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ABSTRACT
We test the cosmological implications of studying galaxy clustering using a tomographic
approach, by computing the galaxy two-point angular correlation function ω(θ ) in thin redshift
shells using a spectroscopic redshift galaxy survey. The advantages of this procedure are that
it is not necessary to assume a fiducial cosmology in order to convert measured angular
positions and redshifts into distances, and that it gives several (less accurate) measurements
of the angular diameter distance DA(z) instead of only one (more precise) measurement of
the effective average distance DV(z), which results in better constraints on the expansion
history of the Universe. We test our model for ω(θ ) and its covariance matrix against a set of
mock galaxy catalogues and show that this technique is able to extract unbiased cosmological
constraints. Also, assuming the best-fitting � cold dark matter (�CDM) cosmology from the
cosmic microwave background measurements from the Planck satellite, we forecast the result
of applying this tomographic approach to the final Baryon Oscillation Spectroscopic Survey
catalogue in combination with Planck for three flat cosmological models, and compare them
with the expected results of the isotropic baryon acoustic oscillation (BAO) measurements
post-reconstruction on the same galaxy catalogue combined with Planck. While BAOs are
more accurate for constraining cosmological parameters for the standard �CDM model, the
tomographic technique gives better results when we allow the dark energy equation of state
wDE to deviate from −1, resulting in a performance similar to BAOs in the case of a constant
value of wDE, and a moderate improvement in the case of a time-dependent value of wDE,
increasing the value of the figure of merit in the w0–wa plane up to 15 per cent.

Key words: cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

The study of large-scale structure (LSS) has been of great impor-
tance for the advancement of our understanding of the Universe,
characterizing the distribution of structures, such as galaxies and
voids, at large scales. Supported by the increasing amount of data
from current and future large galaxy surveys, such as the Baryon
Oscillation Spectroscopic Survey (BOSS; Dawson et al. 2013),
WiggleZ (Drinkwater et al. 2010), the Dark Energy Survey (DES;
The Dark Energy Survey Collaboration 2005), the Hobby–Eberly

� E-mail: ssalazar.albornoz@gmail.com

Telescope Dark Energy Experiment (HETDEX; Hill et al. 2008),
the Large Synoptic Survey Telescope (LSST; LSST Science Col-
laboration 2009) and the Euclid mission (Laureijs et al. 2011), in
combination with new and more precise measurements of the cos-
mic microwave background (CMB), the study of the LSS has a
promising future in terms of shedding light on the nature of the
Universe.

One of the most important cosmological probes of LSS is the sig-
nal of the baryon acoustic oscillations (BAO) measured in two-point
statistics, such as the correlation function or the power spectrum.
These oscillations occur because small primordial perturbations
induce sound waves in the relativistic plasma of the early Uni-
verse (Peebles & Yu 1970), but later on at the recombination epoch
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(z ≈ 1000), the sound speed suddenly decreases to the point that
these waves stop propagating. Since the Universe has an apprecia-
ble fraction of baryons, cosmological theories predict that the BAO
signal will also be imprinted on to the two-point statistics of the
non-relativistic matter as an excess of clustering in the correlation
function, or an oscillation in power in the power spectrum, at a given
(fixed) scale, making it an ideal standard ruler.

In 1999, motivated by the results obtained from Cosmic Back-
ground Explorer (COBE) of the primary temperature anisotropy
in the CMB (Bennett et al. 1996), the BAO signal was measured
for the first time in the CMB, detecting small angle anisotropies
in the CMB angular power spectrum, confirming the cosmologi-
cal predictions (Miller et al. 1999; Torbet et al. 1999). Later on in
2005, the BAO signal was measured in the Sloan Digital Sky Survey
(SDSS; York et al. 2000) by Eisenstein et al. (2005) using the spatial
correlation function of a spectroscopic subsample of luminous red
galaxies (LRG), finding the BAO peak at r ≈ 100 h−1 Mpc; and
in the 2dF Galaxy Redshift Survey (2dFGRS; Colless et al. 2001,
2003) by Cole et al. (2005) using the power spectrum. Since BAO
measurements have proven to be a robust probe for extracting cos-
mological information, substantial work has been devoted to model
and detect the BAO signal in two-point statistics and use it for cos-
mological constraints (e.g. Hütsi 2006; Percival et al. 2007; Spergel
et al. 2007; Sánchez et al. 2009, 2013, 2014; Reid et al. 2010; Blake
et al. 2011; Anderson et al. 2014; Samushia et al. 2013).

There are two important points related to the usual study of LSS
using 3D analysis that need to be considered. First, to work in
configuration space, it is necessary to assume a fiducial cosmolog-
ical model in order to transform the measured angular positions
on the sky and redshifts of galaxies into comoving coordinates or
distances, a process which could bias the parameter constraints if
not treated carefully (see e.g. Eisenstein et al. 2005; Sánchez et al.
2009). Secondly, in order to obtain a precise measurement of either
the correlation function or the power spectrum, usually the whole
galaxy sample is used to obtain one measurement, typically aver-
aging over a wide redshift range assuming that the measurement at
the mean redshift is representative of the entire sample, washing out
information on the redshift evolution of the structures.

Even when these two issues are well understood and under con-
trol within certain conditions, a simple way to avoid them is by
using two-point statistics based only on direct observables, i.e. only
angular positions and/or redshifts, such as the angular correlation
function ω(θ ) or the angular power spectrum C�. This is done by
dividing the sample into redshift bins, or shells, in order to recover
information along the line of sight, which otherwise would be lost
due to projection effects. In the last few years there have been sev-
eral papers modelling and analysing large galaxy catalogues using
angular two-point statistics. Although most of these focus mainly
on photometric redshift galaxy surveys (Padmanabhan et al. 2007;
Crocce, Cabré & Gaztañaga 2011a; Crocce et al. 2011b; Ross et al.
2011; Sánchez et al. 2011; de Simoni et al. 2013), this approach
has also been applied to spectroscopic redshift samples (Asorey
et al. 2012; Asorey, Crocce & Gaztañaga 2013; Di Dio et al. 2014).
Here we focus on the cosmological implications of applying this
tomographic approach to a BOSS-like spectroscopic redshift galaxy
survey, computing ω(θ ) in redshift shells and using this information
to obtain constraints on cosmological parameters.

There are three main advantages of this tomographic approach:
(i) compared to that of photometric redshifts (photo-z), the higher
accuracy of spectroscopic redshifts significantly reduces the overlap
between redshift shells, allowing us to assume that there is no cor-
relation between them due to these uncertainties and to use thinner

shells. Compared to the traditional 3D analysis, (ii) as we already
mentioned, by using direct observables we do not need to assume
a cosmological model in order to compute spatial separations be-
tween galaxies, their angular separations will remain unaffected
independent of the cosmological model being tested; (iii) by mea-
suring the angular scale of the BAO peak imprinted on ω(θ ) at many
different redshifts, we are basically measuring the angular diameter
distance DA(z) at several redshifts instead of just one more precise
measurement of the average distance DV(z̄) at the mean redshift of
the sample, giving us more information about the rate at which DA

evolves, putting stronger constraints on the expansion history of the
Universe.

This paper is organized as follows. In Section 2 we describe the
mock catalogues that we used, how we configured them in redshift
shells and what information we expect to extract from the technique
discussed in this paper. In Section 3 we describe the model we use
for the angular correlation function measured in redshift shells and
its covariance matrix, and describe the test we perform to assess the
ability of these models to extract unbiased cosmological constraints.
In Section 4 we describe a synthetic data set constructed using these
models, and present a forecast of the accuracy on cosmological
constraints expected from applying this tomographic approach to
the final BOSS galaxy catalogue in combination with Planck CMB
measurements, comparing this with the constraints that would result
from the combination of the isotropic BAO measurements post-
reconstruction on the same catalogue and Planck. We finish with
our main conclusions in Section 5.

2 A N G U L A R C O R R E L AT I O N F U N C T I O N S I N
REDSHI FT SHELLS

In Section 2.1 we describe the set of mock catalogues we used
for testing our model and the tomographic technique discussed in
this paper, and how we configured the catalogues in redshift shells.
In Section 2.2 we explain how to measure cosmological distances
using ω(θ ) in redshift shells, and what information we expect to
extract from these measurements.

2.1 LasDamas mock catalogues

We used a set of 160 spectroscopic luminous red galaxies (LRGs)
mock catalogues from LasDamas1 (McBride et al. 2009), con-
structed from a set of 40 dark matter only N-body simulations, all of
them following the same � cold dark matter(�CDM) cosmological
model and using the same initial power spectrum but a different
random seed. The specifications of these simulations are outlined in
Table 1. From each realization, a halo catalogue is extracted using
a friends-of-friends algorithm (FoF; Davis et al. 1985), and popu-
lated with mock galaxies following a halo occupation distribution
(HOD; Peacock & Smith 2000; Berlind & Weinberg 2002) in order
to reproduce the SDSS Data Release 7 (DR7; Abazajian et al. 2009)
clustering signal. Each realization provides four catalogues without
overlap, reproducing the SDSS DR7 geometry (Northern Galactic
Cap only), containing an average of 91 137 galaxies per catalogue
within the redshift range [0.16, 0.44], and including redshift-space
distortions (RSD) from peculiar velocities. These catalogues, and
the corresponding random field (which contains 50 times more ob-
jects than one of these catalogues) needed to measure the correlation
functions, were modified to follow the radial number density n(z) of

1 http://lss.phy.vanderbilt.edu/lasdamas
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Table 1. Cosmological parameters and specifications of the
LasDamas simulation.

Cosmological constant density parameter �� 0.75
Matter density parameter �m 0.25
Baryonic density parameter �b 0.04
Dark energy equation of state wDE −1.0
Hubble constant (km s−1 Mpc−1) H 70
Amplitude of density fluctuations σ 8 0.8
Scalar spectral index ns 1.0

Number of particles Np 12803

Box size (h−1 Mpc) L 2400
Particle mass (1010 M�) Mp 45.73
Softening length (h−1 kpc) ε 53

the SDSS DR7 LRGs (see fig. 1 in Montesano, Sánchez & Phleps
2012).

We divided each mock catalogue and the random field into red-
shift shells to perform our analysis. Thicker shells lower the signal
of the BAO peak, because it is projected over an increasingly wide
range of angular scales given by the deeper sample. Thinner shells
increase the BAO signal, but decrease the projected number density
and therefore decrease the accuracy of the measurements, while in-
creasing the correlation between shells due to RSD effects and the
clustering itself. Using a spectroscopic redshift sample, any overlap
between redshift shells due to redshift uncertainties can be safely
neglected as long as their width is much larger than these uncertain-
ties. We tested a number of configurations in order to estimate the
optimal redshift bin size, considering the strength of the BAO signal
and the uncertainty in measuring ω(θ ). For simplicity we ignored
any correlation between shells, but, as discussed by Asorey et al.
(2012) and Di Dio et al. (2014), cross-correlations should add extra
information. The final configuration for LasDamas consists of eight
shells: two low-redshift shells of 
z = 0.056 covering the redshift
range [0.16, 0.272], and six higher redshift shells of 
z = 0.028
covering the redshift range [0.272, 0.44].

Using the estimator of Landy & Szalay (1993), we computed the
angular correlation function ω(θ ) in every shell of each mock cat-
alogue and used these measurements to compute the mean ω(θ ) of
each shell and to estimate its associated covariance matrix. These
measurements only depend on direct observables (angular posi-
tions and redshifts) and do not require the assumption of a fiducial
cosmological model to be computed and thus will remain invari-
ant when considering the constraints on cosmological parameters.
Fig. 1 shows the mean ω(θ ) measured from the eight shells, am-
plified by θ1.5 in order to highlight the BAO feature, and where
the error bars correspond to the error in the mean. The dashed
lines show the best-fitting model (described in Sections 3.1 and 3.2)
for the cosmology of LasDamas, which simultaneously reproduces
ω(θ ) for every shell.

2.2 Measuring distances using ω(θ ) in redshift shells

If we look again carefully at Fig. 1, it can be seen that the BAO
peak in ω(θ ) is located at different angular scales depending on the
redshift shell, i.e. depending on the distance to that shell; this is
the key feature that we want to exploit. Let us say that we are only
measuring the angular position θs of the BAO peak, then for a given
redshift zi we have

θs(zi) = rs(zd)/DA(zi), (1)

where rs(zd) is the sound horizon at the drag redshift, and DA is the
angular diameter distance given by

DA(z) = r(z)

(1 + z)
, (2)

where r(z) is the comoving distance to redshift z. Using the fact that
the sound horizon corresponds to a fixed scale, in linear theory we
can relate its angular scale as θs(zi) = αij θs(zj ), where αij is defined
as

αij ≡ DA(zj )

DA(zi)
. (3)

Then, we can extend this relation to the angular correlation function
of two different shells as

ω(θ, zi) � ω(αij θ, zj ). (4)

In Fig. 2 we show the mean ω(θ ) measured in three different redshift
shells of LasDamas, where two of them have been rescaled using
as reference the third one following equation (4), computing DA at
their mean redshift. The error bars have been omitted for clarity. It
can be seen that they match remarkably well on applying the simple
relation in equation (4), despite the fact that there are some small
differences in their shape due to non-linear evolution of the density
field and RSD, which are discussed in Section 3.

The technique discussed in this paper is based on the following
idea: if we have N measurements of ω(θ ) in different redshift shells,
in practice we have N − 1 measurements of DA(zi)/DA(zj ) for
i �= j, constraining the rate at which the angular diameter distance
can evolve over the redshift range being tested.

3 M O D E L L I N G ω(θ ) A N D I T S C OVA R I A N C E
MATRI X

Here we describe our model of the two-point angular correlation
function used to extract information from the full shape of ω(θ )
without introducing systematic errors, starting in Section 3.1 from
the description of its analytical model in thin redshift shells and the
distortion effects that have to be taken into account, then going on
to describe in Section 3.2 how to include such effects by modelling
the anisotropic two-point spatial correlation function. In Section 3.3
we briefly describe the model for the covariance matrix of ω(θ ) and
compare it with the ones measured from the mock catalogues.

3.1 Angular clustering in redshift shells

The projection of the spatial density fluctuation field along the line
of sight, in a certain direction n̂ in the sky, is given by

δ(n̂) =
∫

dzφ(z)δ(r n̂), (5)

where φ(z) is the radial selection function normalized to unity within
a redshift shell, which for this work is defined as

φ(z) =
dNg

dz
ϑ(z)∫

dz
dNg

dz
ϑ(z)

, (6)

where dNg

dz
is the number of galaxies per unit redshift, and ϑ(z), in

terms of the redshift range of each shell [zi, zf], is given by

ϑ(z) =
{

1 zi < z < zf ,

0 otherwise.
(7)
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Clustering tomography 3615

Figure 1. Mean ω(θ ) measured on the mock catalogues for eight redshift shells, amplified by (θ/◦)1.5 to highlight the BAO peak. The error bars correspond
to the error in the mean. The blue dashed lines show the best-fitting model, described in Sections 3.1 and 3.2, for the cosmology of LasDamas, which
simultaneously reproduces ω(θ ) for every shell. The vertical dotted line is a reference located at 6◦, drawn to show how the BAO peak moves relative to a fixed
scale depending on the redshift.

Similarly, the angular two-point correlation function can be ob-
tained from the projection of its spatial counterpart ξ (Peebles 1973).
That is,

ω(θ ) =
∫∫

dz1 dz2 φ(z1)φ(z2)ξ (s) , (8)

where s =
√

r2(z1) + r2(z2) − 2r(z1)r(z2) cos θ is the comoving
pair separation, and θ is the angular separation on the sky.

When working on redshift shells, it is essential to include non-
linear effects in the modelling of ω(θ ) (Nock, Percival & Ross 2010;
Ross et al. 2011; Fosalba et al. 2013). This is shown in Fig. 3, where
different approaches, applying corrections for these effects or not,
are compared to the measurements made on the mock catalogues. It
can be seen that the RSD corrections have the strongest effects on

the full shape of ω(θ ), but are not enough to describe the damping
effects on the BAO peak without including non-linear corrections,
which also slightly move the centroid of the peak towards smaller
scales. In order to fully describe the shape of ω(θ ) including these
effects, we replaced the spatial correlation function in equation
(8) by the anisotropic two-dimensional spatial correlation function
described in Section 3.2. Using this, the model for ω(θ ) is given by

ω(θ ) =
∫∫

dz1 dz2 φ(z1)φ(z2)ξ (s, μs) , (9)

where μs is the cosine of the angle between the separation vector
s and the line of sight, which in terms of redshift and the angular
separation, takes the form of μs = r(z2)−r(z1)

s
cos

(
θ
2

)
.
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3616 S. Salazar-Albornoz et al.

Figure 2. The mean ω(θ ) measured on LasDamas for three different shells,
amplified by (θ/◦)1.5. Two of them have been rescaled following equation
(4) (dashed and dash–dotted lines) using the third one as reference (solid
line), from their original position (faint-colour version).

Figure 3. The mean ω(θ ) amplified by (θ/◦)1.5 for LasDamas (red points)
in the redshift shell 0.328 < z < 0.356, and the resulting models obtained
including or not non-linear growth and RSD for the same shell. The green
dotted line shows the impact of including non-linear growth effects to the
basic linear model (yellow dash–dotted line), while the grey dashed line
shows the effect of including RSD in the same linear model. The blue solid
line is the final model which includes both effects. Those models that do
not include RSD are arbitrarily normalized to match the amplitude of the
measurements. The error bars correspond to the error in the mean.

When comparing the model for ω(θ ) with measurements, it
is important to take into account the effect of the binning in
θ . Measurements are not done over a single angle θ , but corre-
spond to the average over a bin centred on θ with a bin width


θ . In order to avoid systematic effects such as a shift in the
BAO peak determination, we consider in our analysis the bin-
averaged angular correlation function, evaluated at the bin θ i, given
by

ω(θi) = 1


�i

∫

�i

d� ω(θ ), (10)

where 
�i is the solid angle given by


�i = 2π

∫ θi+
θ/2

θi−
θ/2
dθ ′ sin θ ′. (11)

3.2 Anisotropic clustering in redshift space

Here we describe our model for the anisotropic 3D clustering in red-
shift space. In order to take into account the non-linear evolution of
the density field, we have based our approach on renormalized per-
turbation theory (RPT; Crocce & Scoccimarro 2006) to parametrize
the non-linear real-space galaxy power spectrum as

PNL(k, z) = b2
[
PL(k, z)e−(kσv)2 + AMCPMC(k, z)

]
, (12)

where the galaxy bias b, σv and AMC are treated as free parameters,
PL(k, z) is the linear theory power spectrum and PMC(k, z) is given
by

PMC(k, z) = 1

4π3

∫
d3q

[|F2 (k − q, q)|2

×PL (|k − q| , z) PL(q, z)] , (13)

where F2(k, q) is the standard second-order kernel of perturbation
theory (Crocce, Scoccimarro & Bernardeau 2012) given by

F2(q1, q2) = 5

7
+ 1

2

q1 · q2

q1q2

(
q1

q2
+ q2

q1

)
+ 2

7

(
q1 · q2

q1q2

)2

. (14)

Let us make a break here and consider our specific problem.
Unlike the traditional 3D analysis, where it is assumed that evolving
quantities such as the galaxy bias b are constant within the sample,
in our analysis we need to allow for their evolution. Nevertheless,
since each shell is covering a small redshift range, we can neglect
the evolution of the density field within a shell, allowing us to
evaluate terms such as b and the growth factor D(z) at the mean
redshift of the shell z̄shell. We emphasize that this does not mean
that the evolution of the whole sample is negligible, it needs to
be considered from shell to shell. With this in mind, starting from
the galaxy bias b in the mock catalogues, since theoretical models
favour smooth variations in b as a function of redshift for galaxy
samples with a fixed selection (Baugh et al. 1999; Kauffmann et al.
1999), we assume a linear redshift evolution in which the value of
b for a given shell is

b = b∗ + b′ (z̄shell − zref ) , (15)

where now b∗ and b′ are our free parameters for the galaxy bias, and
zref is some reference redshift. We also adopt a redshift evolution
for σv given by

σv = σ ∗
v

D(z̄shell)

D(zref )
, (16)

where σ ∗
v is now the free parameter. The amplitude of the power

spectrum in a given shell is related to that of the reference redshift
as

PL(k, z̄shell) =
(

D(z̄shell)

D(zref )

)2

PL(k, zref ). (17)

MNRAS 443, 3612–3623 (2014)

 at D
urham

 U
niversity L

ibrary on A
ugust 14, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Clustering tomography 3617

We do not assume any redshift evolution for AMC. With these
considerations, the set of free parameters of our model, i.e.{
b∗, b′, σ ∗

v , AMC

}
, are fitted to zref , and the specific value of b

and σv in each shell is given by equations (15) and (16), relat-
ing every shell to a single set of values for these free parameters,
which in practice means that we are able to simultaneously describe
PNL(k, z̄shell), therefore ω(θ, z̄shell), for every shell.

Back to the anisotropic clustering description, in redshift space,
the two-dimensional power spectrum P(k, μk) can be described by

P (k, μk) =
(

1

1 + (kf σvμk)2

)2

(1 + βμ2
k)2PNL(k), (18)

where f = ∂ ln D
∂ ln a

∣∣
z̄shell

≈ (�m(z̄shell))
γ is the growth rate factor at

z̄shell, γ is the growth index parameter given by the fitting formula
in Linder (2005), β = f/b, and μk is the cosine of the angle be-
tween the wave vector k and the line of sight. This parametrization
of the redshift-space power spectrum gives a very good descrip-
tion of the Finger of God damping effect, where the Lorentzian
pre-factor represents a damping function assuming an exponential
galaxy velocity distribution function (Park et al. 1994; Cole, Fisher
& Weinberg 1995).

Following the procedure described by Sánchez et al. (2013), it
is convenient to expand the two-dimensional spatial correlation
function ξ (s, μ) as

ξ (s, μs) =
∑
� even

ξ�(s)L�(μs), (19)

where L�(μs) are the Legendre polynomials of even �th order. Even
though in theory this is an expansion over infinite even multipoles,
just a few of them have a non-negligible contribution on the scales
of interest in this work (see Sánchez et al. 2013), meaning that,
in practice, most of the information is enclosed in the monopole
and the quadrupole, and the multipoles of order � ≥ 4 can be safely
neglected. Then, the expression used to model the spatial anisotropic
clustering is given by

ξ (s, μs) = ξ0(s) + L2(μs)ξ2(s), (20)

where ξ 0(s) and ξ 2(s) are the monopole and the quadrupole of
ξ (s), respectively. To model these multipoles, we can expand the
two-dimensional power spectrum P(k, μk) in a similar way using
Legendre polynomials, where each multipole P�(k) can be computed
as

P�(k) = 2� + 1

2

∫
dμk P (k, μk)L�(μk), (21)

from which the ξ�(s) multipoles are given by

ξ�(s) = i�

2π2

∫
dk k2P�(k)j�(ks), (22)

where j�(x) is the spherical Bessel function of �th order (Hamilton
1997).

These models, for both the power spectrum and the correlation
function, have been shown to give a remarkably good description
of non-linear evolution and RSD in measurements of both N-body
simulations (Sánchez, Baugh & Angulo 2008; Montesano, Sánchez
& Phleps 2010) and real galaxy samples (Sánchez et al. 2009, 2012,
2013, 2014; Montesano et al. 2012).

3.3 The covariance matrix of ω(θ )

Since the set of mock catalogues from LasDamas consists of only
160 realizations, a direct estimation of the full covariance matrix

of ω(θ ) in redshift shells would be noisy (Percival et al. 2014).
That is why we use an analytical model instead, following the
recipe of Crocce et al. (2011a). Here we briefly describe the more
important steps, and refer the reader to their paper for a more detailed
description.

The angular galaxy power spectrum C� in redshift space for a
redshift shell is given by

C� = 2

π
b2D2(z̄shell)

∫
dk k2P (k)(��(k) + β�r

� (k))2, (23)

where �� and � r
� are the real- and redshift-space contributions to

the kernel function given by

��(k) =
∫

dzφ(z)j�(kr) (24)

and

� r
�(k) =

∫
dzφ(z)

[
2�2 + 2� − 1

(2� + 3)(2� − 1)
j�(kr)

− �2 − �

(2� − 1)(2� + 1)
j�−2(kr)

− (� + 1)(� + 2)

(2� + 1)(2� + 3)
j�+2(kr)

]
. (25)

Then, the covariance matrix including the shot-noise contribution
can be computed as

Covθi θj
= 2

fsky

∑
�≥2

2� + 1

(4π)2
L�(μi)L�(μj )

(
C� + 1

n̄

)2

, (26)

where μi = cos θ i, fsky is the fraction of the sky observed, and n̄ is
the number of objects per steradian.

As well as with ω(θ ), the covariance matrix is affected by the fact
that measurements are done over a bin in θ , reducing the covariance
between bins (Cohn 2006; Sánchez et al. 2008; Smith, Scoccimarro
& Sheth 2008). We consider the bin-averaged covariance matrix
obtained from averaging over 
�i and 
�j. Each of these integrals
only affect the Legendre polynomials evaluated at cos θ i and cos θ j,
respectively. Defining

L̂�(μi) = 1


�i

∫

�i

d�L�(μi)

= 2π


�i

1

2� + 1

[
L�+1(μ+

i ) + L�−1(μ−
i )

−L�+1(μ−
i ) − L�−1(μ+

i )
]
, (27)

where μ±
i = cos(θi ± 
θ/2), the bin-averaged covariance matrix

(which as before, we will keep denoting just as Covθi θj
) is then

given by

Covθi θj
= 2

fsky

∑
�≥2

2� + 1

(4π)2
L̂�(μi)L̂�(μj )

(
C� + 1

n̄

)2

. (28)

We tested this model for the covariance matrix, using in equation
(23) both PL(k) and PNL(k) with the best-fitting values of {b∗,b′},
and {σ ∗

v , AMC} when needed, for the cosmology of LasDamas, and
compared the results with the estimated matrix from the mock cat-
alogues. Fig. 4 shows the square root of the diagonal elements
of the covariance matrix for the shell within 0.412 < z < 0.44,
which is the dispersion of ω(θ ) in this shell, estimated from the
mock catalogues (red points), the prediction using the linear power
spectrum (green dashed line), and the prediction using the non-
linear power spectrum (blue solid line). It can be seen that both
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3618 S. Salazar-Albornoz et al.

Figure 4. The square root of the variance of ω(θ ) amplified by 103, as a
function of the angular separation, measured on LasDamas in the redshift
shell 0.412 < z < 0.44 (red points); and the analytical prediction obtained
using both PL(k) (green dashed line) and PNL(k) (blue solid line) into the
modelling.

approaches, specially the non-linear one, give a very good descrip-
tion of the variance of the angular correlation function for the scales
in which we are interested. Hereafter we will only use the non-linear
approach.

The left-hand panel of Fig. 5 shows the reduced covariance ma-
trix, or correlation matrix, defined as

Corrθi θj
= Covθi θj√

Covθi θi
Covθj θj

(29)

for the same shell as Fig. 4, where the upper triangular part is the
estimation from the mock catalogues and the lower triangular part
corresponds to the theoretical model. The central panel shows two
antidiagonals of the correlation matrix estimated from the mock
catalogues (points), and of the predicted matrix (solid lines). The

same symbols apply for the right-hand panel, where two horizontal
cuts of these matrices are shown.

We computed the theoretical matrix for every shell using PNL(k),
and used them to test our technique.

3.4 Testing the model for ω(θ )

In order to test the model for the angular correlation function, we
implemented a Markov chain Monte Carlo (MCMC) analysis tak-
ing the same �CDM cosmology of LasDamas (see Table 1) and
exploring the following parameter space:

Ptest ≡ {wDE, b∗, b′, σ ∗
v , AMC}, (30)

where wDE is the constant dark energy equation of state parameter,
and the rest are the free parameters of our model for ω(θ ). We
estimate the likelihood function as L(P test) ∝ exp

(−χ2(P test)/2
)
,

where

χ2 (P test) =
∑
shells

(M i − Di)
TĈov

−1

i (M i − Di), (31)

P test is a vector with the parameter values, M i is the model of the
shell i given P test, Di is the mean ω(θ ) measured in the shell i
and Ĉovi is the corresponding covariance matrix for the same shell
divided by

√
Nmocks, which represents the covariance matrix for a

volume equal to the total volume of the ensemble, allowing us to
detect any bias in the constraints. To compute the models for ω(θ ),
the linear power spectrum PL(k) is calculated using CAMB (Lewis,
Challinor & Lasenby 2000).

The goal here is to test if we are able to recover the correct value of
wDE using this model and the measurements made on LasDamas.
Since our model does not have any free parameter to adjust the
position of the BAO peak on ω(θ ), and moreover, it reproduces this
angular scale simultaneously for every shell, recovering the correct
value of wDE basically means that we are able to correctly measure
the distance to every single redshift shell, describing the expansion
history of the Universe.

Fig. 6 shows the resulting marginalized constraints in the wDE–b∗
plane, where the contours are the 68 and 95 per cent confidence
levels. For this test we found wDE = −0.99 ± 0.12, which is in
excellent agreement with the true value of LasDamas, showing that
this technique is able to extract unbiased constraints on wDE.

Figure 5. Left: correlation matrix of ω(θ ) measured on LasDamas in the redshift shell 0.412 < z < 0.44 (upper triangular) and its analytical prediction using
PNL(k) (lower triangular). Centre: two antidiagonals of the same matrix, where the purple circles and red triangles are the measurements on LasDamas and
the dashed blue and solid yellow lines correspond to the analytical matrix, respectively. Right: two horizontal cuts of the same matrix, following the same
symbology as the central panel.

MNRAS 443, 3612–3623 (2014)

 at D
urham

 U
niversity L

ibrary on A
ugust 14, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Clustering tomography 3619

Figure 6. The marginalized 68 and 95 per cent confidence levels in the
wDE–b∗ plane for our test. Here we find wDE = −0.99 ± 0.12 in excellent
agreement with the correct value used to construct the mock catalogues
(dotted line).

4 B O S S FO R E C A S T

We tested the implications of applying this technique to the final
SDSS-III BOSS catalogue (DR12), in combination with Planck, for
three different flat cosmological models, and compared this with
what would result from the combination of Planck and isotropic
BAO measurements post-reconstruction on BOSS (CMASS and
LOWZ). To do so, we characterized the BOSS catalogue by assum-
ing the best fit of the base �CDM model from Planck plus Wilkinson
Microwave Anisotropy Probe (WMAP) polarization (WP) as our true
cosmology (Planck Collaboration XVI 2013), an area in the sky of
10 000 deg2, a constant n(z) = 3 × 10−4 h3 Mpc−3 and a galaxy
bias based on Guo et al. (2013) given by

b = 1 + (b0 − 1)

D(z̄shell)
, (32)

which describes its redshift evolution for the CMASS sample. Also,
since the effect of massive neutrinos is not negligible in the Hubble
expansion rate H(a), we adopted the exact treatment in Komatsu
et al. (2011) given by

H (a) = H0

(
�b + �cdm

a3
+ �γ

a4
(1 + 0.2271Nefff (mνa/Tν0))

+�k

a2
+ ��

a3(1+wDE(a))

)
, (33)

where a is the scale factor, mνa/Tν0 = (1.87 × 105/(1 + z))�νh2,
the photon density parameter is �γ = 2.469 × 10−5 h−2 for Tcmb =
2.725 K and f(y) can be approximated by the fitting formula

f (y) ≈ (1 + (Ay)p)
1
p , (34)

where A = 180ζ (3)/(7π4), ζ (3) � 1.202 is the Riemann ζ function
and p = 1.83.

Using the model for ω(θ ) and its covariance matrix described
in Sections 3.1 and 3.3, respectively, we constructed a synthetic
data set consisting of 16 shells of width 
z = 0.025, ranging from
z = 0.2 to 0.6. The fiducial values for the free parameters of the

model are b0 = 1.55, σ ∗
v = 4.29 and AMC = 1.5. The result of this

synthetic data set can be seen in Fig. 7.
For the CMB data we used the distance priors based on Wang &

Wang (2013) which summarizes the CMB information from Planck
in a set of parameters and its covariance matrix, where we have
included the spectral amplitude As. The resulting set is

PCMB ≡ {�A, R, ωb, As, ns}, (35)

where in practice the first two parameters, the CMB angular scale
�A and the shift parameter R, are derived from the other explored pa-
rameters in our analysis, which are described below in this section,
following the equations in Wang & Wang (2013).

To reproduce the isotropic BAO measurements post-
reconstruction on BOSS, for our fiducial cosmology we took the
ratio

x(zm) = DV(zm)

rs(zd)
, (36)

at z1
m = 0.32 with an error of 2 per cent for LOWZ and at z2

m = 0.57
with an error of 1 per cent for CMASS (Anderson et al. 2014), where
DV(z) is the average distance from the mean redshift zm given by

DV(z) =
(

(1 + z)2D2
A

cz

H (z)

) 1
3

. (37)

With these three ingredients we performed a MCMC analysis
with the aim of forecasting the accuracy expected, constraining
cosmological parameters, from applying this technique to the final
BOSS catalogue. The base model for the analysis is the flat �CDM
model, where baryons, cold dark matter (CDM) and dark energy
(vacuum energy or a cosmological constant �) are the main con-
tributors to the total energy of the Universe; and with Gaussian,
adiabatic primordial scalar density fluctuations following a power-
law spectrum for the amplitudes in Fourier space. This model can
be characterized by the following parameter space:

P�CDM ≡ {ωb, ωcdm, ωde, As, ns}, (38)

where ωb, ωcdm and ωde are the baryon, cold dark matter and dark
energy densities, respectively; here ωX ≡ �Xh2. The primordial
power spectrum is characterized by its amplitude As and its spectral
index ns, both defined at the pivot wavenumber kp = 0.05 Mpc−1.
We also extended the base model allowing variations in the dark
energy equation of state parameter wDE, considering wDE(a) = w0

constant in time, and also a time dependence given by the standard
linear parametrization of Chevallier & Polarski (2001) and Linder
(2003):

wDE(a) = w0 + wa(1 − a). (39)

Then, the two cases of the extended parameter space are

PwCDM ≡ {ωb, ωcdm, ωde, As, ns, w0[, wa]}, (40)

where [, wa] denotes the variation (or not) of wa. It is also necessary
to include the free parameters of our model to the sets in equations
(38) and (40), in order to compare the constraints obtained from the
use of ω(θ ) and the other data set combinations. We consider a case
where we use the correct bias evolution in equation (32), treating
b0 as a free parameter, giving us three nuisance parameters for our
model (b0, AMC and σ ∗

v ), and a second case where we do not assume
that we know the functional form of the bias evolution, using the
linear model in equation (15) giving us four nuisance parameters for
our model for ω(θ ) (b∗, b′, AMC and σ ∗

v ). We do not consider more
flexible parametrizations for the bias evolution, since it is expected
that the galaxy bias has a smooth variation as a function of redshift,
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3620 S. Salazar-Albornoz et al.

Figure 7. Synthetic data set constructed with the models of ω(θ ) and its covariance matrix, taking the best-fitting �CDM cosmology from Planck. It consists
of 16 redshift shells of 
z = 0.025 within the redshift range 0.2 < z < 0.6. We used this data set to forecast the results of combining Planck and the technique
discussed in this paper applied to the final BOSS. We have characterized the BOSS catalogue by assuming an area in the sky of 10 000 deg2, a constant
n(z) = 3 × 10−4 h3 Mpc−3 and a galaxy bias based on Guo et al. (2013).

specially for passively evolving galaxy populations such as LRGs
(Baugh et al. 1999; Kauffmann et al. 1999; Almeida et al. 2008).

We estimate the likelihoods as in Section 3.4, computing the
χ2 for ω(θ ) as in equation (31) using the full covariance matrix,
and where the argument vector now is P which has values of the
parameter space corresponding to the cosmology being tested. The
χ2 for the CMB is given by

χ2
cmb(P) = (V cmb − V f

cmb)TCov−1
cmb(V cmb − V f

cmb), (41)

where V cmb is a vector with the values of PCMB as a function of P ,
V f

cmb is the vector with the correct values for our fiducial cosmology

and Covcmb is the covariance matrix for these CMB parameters. For
the BAOs, we calculate the χ2 as follows:

χ2
bao =

(
x(z1

m) − xf (z1
m)

σz1
m

)2

+
(

x(z2
m) − xf (z2

m)

σz2
m

)2

, (42)

where x(zi
m) is the expression in equation (36) at zi

m as a function
of P , xf (zi

m) is the same expression at zi
m evaluated in our fiducial

cosmology and σzi
m

is the assumed error for the BAO measurement
at zi

m.
In the case of the base �CDM model, Fig. 8 shows the marginal-

ized constraints in the �m–h plane for the different combinations of
data sets, where the contours correspond to the 68 and 95 per cent
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Figure 8. The marginalized 68 and 95 per cent confidence levels in the
�m–h plane for the base �CDM model case. The dash–dotted lines (purple
contours) correspond to the constraints derived from the use of Planck+WP
only. The dashed lines (green contours) are the constraints obtained by com-
bining Planck+WP and BAO measurements post-reconstruction, while the
solid lines (orange contours) are those derived from the combination of
Planck+WP and ω(θ ) without any reconstruction. The dotted lines corre-
spond to the fiducial values assumed to make our forecast.

confidence levels. From the combination of Planck+WP and ω(θ )
on the final BOSS we find a mean value of �m = 0.314 ± 0.013
(68 per cent confidence level) and h = 0.673 ± 0.010 (68 per
cent confidence level) for the correct bias model, with negligible
variation for the linear bias model (<3 per cent), in remarkable
agreement with the fiducial cosmology, tightening the constraints
derived from the CMB only. Although, it can be seen that, in this
case, the combination of Planck+WP and BAO measurements post-
reconstruction on BOSS does somewhat better. Nevertheless, once
we allow wDE to take a constant value different from −1, the con-
straints from combining Planck+WP and ω(θ ) are now as good as
those obtained from the combination of Planck+WP and BAO mea-
surements post-reconstruction. This can be seen in Fig. 9, where the
contours correspond to the marginalized constraints in the �m–w0

plane showing the 68 and 95 per cent confidence levels. In this case
we find a mean value of �m = 0.311 ± 0.028 (68 per cent confi-
dence level) and w0 = −1.00 ± 0.11 (68 per cent confidence level)
for the correct bias model, and �m = 0.308 ± 0.032 (68 per cent
confidence level) and w0 = −1.01 ± 0.14 (68 per cent confidence
level) for the linear bias model, again in excellent agreement with
our true cosmology.

If we now allow wDE to vary over time following the parametriza-
tion given in equation (39), the constraints obtained from the com-
bination of Planck+WP and ω(θ ) in this case are much more accu-
rate than those obtained from combining Planck+WP and BAOs.
Fig. 10 shows the 68 and 95 per cent confidence level marginal-
ized constraints in the w0–wa plane for the different combinations
of data sets, where this accuracy improvement can be seen. From
Planck+WP+ω(θ ) we find a mean value of w0 = −1.03 ± 0.25 (68
per cent confidence level) and wa = 0.008+0.76

−0.74 (68 per cent confi-
dence level) for the correct bias model, and w0 = −1.05 ± 0.33
(68 per cent confidence level) and wa = 0.015+0.91

−0.89 (68 per cent

Figure 9. The marginalized 68 and 95 per cent confidence levels on the
�m–w0 plane for the extended �CDM model case with constant wDE = w0.
The dash–dotted lines (purple contours) correspond to the constraints de-
rived from the use of Planck+WP only. The dashed lines (green contours)
are the constraints obtained by combining Planck+WP and BAO measure-
ments post-reconstruction, while the solid lines (orange contours) are those
derived from the combination of Planck+WP and ω(θ ) without any recon-
struction. The dotted lines correspond to the fiducial values assumed to make
our forecast.

Figure 10. The marginalized 68 and 95 per cent confidence levels in the
w0–wa plane for the extended �CDM model case, with a time-dependent
wDE parametrized as in equation (39). The dash–dotted lines (purple con-
tours) correspond to the constraints derived from the use of Planck+WP
only. The dashed lines (green contours) are the constraints obtained by com-
bining Planck+WP and BAO measurements post-reconstruction, while the
solid lines (orange contours) are those derived from the combination of
Planck+WP and ω(θ ) without any reconstruction. The dotted lines corre-
spond to the fiducial values assumed to make our forecast.
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confidence level) for the linear bias model, again in perfect agree-
ment with our fiducial cosmology just like the two previous cases.
To quantify the constraints obtained in this case using different data
set combinations, we used the figure of merit (FoM) defined as
(Albrecht et al. 2006; Wang 2008)

FoM = det [Cov(w0, wa)]−1/2 , (43)

where Cov(w0, wa) is the 2 × 2 covariance matrix of w0 and wa.
The higher the FoM, the more accurate are the constraints made
by a particular data set combination. From the combination of
Planck+WP and BAOs the FoM = 9.17, while from the combi-
nation of Planck+WP+ω(θ ) we obtain a value of 10.54, increasing
the FoM by 15 per cent for the correct bias model. Using the linear
bias model, we obtain a FoM of 8.24, 10 per cent lower compared
to the BAO post-reconstruction technique.

What can be concluded from these tests is (i) the choice of dif-
ferent models for the galaxy bias evolution has an impact on the
accuracy that we can constrain cosmological parameters, but a sen-
sible choice can still result in unbiased constraints; (ii) the more
freedom we allow for the expansion history in a given model, the
better performance this tomographic approach has compared to the
traditional BAO technique. This can be explained mainly by two
factors. First, while BAOs only take into account the position of the
BAO feature measuring the quantity in equation (36), the full shape
of the correlation function is also sensitive to other combinations
of cosmological parameters, such as ωb and ωcdm. Second, as we
mentioned in Section 2.2, measuring ω(θ ) in several redshift bins
basically gives several measurements of θs(z), constraining the ratio
at which the angular diameter distance can evolve over the redshift
range being tested. Then if we include the extra information of the
full shape of ω(θ ) mentioned before, we end up with a very powerful
tool to probe the expansion history of the Universe.

5 C O N C L U S I O N S

We tested the implications of applying a tomographic approach to
a spectroscopic redshift galaxy survey through measuring the two-
point angular correlation function ω(θ ) in thin redshift shells, avoid-
ing the need to assume a fiducial cosmological model in order to
transform measured angular positions and redshifts into comoving
distances, as it is the case in the traditional 3D analysis. In principle,
this technique, as it is presented in this paper, can be also applied to
narrow-band photometric surveys (e.g. PAU survey2) without any
further consideration, since the accuracy in their photometric red-
shifts determination is expected to be ∼0.0035(1 + z), but we have
not studied this case here.

We first contrasted the predictions of the model for ω(θ ) and its
covariance matrix, described in Section 3, against measurements
made on a set of 160 mock catalogues, and tested its ability to
recover the correct value of the dark energy equation of state pa-
rameter wDE used to construct these catalogues. For simplicity, we
did not include cross-correlations between shells in our analysis, al-
though these should add extra information. Our modelling includes
effects such as redshift-space distortions and non-linear evolution of
the density fluctuations, showing that these effects are completely
necessary in order to correctly reproduce the full shape of ω(θ ).
This technique results in an unbiased way to extract cosmological
information.

2 http://www.pausurvey.org/

Next, we made a forecast of the accuracy in cosmological con-
straints expected from applying this technique to the final BOSS
galaxy catalogue in combination with the Planck CMB results in
three different flat cosmological models, and compared it with what
would result from combining Planck and isotropic BAO measure-
ments post-reconstruction on the same galaxy catalogue. To do so,
we chose the best fit of the base �CDM cosmology from Planck as
our true cosmology and characterized the BOSS catalogue assum-
ing an area of 10 000 deg2, a constant n(z) = 3 × 10−4 h3 Mpc−3, the
redshift range 0.2 < z < 0.6 and the galaxy bias model in equation
(32). Using the model for the angular correlation function and its
covariance matrix, we constructed a synthetic data set consisting
of 16 measurements of ω(θ ) on the same number of redshift shells
covering the whole redshift range. We also computed the CMB
likelihood using distance priors for Planck, and reproduce the like-
lihood obtained from BAO measurements post-reconstruction on
BOSS using equation (36) and assuming an error of 2 per cent for
LOWZ and 1 per cent for CMASS.

Across this analysis, we used two different models for the galaxy
bias evolution, in one case using the correct model used to construct
the synthetic data set, and in the other case using the simpler model
in equation (15). The different choices showed no biasing con-
straining cosmological parameters, but different accuracies. The
first cosmological model tested was the basic �CDM, which re-
sulted in tighter constraints for the combination of Planck and BAO
measurements compared to the combination of Planck and ω(θ )
measurements. Although, for the other two models tested, where
we extended the base model allowing wDE to deviate from its fidu-
cial value of −1, being a constant in one case, and allowing a time
dependence in the other, we found that the more freedom we give to
wDE, the better performance our technique has, resulting in a com-
parable accuracy when constraining a constant wDE with respect
to Planck+BAOs, and up to 15 per cent higher FoM compared to
the combination of Planck and BAO measurements in the case of
a time-dependent dark energy equation of state, showing that this
tomographic approach to analyse the galaxy clustering is able to put
strong constraints in the expansion history of the Universe.
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