Eq. (17)

dφ
dr

¼ φK

RK

mðxÞ
x2K0 : ð21Þ

Outside the spherical body we have mðxÞ ¼ 1 and we
obtain the equation of motion

d2r
dt2

¼ −
GM
r2

�
1þ 2β2

K0ðχðrÞÞ
�
: ð22Þ

This equation shows that the standard gravitational law
acquires extra terms proportional to β2=K0. This can be
captured by defining an effective gravitational strength

GeffðrÞ ¼
�
1þ 2β2

K0ðχðrÞÞ
�
G ð23Þ

which depends on the distance from the central object. As
the test particle gets deeper inside the K-mouflage radius,
then m=x2 ≫ 1 and K0ðχðrÞÞ becomes larger. If K0ðχðrÞÞ
becomes large enough, then the correction term in Eq. (23)
becomes negligible and Newton’s law is retrieved. Next,
we investigate the conditions for this correction to be
small enough to evade the constraints on the anomalous
perihelion of the Moon set by Lunar Laser Ranging
experiments [22].

B. Perihelion constraints

1. Constraint on the kinetic function

The explicit dependence on r of the correction to
Newton’s law implies that orbits are perturbed and in
particular that there is an anomalous perihelion for objects
like the Moon orbiting around the Earth. The perihelion
angular advance is given by

δθ ¼ πr
d
dr

�
r2

d
dr

�
ε

r

��
; ð24Þ

where ε is the ratio between the fifth-force and Newtonian
potentials

ε ¼ δΨ
ΨN

¼ βc2φ
MPlΨN

¼ −
βc2rφ
MPlGM

; ð25Þ

and where we have used ΨN ¼ −GM=r. This gives
explicitly

ε

r
¼ −

βc2φ
MPlGM

; ð26Þ

and, using Eq. (14), one gets the variation

d
dr

�
ε

r

�
¼ −

2β2

K0r2
: ð27Þ

This implies that the anomalous perihelion is given by

δθ ¼ πr
d
dr

�
−2β2

K0

�
¼ 2π

β2

K02 xK
00 dχ
dx

; ð28Þ

where, we recall, x ¼ r=RK . Using the fact that, outside the
spherical source the Klein-Gordon equation (18) yields

2See Ref. [13] for a more detailed study of this case, and the
relaxation of the scalar field to its equilibrium state, as well as a
discussion of badly behaved cases where there are no well-
defined static profiles, i.e. when

ffiffiffiffiffiffiffiffiffi
−2χ

p
K0ðχÞ is not a monotonic

function that decreases from þ∞ to zero, as χ varies from −∞ to
zero.
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ffiffiffiffiffiffiffiffiffi
−2χ

p
K0ðχÞ ¼ 1

x2
¼

�
RK

r

�
2

; ð29Þ

then, its derivative with respect to χ gives the spatial
variation of χ as

dx
dχ

¼ −
x
4χ

c2s
c2

; ð30Þ

where we have defined the speed of scalar spherical waves
around the massive object [13]

c2s ¼
K0 þ 2χK00

K0 c2 > c2: ð31Þ

This yields our final result for the anomalous perihelion
advance

δθ ¼ −8π
β2

K0
χK00

K0
c2

c2s
; ð32Þ

as expressed solely in terms of χ and of the Lagrangian
function K and its derivatives. This expression contains the
factor β2=K0, which, as we have seen in Eq. (23) controls
the amplitude of the fifth force. The Cassini satellite results
constrain this amplitude in the Solar System in such a way

that 2β
2

K0 < 10−5 [14]. On the other hand, the Lunar Ranging
experiment implies for the Earth-Moon system that
jδθj ≤ 2 × 10−11. Thus, the Lunar Ranging constraint is
much stronger than the Cassini bound and will prove to be
the main source of constraints on the form of KðχÞ on the
static branch χ < 0 (cf. Sec. VI below). The only sensible
way of complying with this bound is to reduce χK00=K0 in
the static case, which also gives cs ≃ c. This can be
achieved by suppressing the contribution of the nonlinear
terms in KðχÞ when χ < 0.

2. Constraint on the running of the coupling β

Throughout this paper, we focus on the case of a constant
coupling strength β, which corresponds to the exponential
coupling function (7). However, we may also consider
more general coupling functions where β would now
depend on time and space through the variations of the
scalar field φ. This would not change our results for
the kinetic function KðχÞ and the typical amplitude of
the coupling β, because jφ=MPlj (which goes to zero at high
redshift) does not grow beyond 0.5 for observationally
interesting models, as seen in Eqs. (48) and (54) below.
Hence the variations of β are small in realistic models.
On the other hand, we can investigate whether the

very small bound on the anomalous perihelion,
jδθj ≤ 2 × 10−11, provides interesting constraints on the
possible amount of running of β. For a general coupling

function AðφÞ the fifth-force potential reads as δΨ ¼
c2 lnðA=ĀÞ and the perihelion advance (24) gives

δθ ¼ πr
d
dr

�
−
r2c2

GM
β

MPl

dφ
dr

�
; ð33Þ

where we used againΨN ¼ −GM=r. If β depends on space,
the Klein-Gordon equation (9) cannot be exactly integrated
as in Eq. (14). However, the fluctuations of β can be
neglected at first order, and hence we can still approximate
dφ=dr by Eq. (14). This yields

δθ ¼ πr
d
dr

�
−
2β2

K0

�
¼ −4π

β

K0 r
dβ
dr

þ 2π
β2

K02 r
dK0

dr
:

ð34Þ

The second term is the one that was already obtained in
Eq. (28) for constant β. Focusing on the first term and using
again Eq. (14), we obtain the contribution to the anomalous
perihelion due to the spatial variation of β as

δθ ¼ 8π
ΨN

c2
β2β0

K02 : ð35Þ

Here we defined

β ¼ MPl
d lnA
dφ

; β0 ¼ MPl
dβ
dφ

¼ M2
Pl
d2 lnA
dφ2

;

ð36Þ

the dimensionless derivative of the coupling with respect to
φ=MPl. We shall see in Sec. VI C that, because of the small
prefactor ΨN=c2, the bound on the perihelion advance only
gives a very loose bound on the derivative β0, which does
not provide useful information on the coupling function
AðφÞ. This is consistent with the fact that fluctuations of the
scalar field φ and of A can be neglected in most places,
except as the source of the fifth force that explicitly
involves the gradient of A.

C. Laboratory tests

Measurements of the orbits of planets in the Solar
System constrain the deviations from general relativity,
through Eq. (23) or Eq. (32). In addition, laboratory
experiments, such as the ones using atom interferometry
and measuring the acceleration induced by a test mass of a
few grams over distances of a few centimeters, also
constrain the amplitude of the fifth force in Eq. (23) to a
10−4 accuracy [23,24]. Thus laboratory experiments place
constraints on 2β2=K0 in the static case, but in an even more
nonlinear regime than the Cassini spacecraft or the Lunar
Ranging experiment. Indeed, laboratories on the surface of
the Earth are further inside the K-mouflage radius of the
Earth than the Moon.
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IV. COSMOLOGY

Before analyzing the constraints on K-mouflage models
obtained from regimes where the dynamics of φ are
important (χ > 0), we first briefly recap the equations
relevant for the cosmological evolution of the background
and of linear perturbations. For further details, we refer the
reader to Ref. [17] for a study of the background expansion
history, to Ref. [18] for a study of large-scale structure
formation and to Ref. [19] for a study of the model
predictions for the cosmic microwave background
(CMB) temperature and lensing potential power spectra.

A. Background

Considering only spatially flat universes, the Einstein
equations lead to the usual Friedmann equations [17],

3M2
PlH

2 ¼ ρ̄E þ ρ̄φ; ð37Þ

−2M2
Pl
_H ¼ ρ̄E þ ρ̄φ þ p̄φ ð38Þ

where ρE, ρφ and pφ, are, respectively, the matter and scalar
field energy densities and pressure in the Einstein frame:

ρ̄φ ¼ −M4K̄ þ _̄φ2K̄0; p̄φ ¼ M4K̄: ð39Þ

The overbar denotes uniform background quantities, and
the dimensionless field χ [Eq. (4)] simplifies as

χ̄ ¼ _̄φ2

2M4
: ð40Þ

It is convenient to introduce the rescaled matter density ρ,

ρ ¼ A−1ρE; ð41Þ

which satisfies the standard conservation equation. The
Klein-Gordon equation (6) is now given by

d
dt
ða3 _̄φK̄0Þ ¼ −

dĀ
dφ̄

ρ̄a3: ð42Þ

We can also define an effective scalar field energy density

ρeffφ ¼ ρφ þ ½AðφÞ − 1�ρ; ð43Þ

which satisfies the standard conservation equation (the
pressure pφ is not modified [17])

_̄ρeffφ ¼ −3Hðρ̄effφ þ p̄φÞ: ð44Þ

Under these definitions, the Friedmann equations (37)–(38)
become

3M2
PlH

2 ¼ ρ̄þ ρ̄effφ ; ð45Þ

−2M2
Pl
_H ¼ ρ̄þ ρ̄effφ þ p̄φ: ð46Þ

We define also the time-dependent cosmological
parameters

Ωm ¼ ρ̄

ρ̄þ ρ̄effφ
; Ωeff

φ ¼ ρ̄effφ

ρ̄þ ρ̄effφ
; weff

φ ¼ p̄φ

ρ̄effφ
:

ð47Þ

At early times, we have φ̄ → 0 and AðφÞ is normalized
by Að0Þ ¼ 1 [17]. For observationally interesting models,
we have A ∼ 1 (jA − 1j≲ 0.1) until today [17,19] [see also
the discussion on the constraints from big bang nucleo-
synthesis (BBN) below]. From Eq. (42), one can then write

_̄φ ∼ −
βρ̄t

MPlK̄0 ;
βφ̄

MPl
∼ −

β2

K̄0 : ð48Þ

B. Linear perturbations

On large scales, the evolution modes, D�ðηÞ, of small
linear density fluctuations satisfy the equation [18]

d2D
dη2

þ
�
1 − 3weff

φ Ωeff
φ

2
þ ϵ2

�
dD
dη

−
3

2
Ωmð1þ ϵ1ÞD ¼ 0;

ð49Þ
where η ¼ ln a is the number of e-foldings. The functions
ϵ1 and ϵ2 are time dependent only and they are given by

jϵ1j ¼
����Ā − 1þ 2Āβ2

K̄0

����∼
���� β2K̄0

����; ð50Þ

and

ϵ2 ¼
d ln Ā
dη

¼ β

MPl

dφ̄
dη

∼ −
β2

K̄0 : ð51Þ

In Eq. (50) the sign of ϵ1 cannot be determined a priori
because the terms ðĀ − 1Þ≃ βφ̄=MPl and 2Āβ2=K̄0 are
typically of opposite signs and of the same order. In
Eq. (49), ϵ1 mimics the effects of a modified Newton’s
gravitational strength on the linear growth of structure,
while ϵ2 appears as a friction term. Both these terms are of
order β2=K̄0, just like the case of φ̄ in Eq. (48).
The reader might note that whereas in the cosmological

linear equation (49) Newton’s gravitational strength
appears to be amplified by a factor ð1þ ϵ1Þ, in the static
case (23) we found a factor ð1þ 2β2=K0Þ and in Eq. (52)
below we have a slow drift given by A2. These differences
come from the fact that they apply to different regimes,
which also involve different sets of approximations. This
explicitly shows that modifications of gravity, as defined
from the Lagrangian of the theory, can have subtle effects
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that are not captured by a unique rescaling of Newton’s
gravitational strength.
More precisely, the linear evolution equation (49) applies

to the cosmological density field in the Einstein frame,
where the energy-momentum tensor is not conserved
because of the time-dependent conformal mapping (2) to
the Jordan frame that defines the matter Lagrangian. This
slow drift between the Einstein and Jordan frames gives rise
to the factors Ā in Eqs. (50) and (51). In contrast, the static
equation (23) applies to small-scale systems over time
scales that are short as compared with the Hubble time, so
that the cosmological variation of Ā and the expansion of
the Universe can be neglected. Then, nonconservation
terms of the form ρd ln Ā=dt can be neglected and there
is no difference between the Einstein- and Jordan-frame
density fields [thus, with Ā≡ 1 Eq. (51) gives ϵ2 ¼ 0 and
Eq. (50) gives back ϵ1 ¼ 1þ 2β2=K̄0, as in Eq. (23), except
that K̄0 is the cosmological background value of the kinetic
function whereas in Eq. (23) it is the local perturbed value
associated with the compact object]. Finally, Eq. (52) gives
the cosmological drift of Newton’s coupling in the Jordan
frame, as opposed to the Einstein-frame evolution equa-
tion (49) (where by definition Newton’s coupling is indeed
constant) and to the static equation (23) (where cosmo-
logical drifts are neglected as compared with the system
time scale, such as the orbital period of the planet). Thus,
these differences come from the fact that we consider
different time and length scales, and different frames.

V. TIME VARIATION OF G

In Sec. III, we have neglected the effects of the
cosmological evolution on the predictions for the Solar
System, since we considered time scales that are much
shorter than the Hubble scale. However, in K-mouflage
models, the conformal mapping of Eq. (2) implies that in
the Jordan frame, where matter couples minimally,
Newton’s gravitational strength, ~G, should be time varying.
This can be understood as follows. Let us consider the
conformal transformation from the Einstein to the Jordan
frame. Since, the Ricci scalar and

ffiffiffiffiffiffi−gp
transform, respec-

tively, as R ¼ A2 ~Rþ…, (where the dots stand for addi-
tional terms associated with derivatives of A), andffiffiffiffiffiffi−gp ¼ A−4 ffiffiffiffiffiffi

−~g
p

, then one has ~G ¼ A2G ¼ A2=8πM2
Pl.

That is, ~G becomes time varying due to the background
evolution of Āðφ̄Þ. This time variation of Newton’s gravi-
tational strength in the Jordan frame can be constrained in
two ways: (a) through the comparison between the local
value of ~G and that at the time of BBN, and (b) through the
impact on the trajectories of planets and moons in the Solar
System.
Starting with the BBN case, a value of Newton’s constant

which would be different during BBN compared to the one
inferred from local measurements would be tantamount to a

change in the Hubble rate and therefore would lead to a
discrepancy in the formation of the elements. Such a
change cannot exceed about ten percent [25,26]. In the
Jordan frame we have

~G ¼ A2ðφÞG ≈
�
1þ 2βφ

MPl

�
G; ð52Þ

which implies the bound

β

MPl
jφ̄BBN − φlocalj≲ 0.05: ð53Þ

At the time of BBN, we have φ̄BBN ¼ φ̄ðz ∼ 1010Þ≃ 0. The
local value of the scalar field is given by Eq. (8). In Sec. III,
we neglected the contribution from the background part, φ̄,
since we were interested only in the additional r depend-
ence in the force law. Here, however, we should take it into
account, and from Eq. (48) we have βφ̄=MPl ∼ β2=K̄0 ∼ β2

(because K̄0 ≃ 1 at low redshifts). From Eq. (12), we have
that the perturbed part of the scalar field, φðrÞ, is of order
βφðrÞ=MPl ∼ β2ΨN=K0c2 ≪ β2, because K0 ≫ 1 in the
Solar System (see Sec. VI A below) and ΨN=c2 ≪ 1

(in the Solar System we have ΨN=c2 ∼ 10−6). Altogether
we have

jφðrÞj ≪ jφ̄ðtÞj and AðφlocalÞ≃ Ā; ð54Þ
and Eq. (53) implies

β2 ≲ 0.05: ð55Þ
A second type of constraint on the rate of change of the

gravitational strength comes from the change with time of
the trajectories of planets and moons. This has been
monitored by the Lunar Laser Ranging experiments for
the Earth-Moon system [16]. Recalling that ~G≃ Ā2G, then
its rate of change is given by

d ln ~G
d~t

¼ 2ϵ2
1þ ϵ2

~H ≈ 2ϵ2 ~H; ð56Þ

where ~H and ~t are the Hubble rate and the time in the
Jordan frame [which are related to the Einstein-frame ones
by ~H ¼ Hð1þ ϵ2Þ=Ā and d~t ¼ Ādt], and we have
used Eq. (51). Hence we find a direct link between the
behavior of cosmological density perturbations and the
Lunar Ranging constraint. The current bound gives that
jd ln ~G=d~tjnow ≲ 10−12 yr−1 [16]. In particular, taking as a
reference value h ¼ 0.67 (although this value is not critical
for the conclusions) we find that the constraint on ϵ2 reads

jϵ2jnow ≲ 7.3 × 10−3: ð57Þ
From Eq. (51) we can see that this gives a constraint on the
ratio β2=K̄0 today. In fact, this is a strong constraint on the
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coupling β of the K-mouflage field to matter, which is
independent of the details of the kinetic function KðχÞ. At
late times, χ̄ goes to zero, and we typically have χ̄ ≪ 1
today, as well as, K0 ≃ 1, from Eq. (5). Therefore, we find

β ≲ 10−1; ð58Þ
which is a tighter bound than the BBN constraint of
Eq. (55).
In the Einstein frame, the variation of G with time is

replaced by a variation of the masses of fundamental
particles as mψ ¼ Ām0

ψ where m0
ψ is the mass in the

Jordan frame. In particular, we can see that the ratio
mψ=MPl of fundamental particle masses over the Planck
scale is frame invariant. For bound states such as the protons,
and as long as the QCD phase transition can be modeled in
the Jordan frame where no coupling of gluons to the scalar
field is present, the masses in the Einstein frame are still
proportional to Ā. This guarantees that the proton-to-
electron mass ratio mp=me is independent of time and no
constraint on K-mouflage can be drawn from the bounds on
the variations of mp=me from quasar absorption lines.
From Eqs. (50) and (51), ones notes that ϵ1 and ϵ2 are of

the same order. Consequently, the bound that Lunar
Ranging tests place on ϵ2, translates also into similar
bounds to ϵ1, which highlights an interesting connection
between Solar System constraints and the growth of
structure on cosmological scales. In particular, from the
above bounds one expects deviations from standardΛCDM
to be of the order of a few percent [18,19]. On the other
hand, the Lunar Ranging test does not constrain the past
behavior of the model, when χ̄ deviates from zero.
Therefore one must still investigate the cosmological
impact of the functional form of KðχÞ when χ ≳ 1. This
shall be done in part of the discussion of the next section.

VI. CONSTRAINING THE MODELS

In this section, we summarize the constraints on
K-mouflage models discussed above and also other stabil-
ity conditions presented previously in the literature
[13,17,18]. We also build models that satisfy them.

A. Combined constraints

The cosmological regime corresponds to χ > 0, with
χ → þ∞ at early times and χ → 0 at late times. To avoid
ghosts we must have K0 > 0 and K0 þ 2χK00 > 0 [17], as
fluctuations δφ around the cosmological background φ̄
propagate with a speed c̄s given by

c̄2s ¼
K̄0

K̄0 þ 2χ̄K̄00 c
2 < c2: ð59Þ

This is formally the inverse of Eq. (31), but in Eq. (59)
χ ¼ χ̄ > 0 is the homogeneous time-dependent

cosmological background, whereas in Eq. (59) χ < 0 is
the small-scale static solution. The function

ffiffiffi
χ

p
K0ðχÞ must

also increase monotonically up to þ∞, so that we have a
well-defined cosmological behavior up to high redshifts
[13,17], which again implies K0 þ 2χK00 > 0. Requiring
that the dark energy component becomes negligible with
respect to the matter density at early times implies thatKðχÞ
grows faster than χ (e.g., as a power law χm withm > 1; see
Ref. [17]). The marginal case, where ρ̄φ grows as 1=t2 in
the early matter era (like the matter density) but is a small
fraction of the matter density, corresponds to a constant K̄0

with K̄0 ≫ 1. Moreover, one can also impose that the
growth of large-scale structures should not differ too much
from ΛCDM. A reasonable maximum deviation can be
placed at the few-percent level today, which leads to the
bound β2=K̄0 ≲ 10−2, from Eqs. (50)–(51). This requires
β2 ≲ 10−2 because K̄0 ≃ 1 today. This bound also ensures
that the BBN constraint, Eq. (55), is satisfied. Therefore,
the cosmological constraints are

cosmological constraints∶ semiaxis χ > 0;

K0 > 0; K0 þ 2χK00 > 0; ð60Þ

ffiffiffi
χ

p
K0ðχÞ → þ∞ for χ → þ∞; ð61Þ

K0 ≫ 1 for χ ≫ 1; β ≲ 0.1: ð62Þ

The small-scale static regime corresponds to χ < 0. To
avoid singular behaviors and to ensure well-defined sol-
utions for any matter density profiles, we must have K0 > 0
and

ffiffiffiffiffiffi−χp
K0ðχÞ monotonic and unbounded over χ < 0 [13]

[recall also the discussion about Eq. (18)]. This latter
condition also implies K0 þ 2χK00 > 0 and ensures that the
c2s > 0, where cs given in Eq. (31) is the propagation speed
around a static background. Thus, we have the very general
small-scale conditions:

small-scale constraints∶ semiaxis χ < 0;

K0 > 0; K0 þ 2χK00 > 0; ð63Þ

ffiffiffiffiffiffi
−χ

p
K0ðχÞ → þ∞ for χ → −∞: ð64Þ

Note that instead of
ffiffiffiffiffiffi−χp

K0ðχÞ → þ∞ at infinity it may be
sufficient to go to infinity at a finite negative value of χ. In
addition, the Solar System dynamics corresponds to
χ < −χ�, as we are far in the nonlinear regime, where
we denote by ð−χ�Þ the transition between the linear
regime, where K0 ≃ 1 and the kinetic function is governed
by the first two terms of the expansion (5), and the
nonlinear regime where K0 ≫ 1:
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small-scale highly nonlinear regime∶ χ < −χ�;

with − χ� < 0 and K0ð−χ�Þ ≫ 1: ð65Þ

The Cassini bound on the amplitude of fifth forces in the
Solar System implies that the scalar field should be
sufficiently screened locally. From Eq. (23) this requires
that

Solar System screening∶
β2

K0 ≤ 10−5 for χ ∼ χs:s: ð66Þ

whereK0 must be evaluated at values χs:s: that correspond to
the Solar System regime, that is, at distances of order one
AU from the Sun. This is well within the K-mouflage radius
of the Sun itself, which means that χs:s: < −χ� and large
values of K0 in this regime are consistent with the require-
ment K0ð0Þ ¼ 1. More precisely, using that M4 ∼ ρ̄de0 is
roughly the mean dark energy density today, then we obtain
from Eq. (15) that the K-mouflage radius of an object of
mass M is given by

RKðMÞ≃
ffiffiffiffiffiffiffiffi
βM
M⊙

s
3470 AU: ð67Þ

Thus, for β ∼ 0.1, the K-mouflage radius of the Sun is
RKðM⊙Þ ∼ 1097 AU, which is much larger than the size of
the orbits of all Solar System major bodies (Neptune and
Pluto being at about 30 and 40 AU). Moreover, the
integrated Klein-Gordon equation (29) gives for the
Solar System regime

ffiffiffiffiffiffiffiffiffiffiffi
−χs:s:

p
K0

s:s: ∼ 106: ð68Þ

In practice, the constraint (66) means that we require

K0 ≫ 1 for χ ≪ −χ�; ð69Þ

which automatically ensures that the general conditions
(64) are satisfied. Alternatively, one could also have very
small values of the coupling parameter β, but this would
yield a cosmology virtually indistinguishable from ΛCDM,
rendering the K-mouflage scenario less interesting. In
particular, if we assume β ∼ 0.1, so that deviations from
the ΛCDM cosmology are not completely negligible, we
require K0 > 103 for χ ≪ −χ�.
From the constraints on the anomalous perihelion of the

Moon, Eq. (32), we have

Moon perihelion∶
β2

K0
jχK00j

K0 þ 2χK00 ≤ 8 × 10−13

for χ ∼ χm:e:; ð70Þ

where χm:e:. corresponds to the Earth-Moon system. The
K-mouflage radius of the Earth is about 2 AU, and the

distance between the Earth and the Moon is
d≃ 2.6 × 10−3 AU, which gives ½RKðM⊕Þ=d�2 ∼ 0.6×
106. Therefore, the Sun and the Earth have about the same
impact on the scalar field configuration at the location of
the Moon. In practice, this means that the value of χ
associated with the perihelion constraint is roughly the
same as that associated with the Cassini bound (66):

χm:e: ∼ χs:s:: ð71Þ

In other words, the constraints of Eqs. (66) and (70) both
apply to the regime set by Eq. (68).
Laboratory experiments give a constraint on the

Newtonian force of order 10−4, which means from
Eq. (23) that we have

laboratory∶
β2

K0 ≤ 10−4 for χ ∼ χlab: ð72Þ

In this case, the screening is induced by the gravitational
field of the Earth. Since RKðM⊕Þ≃ 2 AU, we have at the
surface of the Earth ½RKðM⊕Þ=R⊕�2 ∼ 2 × 109, and
Eq. (29) gives

ffiffiffiffiffiffiffiffiffiffi
−χlab

p
K0

lab ∼ 109: ð73Þ

This means that laboratory experiments constrain the
K-mouflage model much further into the nonlinear regime
than the Cassini or Lunar Ranging probes, with typically
jχlabj ≫ jχs:s:j. As described in Sec. VII A below, as explicit
models that pass all constraints we shall consider simple
models where K0 converges to a large constant value K� in
the nonlinear regime jχj ≫ χ�. Then, the constraint (72) on
K0 is less stringent but close to the Solar System one (66).
Finally, the Lunar Laser Ranging constraint on the local

rate of change of Newton’s gravitational strength, Eq. (58),
implies

bound on the time dependence of ~G∶ β ≤ 0.1: ð74Þ

B. Possible kinetic functions

From Eqs. (62) and (74), we note that the cosmological
and local (Earth-Moon system) constraints on the coupling
parameter happen to be of the same order, β ≲ 0.1. In terms
of the kinetic function KðχÞ, the cosmological and small-
scale constraints apply to different branches, χ > 0 and
χ < 0, respectively. Therefore, there seems to remain some
freedom in the choice of the function K. The main
requirements are that K0 should be large in both limits
χ → �∞, which ensures screening in both the early-time
cosmology and the small-scale dynamics. However, in
addition to this, we also have that in the small-scale regime,
around χs:s: < 0, the kinetic function is very strongly
constrained by the perihelion bound, Eq. (70).

K-MOUFLAGE GRAVITY MODELS THAT PASS SOLAR … PHYSICAL REVIEW D 91, 123522 (2015)

123522-9



In order for the function KðχÞ to satisfy the above
requirements, one cannot avoid some degree of fine-tuning.
A simple way to see this is to note that power-law behaviors
cannot easily match the constraints. For instance, the Solar
System regime, Eq. (68), requires a large degree of non-
linearity for KðχÞ, far away from the low-order expansion
of Eq. (5) which would give K0 ∼ 1 and ð−χs:s:Þ ∼ 1012

from Eq. (68), and would fail to satisfy the screening
criterion, Eq. (66). This suggests that ð−χs:s:Þ ≫ 1 is far in
the nonlinear regime of the function KðχÞ, where K0 is also
much greater than unity. However, this is not sufficient to
satisfy the perihelion constraint, Eq. (70). Thus, consider-
ing a power-law behavior K0ðχÞ ∼ ð−χÞm, with m > 0, we
have jχK00j ∼ K0. The perihelion constraint, Eq. (70), is
much stronger than the Cassini constraint, Eq. (66), and
we obtain for β ∼ 0.1 the lower bound K0 > 1010. Then,
Eq. (68) would actually imply ð−χs:s:Þ < 10−8. Therefore,
such a power-law regime would need to occur very close to
the origin, with K0 going from 1 to 1010 as χ goes from 0 to
−10−8, that is, χ� < 10−8. This would be an extremely
finely tuned kinetic function KðχÞ.
To achieve this quick growth of K0ðχÞ, we may

consider functions that diverge at a finite negative
value −χ� < 0, such as K0ðχÞ ∼ ðχ þ χ�Þ−m with m > 0.
Then, saturating the upper bound of Eq. (70) with the
condition of Eq. (68) gives ðχ þ χ�Þ ∼ 10−10 (for m ¼ 1)
and χ� ∼ 10−8. Therefore, including singular kinetic func-
tions does not remove the need for extreme fine-tuning and
again requires a very quick departure from the low-χ
expansion (5).
The way out is to suppress the second derivative K00, that

is, to look for kinetic functions such that

χ ≪ −χ�∶ jχK00j ≪ K0: ð75Þ

This means that lnðK0Þ must grow much more slowly than
lnð−χÞ for χ → −∞. Typically, this corresponds to models
where K0 converges to a constant (although a logarithmic
growth could also be possible),

χ → −∞∶ K0 → K� ≫ 1; ð76Þ

with the relation (68) giving K� ∼ 106=
ffiffiffiffiffiffiffiffiffiffiffi−χs:s:

p
. Then, the

Cassini bound, Eq. (66), implies for β ∼ 0.1

if β ∼ 0.1∶ K� > 103 and χ� < 106; ð77Þ

which also ensures that the laboratory constraint (72) is
satisfied. On the other hand, if we require ð−χs:s:Þ≳ 1, so
that the transition from K0ð0Þ ¼ 1 to K� does not take place
in a very small interval, to avoid extreme fine-tuning, we
have the upper bound

if χ� ≳ 1∶ K� < 106: ð78Þ

Thus, we obtain a finite range for the possible values of K�.
In particular, it happens that too large values of K0 are ruled
out if we wish to avoid too much fine-tuning. Moreover,
Eq. (70) yields

jχs:s:K00
s:s:j

K0
s:s:

≲ 10−10K0
s:s: < 10−4; ð79Þ

which means that we must have converged to the asymp-
totic value of K0 at the 10−4 level at least.
Admittedly, there still remains some tuning, as we

require that K0ðχÞ goes from unity at χ ¼ 0 to an asymp-
totic value between 103 and 106 at large negative χ. This
transition, however, does not need to be very sharp, as it can
take place over an interval that can be as large as χ� ∼ 106.
Nevertheless, it still requires introducing a parameter K� ≳
103 for the asymptotic constant slope of the kinetic
function. We note also that this cannot be obtained using
a logarithmic growth ofK0, which, although consistent with
Eq. (75), as lnðχ�Þ < lnð106Þ, it is not sufficient to generate
factors of order 103.

C. Running of the coupling β

The Newtonian potential of the Sun at the orbit of the
Earth is ΨN=c2 ≃ −10−8 (the potential of the Earth at the
orbit of the Moon gives the smaller value −10−11). Then,
Eq. (35) gives the constraint

β2

K02 jβ0j ≤ 8 × 10−5: ð80Þ

For β ¼ 0.1 and K� ¼ 103 this yields

jβ0j < 8000: ð81Þ
Therefore, in contrast with the kinetic function KðχÞ, the
bound on the perihelion advance does not provide useful
constraints on the shape of the coupling function AðφÞ
[generic functions of the form Aðβφ=MPlÞ would have
β0 ∼ β2 ∼ 10−2]. This is due to the small prefactor ΨN=c2

that appears in Eq. (35).

VII. EXPLICIT MODELS THAT PASS
ALL CONSTRAINTS

A. Constructing models

A family of models which satisfy the properties obtained
in Sec. VI B is given by

K0 ¼ 1þ K�
χn

χn� þ χn
; n even integer; ð82Þ

which is well defined over the full real axis (hence the
choice of even integers for the exponent n) and goes to K�
at large jχj, with the constraints
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β ¼ 0.1; K� ≥ 103; χ� <
1012

K2�
: ð83Þ

This ensures that the Cassini bound (66) is satisfied with
jχs:s:j > χ� from Eq. (68), as well as the laboratory
constraint (72). Then, the perihelion constraint (70) yields

χ� <
�
K�
n

10−10
�

1=n 1012

K2�
: ð84Þ

As seen in Eq. (78), we should have K� < 106 if we wish to
avoid tuning χ� to values that are smaller than unity. This
agrees with Eq. (84), which in such cases is more stringent
than the last equation in Eq. (83). In particular, this gives

n ¼ 2∶ χ� <
107

K3=2
�

; n → ∞∶ χ� <
1012

K2�
: ð85Þ

In the remainder of this section we focus on the simplest
model with n ¼ 2, which corresponds to

KðχÞ ¼ −1þ χ þ K�½χ − χ� arctanðχ=χ�Þ�; ð86Þ

with the low-χ expansion

χ → 0∶ KðχÞ ¼ −1þ χ þ K�
3

χ3

χ2�
−
K�
5

χ5

χ4�
þ…: ð87Þ

We consider the following three models:

ðIÞ∶K� ¼ 103; χ� ¼ 1; ð88Þ

ðIIÞ∶ K� ¼ 104; χ� ¼ 1; ð89Þ

ðIIIÞ∶ K� ¼ 103; χ� ¼ 102; ð90Þ

all with β ¼ 0.1 and which satisfy the small-scale con-
straints of Eqs. (83) and (85), as well as the cosmological
constraints. In particular, in each case we have

ðIÞ∶ χs:s: ∼ −106; β2per < 500;
c2s
c2

− 1 ∼ 10−12;

ð91Þ

ðIIÞ∶ χs:s: ∼ −104; β2per < 0.5;
c2s
c2

− 1 ∼ 10−8;

ð92Þ

ðIIIÞ∶ χs:s: ∼ −106; β2per < 0.05;
c2s
c2

− 1 ∼ 10−8;

ð93Þ

where χs:s:. is obtained from Eq. (68) and βper is the upper
bound from Eq. (70). Thus, β ¼ 0.1 is consistent with the

perihelion constraint for these three models. We can also
note that the speed of scalar waves given by Eq. (31) is
always very close to the speed of light (in the Solar
System). Therefore, superluminality in the scalar sector
is highly suppressed.
We show these kinetic functions in Fig. 1, as a function

of jχj. The models (I) and (II) correspond to a late transition
from the K0 ≃ K� to K0 ≃ 1 regimes, with two possible
values for K�. Therefore, during most of the cosmological
evolution K0 ≫ 1, which means that the scalar field is
screened and departures from ΛCDM are small. The model
(III) corresponds to an early transition, so that in a large
range of redshifts we have K0 ≃ 1 and deviations from
ΛCDM are of order β2 ¼ 10−2. These behaviors are
explicitly shown in the middle panel of Fig. 2.
For simplicity we consider the simple rational function

of Eq. (82), which is even and leads to the same behavior in
the two regimes χ → �∞. However, there is a great
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FIG. 1 (color online). Upper panel: Kinetic function KðχÞ for
the arctan models of Eq. (86), with ðK�; χ�Þ ¼ ð103; 1Þ (I, blue
and crosses), ðK�; χ�Þ ¼ ð104; 1Þ (II, brown and squares),
ðK�; χ�Þ ¼ ð103; 102Þ (III, green and circles), and the cubic
model of Eq. (94) with K0 ¼ 1 (IV, red and continuous line).
We show 1þ K, which is an odd function of χ, with 1þ K ≥ 0
for χ ≥ 0. Lower panel: Derivative K0ðχÞ for the same models. It
is an even function of χ.
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freedom in the positive range χ > 0, the only constraint
being that K0ðχÞ ≫ 1 for χ ≫ 1. For instance, we could add
to Eq. (86) any function KþðχÞ that is negligible for
ð−χÞ ≫ 1 and satisfies K0þð0Þ ¼ 0, K0þðχÞ þ K� ≫ 1 at
large χ, such as KþðχÞ ¼ expðχ3Þ.

For comparison with previous works [13,17–19], we also
consider the purely cubic model

ðIVÞ∶ KðχÞ ¼ −1þ χ þ K0χ
3: ð94Þ

This can also be seen as an effective model for moderate
values of χ, probed by cosmology, while leaving the large
negative regime ð−χÞ ≫ 1 unspecified, where the function
KðχÞ needs to be modified as described above to satisfy
Solar System constraints. This model is also shown in
Fig. 1, for the case K0 ¼ 1. For most of the cosmologically
relevant values of χ, 0 ≤ χ ≲ 10, the phenomenology of
model (IV) lies between that of models (I) and (III).

B. Theoretical consistency

We have seen above that the models (I)–(III) satisfy the
quantitative constraints associated with cosmological and
Solar System tests. In addition, they satisfy the generic
theoretical consistency requirements. The four models
(I)–(IV) have an even derivativeK0ðχÞ > 0 and the functions
W�ðyÞ ¼ yK0ð�y2=2Þ are monotonically increasing up to
infinity over y ≥ 0. As shown in Refs. [13,17], this ensures
that these models are well behaved. More specifically, a
static scalar field profile exists for any matter density profile
[branch W−ðyÞ; see Eq. (18)] and the background Klein-
Gordon equation can be integrated up to arbitrarily high
redshifts where ρ̄ → ∞. Moreover, there are also no ghosts
or small-scale instabilities. This corresponds to the con-
straints (61)–(61) and (63)–(64).When the functionK0ðχÞ is
even these two sets of constraints actually coincide.
As noticed in Eq. (31), the speed of scalar waves

around static backgrounds is greater than the speed of
light. As seen from Eqs. (91)–(93), it is actually extremely
close to c in the highly nonlinear regime, which applies to
the Solar System. Superluminality is sometimes associated
with possible violations of causality, although such patho-
logical behaviors can also be encountered within general
relativity (for exact solutions such as the Gödel metric that
do not describe realistic metrics); see the discussions in
Refs. [27] and [28]. We argue in the Appendix that space-
time does not have closed time-like loops for realistic
K-mouflage models, in particular for the models (I)–(III) of
Eqs. (88)–(90). Therefore, the small superluminality in the
Solar System does not lead to causality problems.

C. Cosmological evolution

From the Klein-Gordon equation (6), one can show [17]
that the time derivative of the cosmological background
value φ̄ of the scalar field scales with time as

_̄φ ∼ −
β

MPlK0 ρt; and χ̄ ∼
β2

K02
H2

H2
0

: ð95Þ

At late times we have
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FIG. 2 (color online). Upper panel: Variation of χ̄ðzÞ as a
function of the redshift for the models of Fig. 1. All models have
β ¼ 0.1 Notice the universal behavior of χ̄ at small redshift given
by Eq. (95) with K0 ≃ 1. Middle panel: Variation of K̄0 ¼
dK=dχðχ̄Þ as a function of the redshift for the same models.
Lower panel: Relative deviation of the Hubble rate from the
ΛCDM prediction for the same models.
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z → 0∶ K̄0 ≃ 1; χ̄ ∼ β2 ¼ 10−2; ρ̄φ ≃ ΩΛ0

Ωm0

ρ̄;

ð96Þ

where ΩΛ0 and Ωm0 are the dark energy and matter
cosmological parameters today. At early times we have,
for the models (I), (II), and (III),

z ≫ 1∶ K̄0 ≃ K�; χ̄ ∼
β2

K2�

H2

H2
0

; ρ̄φ ∼
β2

K�
ρ̄:

ð97Þ

Thus, in the early matter era, the ratio ρ̄φ=ρ̄ goes to a small
constant, which in our case is constrained by the Cassini
bound (66) to be smaller than 10−5 (this is because we
assume the two regimes χ → �∞ have the same functional
form). Thus, there remains a very small residual fraction of
the scalar field energy density. For the model (IV) of
Eq. (94), where K0ðχÞ goes to infinity for χ → þ∞,
ρ̄φ=ρ̄ → 0 at high redshift. In all cases, ρ̄φ=ρ̄rad goes to
zero at high redshift in the radiation-dominated era.
At low redshifts, where χ̄ falls below χcan ¼ χ�=

ffiffiffiffiffiffi
K�

p
, we

have K̄0 ≃ 1 and the model behaves like a canonically
normalized scalar field coupled to matter in the presence of
a cosmological constant. At higher redshifts, the nonlinear
structure of the scalar field Lagrangian comes into play and
K̄0 increases until it reaches K� when χ̄ is of order χ�. Then,
the scalar field shows a K-mouflage-type screening, due to
the large derivative prefactorK0 that freezes the fluctuations
of the scalar field. In terms of uniform background values,
this screening still leads to the suppression of χ̄ and ρ̄φ by
factors 1=K̄02 and 1=K̄0.
The deviations from general relativity and ΛCDM

predictions are mostly sensitive to the ratio β2=K0.
Therefore, they should increase from models (II) to (I)
to (III). Indeed, in models (I) and (II) the derivative K0
quickly reaches the large value K�, because χ� ¼ 1, while
in model (III) it remains of order unity over a large interval
around χ ¼ 0, because χ� ≫ 1. The deviations from
ΛCDM are larger for model (I) than model (II) because
of the smaller value of K� in the former.
In Fig. 2, we plot the redshift evolution of χ̄ and K̄0, and

the deviations of the Hubble rate from ΛCDM. The figure
shows that, as expected, the deviations from ΛCDM
increase from models (II) to (I) to (III). Also, in agreement
with Fig. 1, the predictions of the cubic model (IV) lie in
between the arctan models (I) and (III), as it gives an
intermediate growth of K̄0 as χ̄ increases at higher z. At
z → 0 all models give the same value for χ̄, in agreement
with Eq. (95), because χ̄ ∼ β2 ≪ 1 and K̄0 ≃ K0ð0Þ ¼ 1.
The deviations from ΛCDM for the Hubble rate peak
around z ∼ 1. All models are normalized to the same
Hubble constant H0 today and they also recover the same

Einstein–de Sitter expansion at high redshift in the matter
era, before dark energy becomes important.
The upper panel of Fig. 3 shows that the four models

satisfy the Lunar Ranging constraint on d ln ~G=d~t as the
values of ϵ2 are below 0.01, in agreement with Eq. (51).
This, however, does not prevent the linear growth rate
f ¼ d lnDþ=d ln a today from being different in the differ-
ent models, as shown in the lower panel. The deviations
from ΛCDM of the linear fluctuations follow the same
pattern as for the background cosmology. We also find that
a maximal deviation of order 2β2 is obtained for model (III)
with a large value of χ�, which behaves like a free scalar
field coupled to matter in the recent past. The greatest
deviations from ΛCDM, at fixed β, would be obtained for a
model where K0 ≃ 1 over all relevant redshifts. The results
from such a model would be similar to those of model (III).
In Fig. 4, we show the relative deviations from ΛCDM of

the nonlinear matter power spectrum and the halo mass
function. The method used for the computation of the
power spectrum was presented in Ref. [18]. It combines
one-loop perturbation theory and a halo model and it has
been tested against numerical simulations [29] of other
modified gravity scenarios such as fðRÞ, dilaton and
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FIG. 3 (color online). Upper panel: Variation of ϵ2ðzÞ as a
function of the redshift for the models of Fig. 1. Lower panel:
Relative deviation of the growth factor from the ΛCDM
prediction for the same models.
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symmetron models. The power spectrum deviates on large
scales by a constant which can reach a few percent. This
reflects the boost in the linear growth of structure depicted
in the lower panel of Fig. 3. In the nonlinear regime, mode
coupling helps to boost the deviations from standard
ΛCDM even further. In the figure, the relative difference
starts to decrease after k ∼ 1 h=Mpc, which is a conse-
quence of having used the same halo concentration
parameters in the halo model formalism [18]. In reality,
the K-mouflage field should also affect the concentration of
dark matter haloes, which should translate in modifications
of the small-scale clustering power as well. The enhanced
gravitational strength should lead to a deepening of the
gravitational potentials of the haloes, making them there-
fore more concentrated (see e.g. Refs. [30,31] for an
example of this in the context of Galileon and nonlocal
models of gravity, respectively). This would increase the
relative difference of Pk at high-k values. On the other
hand, the enhanced forces may also make particles inside
haloes move faster. This can cause the halo to expand
slightly, and therefore, to become less concentrated (see
e.g. Ref. [32] for an example of this in coupled quintes-
sence models, which are similar to unscreened K-mouflage

models). A detailed investigation of this effect involves
running dedicated N-body simulations which is left for
future work.
For the halo mass function, we take into account the

effect of K-mouflage through the spherical collapse model
[18]. The amplification of gravity by the fifth force implies
that a smaller initial density fluctuation δLi at a high redshift
zi is needed to produce a collapsed halo of a given mass M
at low z, as compared with the ΛCDM reference. Moreover,
such objects are less rare because of the faster growth of
structures (e.g., of the matter power spectrum). Both effects
amplify the large-mass tail of the halo mass function, as
seen in the lower panel of Fig. 4. More explicitly, the mass
function is written in terms of the usual scaling variable
ν ¼ δL=σðMÞ, with the characteristic Gaussian tail nðMÞ ∼
e−ν

2=2 at large mass, and the fifth force implies both a
smaller critical threshold δL and a greater rms density
fluctuation σðMÞ. The mass function is slightly decreased
at low masses because of mass conservation, as the integral
over the halo mass function is normalized so as to give back
the mean density of the Universe. The lower panel of
Fig. 4 shows that K-mouflage models can exhibit a 5–20%
boost in the number density of cluster mass haloes,
1014M⊙=h≲M ≲ 1015M⊙=h. This may offer a clear
enough signal to be observable with future surveys.

VIII. CONCLUSION

We have determined the conditions for K-mouflage
models of gravity to satisfy the stringent Solar System
tests of gravity, whilst remaining sufficiently different from
standard ΛCDM, and hence, cosmologically interesting. In
particular, we have used the results from Cassini on the
amplitude of fifth forces in the Solar System, and bounds
from Lunar Laser Ranging experiments on the anomalous
perihelion and the rate of change of the gravitational
strength in the Earth-Moon system.
We showed that the conformal coupling strength of the

K-mouflage field to matter is constrained as β ≲ 0.1
[cf. Eq. (58)], by the condition that the time variation of
Newton’s gravitational strength in the Jordan frame is
compatible with the Lunar Ranging bounds. This constraint
is independent of the detailed functional form of the
K-mouflage Lagrangian density term KðχÞ [cf. Eq. (3)],
and is also tighter than the bounds coming from BBN
[cf. Eq. (55)]. By focusing on static configurations, which
correspond to the branch χ < 0 of the function KðχÞ, we
have seen that the perihelion bound is more stringent than
the Cassini result in constraining the functional form of
KðχÞ. In particular, for K-mouflage models to remain
compatible with these tests, any nonlinear terms in
Kðχ < 0Þ should be highly suppressed [cf. Eq. (70)]. For
instance, models for which KðχÞ ∝ χ3 will fail to meet the
Solar System requirements. On the other hand, the shape of
the coupling function AðφÞ is not strongly constrained.
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We have presented several explicit models that satisfy
these Solar System and cosmological bounds as well as
generic theoretical consistency conditions. In particular,
these models have well-defined solutions up to arbitrarily
high redshift, in the cosmological context, and for any
matter density profile, in the small-scale context. There are
no ghosts or small-scale instabilities. Even though scalar
waves can propagate at a speed that is slightly greater than
the speed of light around small-scale static backgrounds
(with a relative difference of only 10−8 or less in the Solar
System), there are no closed time-like loops nor causality
problems, from the Solar System to cosmological scales.
One of our main results is that, despite the constraints on

β and KðχÞ from the Solar System tests, one is still able to
find a family of KðχÞ functions [cf. Eq. (82)] that has
interesting and potentially testable cosmological predic-
tions. We have investigated the main cosmological aspects
of the models characterized by Eq. (82). For a set of
illustrative cosmological parameters, we have seen that the
linear growth of large-scale structures can be boosted by a
few percent by the present day (cf. Figs. 3 and 4). Our
results from semianalytical models of structure formation
also show that this difference gets amplified on smaller
scales, where the evolution of the matter density field
becomes nonlinear. Moreover, the expected number density
of cluster mass haloes shows also a 5–20% enhancement,
relative to ΛCDM (cf. Fig. 4). Another interesting aspect of
these models is that their expansion history can be slightly
different from the ΛCDM scenario, with deviations at the
percent level or slightly below that may be constrained by
observations (cf. Fig. 2). This is different from the cases of
Dvali-Gabadadze-Porrati and/or fðRÞ models of gravity,
where the expansion can follow the ΛCDM scenario up to
very high accuracy or even exactly. This means that the
parameter space of these models can be constrained by the
position of the acoustic peaks of the CMB temperature
power spectrum, as investigated already in Ref. [19], but for
models that fail Solar System tests.
To summarize, the models we have built up are pre-

dictive and distinguishable from other alternatives to
ΛCDM, in the perspective of future experiments such as
Euclid [20] and LSST [21]. In the future, 21-cm intensity
mapping both during [33] and after the completion of the
reionization [34–36] will open new windows to test
modified gravity and will help in discriminating between
models and in constraining further the shape of the
K-mouflage function KðχÞ. Future 21-cm surveys such
as with the Square Kilometre Array will probe the
Universe’s expansion up to higher redshifts and the matter
power spectrum down to smaller scales, especially in the
range 2≲ z≲ 8 of interest for the K-mouflage model.
In future work, we believe it would be of interest to

perform more focused studies of the cosmological con-
straints in these models, by following, for instance, the line
of work of Ref. [19]. It would also be interesting to study

more accurately the predictions for nonlinear structure
formation by running N-body simulations. Such studies
should provide a clearer picture of how these types of
modifications to gravity can impact on several cosmologi-
cal observables, which should help in the interpretation of
the results from future observational missions.
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APPENDIX: SUPERLUMINALITY
AND CAUSALITY

In this appendix, we elaborate on the superluminality of
scalar perturbations and its link with causality. We have
seen in the main text that K-mouflage models passing the
Solar System tests are such that scalar perturbations around
a static background propagate with a speed greater than the
speed of light. This may cause instabilities and in particular
a loss of causality with signals being transmitted to the past,
i.e. the existence of time-like closed curves. This issue was
tackled for K-essence models in Ref. [27]. We follow a
similar method here. Let us first expand the K-mouflage
action to second order in π, where φ ¼ φ̄þ π. Here φ̄ðx; tÞ
is a background configuration that may depend on scale
and time [in the small-scale static regime φ̄ðxÞ only
depends on position, whereas in the large-scale cosmo-
logical regime φ̄ðtÞ is the homogeneous cosmological
background]. We also denote χ̄ ¼ −ḡμν∂μφ̄∂νφ̄=2M4,
K̄0 ¼ K0ðχ̄Þ and K̄00 ¼ K00ðχ̄Þ. The second order part of
the action reads

S2 ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
−K̄0∂μπ∂μπ þ K̄00

M4
ð∂μφ̄∂μπ̄Þ2

�
:

ðA1Þ
It is convenient to define the disformal metric

Gμν ¼ γ−1
�
K̄0gμν −

K̄00

M4
∂μφ̄∂νφ̄

�
ðA2Þ

with

γ ¼ ðK̄0Þ3=2ðK̄0 þ 2χ̄K̄00Þ1=2 > 0: ðA3Þ
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Note that thanks to the properties (60) and (63), the K-
mouflage scenarios that we consider have K0 > 0 and K0 þ
2χK00 > 0 over all χ, so that the metric Gμν is well defined.
Defining the inverse matrix Gμν by GμαGαν ¼ δνμ (i.e., Gμν

is not given by gμαgνβGαβ) and the determinant
G ¼ detðGμνÞ, we have

G ¼ γ2g; ðA4Þ
where g ¼ detðgμνÞ, and the second-order action can also
be written as

S2 ¼
−1
2

Z
d4x

ffiffiffiffiffiffiffi
−G

p
Gμν∂μπ∂νπ: ðA5Þ

The disformal metric Gμν is the metric felt by the scalar
perturbation and we can check from Eq. (A4) that it is
Lorentzian. Therefore, initial-value problems for π are well
posed on any smooth space-like Cauchy surface Σ for the
metric Gμν, and the solution is unique and propagates
causally (see Sec. 10 in Ref. [28]). In the static case, we
retrieve that the Klein-Gordon equation is hyperbolic with a
propagation speed cs given by Eq. (31) (for small wave-
lengths), whereas around the cosmological background we
recover the propagation speed c̄s given by Eq. (59) (for
high frequencies).
In general, the propagation of π occurs in the disformal

metric Gμν. Space-time equipped with the metric Gμν is
stably causal, i.e. there are no time-like closed loops
(including for infinitesimal deviations from the metric
Gμν), provided there exists a globally defined function f
on all space-time which is time-like, i.e. Gμν∂μf∂νf < 0

[28]. Following Ref. [27], we look for a “global time” f that
applies to both geometries gμν and Gμν and thus guarantees
the absence of closed causal loops. A simple choice is to
choose the cosmic time t, which clearly satisfies the
required property for the metric gμν. Considering the
Newtonian gauge, which describes all systems that we
study in this paper, from the cosmological background and
perturbative regime down to the Solar System,

ds2 ¼ gμνdxμdxν ¼ −ð1þ 2ΨNÞdt2 þ a2ðtÞð1 − 2ΨNÞdx2;

ðA6Þ
where ΨN is the Newtonian potential, we have

gμν∂μt∂νt ¼
−1

1þ 2ΨN
< 0 for ΨN > −1=2: ðA7Þ

Since we focus on systems with jΨNj ≪ 1 (e.g., ΨN ∼ 10−6

in the Solar System), we have gμν∂μt∂νt < 0. On the other
hand, we obtain

Gμν∂μt∂νt ¼ −
K̄0ð1þ 2ΨNÞ þ K̄00ð∂0φ̄Þ2=M4

γð1þ 2ΨNÞ2
;

ðA8Þ

whence

Gμν∂μt∂νt < 0 for C≡ K̄0 þ K̄00 ð∂0φ̄Þ2
M4

> 0; ðA9Þ

where we used the approximation 1þ 2ΨN ≃ 1. Around
the cosmological background, where χ̄ ¼ ðdφ̄=dtÞ2=2M4,
we obtain C ¼ K̄0 þ 2χ̄K̄00, whence C > 0. Around a static
background, we obtain C ¼ K̄0 whence C > 0.
For more general backgrounds, we can see from Eq. (A9)

that C > 0 as soon as K̄00 ≥ 0, which for the models (I)–(IV)
of Eqs. (88)–(90) and (94) corresponds to χ̄ ≥ 0. On the
semiaxis χ̄ < 0, we have seen that C≃ K̄0 > 0 in the static
limit, j∂φ̄=∂tj ≪ j∇φ̄j. Therefore the remaining case cor-
responds to j∂φ̄=∂tj ∼ j∇φ̄j, where time and spatial deriv-
atives are of the same order, and with χ̄ < 0, that is,
j∂φ̄=∂tj < j∇φ̄j. Then, we have

χ̄ < 0; K̄00 < 0∶ C ≳ K̄0 − jK̄00χ̄j; ðA10Þ

as we assume χ̄ ∼ −ð∂φ̄=∂tÞ2=2M4 ∼ −ð∇φ̄Þ2=2M4. In
the linear unscreened regime, jχ̄j ≪ 1, this gives
C ≳ K̄0 ≃ 1, whence C > 0. In the highly nonlinear screen-
ing regime, jχ̄j ≫ 1 [more precisely χ̄ < −χ� as in
Eq. (65)], we have seen in Eqs. (75) and (79) that
jχ̄K̄00j ≪ K̄0, because of the perihelion constraint.
Therefore, on these nonlinear scales we obtain
C≃ K̄0 > 0, whether we are in the static limit,
j∂φ̄=∂tj ≪ j∇φ̄j, or not, j∂φ̄=∂tj ∼ j∇φ̄j, and we have
already seen that C > 0 when j∂φ̄=∂tj > j∇φ̄j because it
implies χ̄ > 0 and K̄00 > 0 in our models. Note that the
regime j∂φ̄=∂tj ∼ j∇φ̄j is unlikely to occur in practice in
small-scale systems, because the quasistatic approximation
applies very well, even for relatively fast matter density
evolutions with matter flow velocities of order v ∼ c=10
[13]. Therefore, we usually have j∂φ̄=∂tj ≪ j∇φ̄j, which
directly gives C≃ K̄0 > 0.
Thus, we conclude that gμν∂μt∂νt < 0 and Gμν∂μt∂νt <

0 and there are no closed causal loops around usual
astrophysical and cosmological backgrounds with
ΨN > −1=2. This analysis fails close to neutron stars or
black holes, whereΨN becomes large, but this is not related
to the K-mouflage model as it already appears in the metric
gμν in Eq. (A7). Then, one must look for another global
time coordinate, or over a large volume around the compact
object, but we leave this analysis of more extreme astro-
physical situations to future work.
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