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Extending the halo mass resolution of N-body simulations
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ABSTRACT
We present a scheme to extend the halo mass resolution of dark matter N-body simulations.
The method uses the simulated density field to predict the number of sub-resolution haloes
expected in different regions, taking as input the abundance and the bias factors of haloes of a
given mass. These quantities can be computed analytically or measured from higher resolution
simulations. We show that the method recovers the abundance and clustering in real- and
redshift-space of haloes with mass below ∼7.5 × 1013 h−1 M� at z = 0 to better than 10 per
cent. By applying the method to an ensemble of 50 low-resolution, large-volume simulations,
we compute the expected correlation function and covariance matrix of luminous red galaxies
(LRGs), which we compare to state-of-the-art baryonic acoustic oscillation measurements.
The original simulations resolve just two-thirds of the LRG population, so we extend their
resolution by a factor of 30 in halo mass in order to recover all LRGs. Using our method,
it is now feasible to build the large numbers of high-resolution large volume mock galaxy
catalogues required to compute the covariance matrices necessary to analyse upcoming galaxy
surveys designed to probe dark energy.
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1 IN T RO D U C T I O N

The spatial distribution of galaxies is an important resource in
physical cosmology, encoding information about the physics of
galaxy formation and the values of the basic cosmological param-
eters (Guzzo et al. 2008; Cabré & Gaztañaga 2009; Sánchez et al.
2009, 2012; Beutler et al. 2011; Zehavi et al. 2011; Reid et al. 2012).
A number of galaxy surveys are underway or planned which share
the primary science goal of using the large-scale structure of the
Universe to constrain the nature of dark energy (e.g. Laureijs et al.
2011). To achieve this, these surveys will map galaxies over many
tens of cubic gigaparsecs. As the clustering signals predicted by
competing cosmological models are often very similar, the scien-
tific exploitation of the surveys will be limited by how well we are
able to understand the systematic errors which may affect statistical
measures of the large-scale structure of the Universe.

A complete understanding of the systematic and sampling errors
associated with clustering measurements requires many effects to be
modelled, including cosmic variance, non-linear evolution of den-
sity fluctuations, scale-dependent bias, redshift space distortions,
discreteness effects and survey geometry. To meet the challenge of
providing the best possible theoretical predictions, the most accurate
techniques have to be employed. Currently, this means using N-body
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simulations of the hierarchical clustering of the dark matter (DM;
see Springel, Frenk & White 2006). The need to model clustering
accurately on scales beyond 100 h−1 Mpc requires computational
boxes in excess of 1 h−1 Gpc on a side (Angulo et al. 2008a). Re-
solving Milky Way mass haloes or smaller in such calculations is
expensive but has been achieved in a small number of cases (for a
summary of the state of the art, see Kuhlen, Vogelsberger & Angulo
2012). Such calculations are currently one-offs and the computa-
tional resources are not available to generate the large numbers of
such runs which are required to compute covariance matrices for
large-scale structure statistics.

The principal way to study errors on clustering measurements
from galaxy surveys is through an accurate model of the experi-
ment itself (Baugh 2008). For the case of relevance here (the spatial
distribution of galaxies), this is optimally achieved in a three step
process. First, the halo clustering is predicted by following the evo-
lution of particles in an N-body simulation (see the recent reviews
of Springel et al. 2006; Kuhlen et al. 2012). Secondly, the properties
of galaxies within these haloes are predicted using a semi-analytical
model of galaxy formation (for reviews see Baugh 2006; Benson
2010). And finally, the appropriate flux limit, sample selection,
redshift completeness and the geometry of the survey need to be
applied to the catalogues (e.g. Merson et al. 2013). Some of these
steps may be modified. For example, in the case of a low-resolution
simulation, ‘galaxies’ may be added using an empirical rule based
on the smoothed density of the DM (White et al. 1987; Cole et al.
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1998). The predictions of the semi-analytical model may be sub-
stituted by empirical techniques tuned to match observational data,
such as halo occupation distribution (HOD) modelling or sub-halo
abundance matching (Zehavi et al. 2011; Simha et al. 2012).

The direct approach to modelling the errors on clustering statis-
tics, namely populating many large volume, high-resolution N-body
simulations with galaxies using semi-analytical galaxy formation
models, is computationally expensive for two reasons. (i) The large
number of independent N-body simulations needed to make robust
estimates of the errors. An adequate estimate of the variance re-
quires several dozen realizations of the density field (e.g. a 10 per
cent error on the variance for a Gaussian distribution requires ∼50
realizations). An order of magnitude more simulations is needed to
robustly compute the full covariance matrix (Takahashi et al. 2009).
(ii) The huge dynamic range required to resolve the haloes which
are likely to host the galaxies observed. For instance, in N-body sim-
ulations with box sizes of a few gigaparsecs, only Milky Way sized
haloes can be identified robustly, even in the highest mass resolu-
tion simulation of this type carried out to date (Angulo et al. 2012).
The mass limit is much larger in typical large-volume simulations
(Fosalba et al. 2008; Kim et al. 2009; Teyssier et al. 2009; Alimi
et al. 2012). In fact, currently there is no simulation which can simul-
taneously model, for instance, the faintest galaxies and the volume
to be probed by the Dark Energy Survey (The Dark Energy Survey
Collaboration 2005). Although algorithms and computer hardware
are constantly improving, finite computational resources impose a
limit on N-body simulations: carrying out a single simulation, not
to mention an ensemble of them, meeting the desired requirements
is currently prohibitively expensive computationally.

Several authors have proposed algorithms to predict galaxy clus-
tering efficiently and to overcome the difficulties stated above.
Amongst the simplest are realizations of Gaussian or log-normal
density fields (e.g. Percival et al. 2001; Mesinger & Furlanetto
2007). More sophisticated ideas have been implemented using sec-
ond order perturbation theory (Monaco, Theuns & Taffoni 2002;
Scoccimarro & Sheth 2002; Kitaura & Heß 2013; Manera et al.
2013; Monaco et al. 2013; Kitaura, Yepes & Prada 2014). In a dif-
ferent approach, the use of simulation particles to mimic galaxy
clustering has been adopted in several studies by invoking a pre-
scription based on the local DM density (Cole et al. 1998; Cabré
& Gaztañaga 2009). White, Tinker & McBride (2014) recently
proposed an extension to these ideas, using low-resolution particle-
mesh N-body simulations to generate large numbers of realisations
of the DM density field, which is sampled to mimic the clustering of
different samples of DM haloes. However, none of these approaches
has fully achieved the combination of simplicity and accuracy de-
sirable when modelling a given cosmological experiment.

The objective of this paper is to present and test a scheme to create
mock catalogues of the large-scale distribution of galaxies in a com-
putationally inexpensive way.1 Our approach uses the DM density
field extracted from N-body simulations to predict a halo population
whose properties can be derived from a higher resolution simulation
or analytically. This effectively extends the halo mass resolution of
N-body simulations down to an arbitrarily low limit. Note, a very
similar method has been developed independently by de la Torre &
Peacock (2013). Here, we present an alternative formulation of the
method together with an enhanced suite of tests, which focus on
larger scales, specifically the creation of covariance matrices for the

1 The method was introduced in the PhD thesis of the lead author (Angulo
2008).

two-point correlation function on the baryonic acoustic oscillation
(BAO) scale.

The structure of this paper is as follows. In Section 2, we pro-
vide details of our method along with its theoretical motivation. In
Section 3, we apply our algorithm to an ensemble of N-body simu-
lations to investigate the limitations and range of applicability of the
procedure. The haloes created by our algorithm can be combined
with higher mass haloes which are identified directly in the simu-
lations to extend the range of halo masses in the simulation box.
The resulting hybrid halo catalogue can be fed into a semi-analytic
galaxy formation model or combined with an HOD model. To il-
lustrate the feasibility of the idea, our procedure is shown in action
in Section 4, where we use an HOD to predict the errors on the
clustering of luminous red galaxies (LRGs). Finally, in Section 5,
we present a summary and discussion of our findings.

2 M E T H O D

In this section, we present the algorithm used to generate a halo pop-
ulation from the density field in DM simulations. We start by giving
the motivation and main ideas behind the method (Section 2.1) and
then we outline the steps to be followed in a practical implementa-
tion of the technique (Section 2.2).

2.1 Theoretical motivation

Assuming that the abundance of haloes at a given position, x, a
function of the local underlying non-linear DM density alone, we
can write the number density field of haloes of mass, M, as

δh,R(x, M) = fM (δdm,R(x)), (1)

where fM is a smooth and arbitrary function (which could, in prin-
ciple, be different for haloes of different mass), δ(x) is the density
contrast, defined as ρ(x)/〈ρ(x)〉 − 1, where ρ(x) is the density at
x and 〈ρ(x)〉 is the mean density, and the subscripts h and dm refer
to the density field of haloes and DM, respectively. R is the scale on
which both density fields are smoothed and is set by the smallest
scale on which equation (1) holds.

On sufficiently large scales the DM density approaches the mean
value, |δdm(x|R)| � 1, which allows us to express equation (1) as a
Taylor series expansion in δdm (see e.g Fry & Gaztanaga 1993):

δh,R(x,M) =
∞∑

k=0

bk(M)

k!
δk

dm,R(x), (2)

where the subscript R denotes the smoothing scale. The coefficients
bk are usually referred to as the bias parameters. In particular, b1 is
known as the linear bias. These parameters can be derived analyti-
cally from collapse models (Mo, Jing & White 1997) or measured
directly from N-body simulations (Angulo, Baugh & Lacey 2008b).
Note that the functional form adopted in equation (2) is not the only
possibility; for instance, de la Torre & Peacock (2013) invoke an
exponential model. However, both models converge asymptotically
on large scales.

It is straightforward to write down an expression for the expected
number density of haloes of a given mass in a region in which the
DM density field has been smoothed,

Nh,R(x, M) = 〈Nh,R(x, M)〉

×
[
b0 + b1δdm,R(x) + b2

2
δ2

dm,R(x) + O(δ3
dm,R) − 1

]
.

(3)
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Here, the brackets 〈〉 denote an average over all smoothing regions,
and so 〈Nh,R(x, M)〉 is the standard halo mass function. Note that
b0 is set by requiring that the expression inside square brackets is
equal to the unity when averaged over all regions. As we discuss
below, it is possible to use this expression to construct a halo density
field which displays the halo abundance and clustering properties
expected in an N-body simulation.

2.2 Implementation

It can be seen clearly that, under our assumptions, the expected
abundance of haloes at a given location (equation 3), depends on
three quantities: (i) the DM density field at the location, (ii) the
mean number density of haloes of a given mass and (iii) the bias pa-
rameters as a function of halo mass. The core of our method is that it
is possible to recover the underlying DM density field directly from
simulations with high fidelity (even in the case of low-resolution
simulations), and also that both the bias parameters and the mean
number of haloes can be calculated easily, either analytically or
from high-resolution N-body simulations (which will typically be
of much smaller volume than the simulations we wish to populate
with haloes). As a consequence of bringing these ingredients to-
gether, a population of DM haloes, which spans an arbitrarily wide
range of masses, can be created.

Subject to the validity of our assumptions as discussed below,
the population of haloes generated using our method has, by con-
struction, the correct abundance and clustering on scales larger than
the chosen smoothing scale. In fact, not only are the two-point
statistics reproduced for the halo distribution but, in principle, the
correct volume-averaged higher order statistics are also recovered
(as can be seen from equation 2). We call the haloes generated us-
ing our technique ‘sub-resolution’ haloes. In the next section, we
will test our method by applying it to generate all of the haloes
in a simulation volume, in order to assess the validity of the ap-
proach. In practice, we will use a hybrid halo catalogue made up
of haloes which are resolved directly in the simulation, and lower
mass haloes which are added using our technique, hence the name
‘sub-resolution’.

There are, inevitably, limitations in the sub-resolution halo cata-
logues which arise from our simplified treatment of halo formation.
First, our expressions are only strictly valid when the density con-
trast is small, δdm � 1. This sets a minimum smoothing scale that
can be used which in turn determines the smallest scale on which
the halo clustering can be reproduced. Secondly, in a practical im-
plementation, equations (2) and (3) have to be truncated at a given
order which creates two problems: (i) The clustering statistics of
orders higher than the truncation cannot be reproduced accurately.
There will be some information about the higher order clustering of
haloes since we are applying our technique to the evolved density
field in the DM simulation. (ii) In underdense regions, equation (3)
can predict a negative number of massive haloes. This would happen
in an expansion truncated at first order if b(M) > 1 and δdm < −1/b,
implying δhh < −1. Consequently, we expect our procedure to break
down for haloes more massive than M∗. These restrictions are not
prohibitive though, since our algorithm is primarily designed to add
low-mass and therefore low-bias haloes. Moreover, as discussed by
de la Torre & Peacock (2013), the small-scale clustering in mag-
nitude limited galaxy samples tends to be dominated by satellite
galaxies hosted by massive haloes. Since these are typically re-
solved directly in N-body simulations, a relatively large smoothing
scale does not introduce noticeable artefacts even in the small-
scale clustering of catalogues constructed using our algorithm. We

investigate and quantify these restrictions in the following sections
where we present our algorithm in action.

We note that while we were preparing this manuscript, de la
Torre & Peacock (2013) independently developed and explored
essentially the same idea as the one presented here. There are,
however, differences in the implementation and in the applications
in which we focus. Here, we confirm the high accuracy of the
method in general, but we extend it and apply it to the modelling
of large-scale clustering with particular attention on BAO analyses
and relevant covariance matrices.

3 T E S T I N G T H E M E T H O D

We now apply and test the procedure outlined in the previous sec-
tion. In Section 3.1, we provide details of the implementation of
the method and present some general characteristics of the result-
ing halo catalogues. In Section 3.2, we show the results of three
basic tests and a comparison with haloes identified directly in a
high-resolution N-body simulation. The sub-resolution catalogues
we generate in this section cover a wide range of halo masses,
including those of haloes that are resolved in the N-body simula-
tions. The goal in this section is to establish the range of validity of
our method in view of the assumptions and approximations which
underpin it. As we pointed out in the previous section, the ac-
tual implementation of the method (Section 4) will make use of
‘hybrid’ halo catalogues in which the higher mass haloes are those
directly resolved in the simulation and the lower mass ones are the
‘sub-resolution’ population generated by our algorithm.

3.1 The sub-resolution halo catalogue

To characterize the performance of our method, we use the simu-
lations described in Angulo et al. (2008a). These include a suite of
50 low-resolution simulations, referred to as the L-BASICC ensem-
ble. Each of these modelled the gravitational interactions between
4483 particles of mass 1.85 × 1012 h−1 M� in a periodic box of
side 1340 h−1 M�. We also employ a higher resolution run, dubbed
BASICC, which used 14483 particles of mass 5.49 × 1010 h−1 M�,
also in a periodic box of side 1340 h−1 M�. Note that one of the
L-BASICC simulations has exactly the same initial density field as
used in the BASICC run. Haloes are identified in the simulation out-
puts using a Friends-of-Friends (FoF) percolation algorithm (Davis
et al. 1985). We stress that it is computationally inexpensive to carry
out such a set of low-resolution simulations. Each of the L-BASICC
runs would only take approximately 150 CPU-hours on modern
supercomputers.

Following the algorithm described in Section 2, we computed
a sub-resolution halo catalogue for the three outputs (z = 0, 0.5
and 1) of each of the 50 simulations in the L-BASICC ensemble.
This process is made up of three steps. The first is the construction
of the DM density field in the simulations. This is performed by
placing particles on to a grid using the nearest grid point mass
assignment scheme (Hockney & Eastwood 1981). We use a grid
of 2563 cells (the cell size is 5.2 h−1 Mpc) which is set so that
〈δ2〉 ∼ 1. We therefore expect to obtain an inaccurate estimation
of the halo clustering on scales smaller than a few times the size
of the grid cell. Note that de la Torre & Peacock (2013) followed
an alternative path and constructed the DM density field from the
resolved halo population. As there are fewer haloes than particles,
there is a larger amount of noise in the reconstructed density field.
Dealing directly with simulation particles would also allow the use
of Lagrangian smoothing techniques (Abel, Hahn & Kaehler 2012;
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Figure 1. A test of the method showing the comparison between the mass function of FoF haloes resolved in the BASICC simulation (red triangles) and the
mean of sub-resolution halo catalogues built from the L-BASICC ensemble (blue circles). Note that in this test case sub-resolution haloes are generated across
the whole mass range plotted to assess the range of validity of the technique. Top: the mean number of haloes per logarithmic mass bin, as a function of their
mass. The error bars show the dispersion from applying our algorithm to 50 simulations (L-BASICC). Each column shows a different redshift and the empirical
fit to various N-body results from Angulo et al. (2012, solid lines). The vertical dashed lines indicate the halo mass at which the number of haloes resolved
directly in the simulations and those created by our algorithm first differ by 10 per cent moving in the direction of increasing mass. The relative difference
between these catalogues is shown by the curves in the bottom panels.

Shandarin, Habib & Heitmann 2012). Although we do not use such
techniques here, they have been recently shown to have extremely
low discreteness noise (Angulo et al. 2013a; Angulo, Hahn & Abel
2013b) which could improve the accuracy of our method in the
future.

The next step is to tabulate the halo bias parameters and the
number density of haloes as a function of mass. We extract these
relationships from the higher resolution BASICC simulation in log-
arithmic mass bins of width �log10M = 0.426. Both quantities are
computed by smoothing the haloes and DM field in 2563 cells and
then averaging the values across the grid.

Finally, these three quantities are brought together to compute
the expectation value for the number density of haloes on every
point of the grid. There are several points regarding the placement
of haloes that are worth noting. (i) The actual number of haloes
in each cell is generated from a Poisson distribution with the ex-
pectation value as the mean. In doing this, we have also neglected
the covariance between halo mass bins, which is justified given the
box size of our simulations (Smith & Marian 2011). (ii) The haloes
are placed randomly within each of the smoothing volumes. (iii)
Each of these haloes is given a peculiar velocity equal to the mean
velocity of the DM particles within the same cell. Alternatively,
one could use some sort of interpolation scheme such as that used
by de la Torre & Peacock (2013). (iv) Equation (3) is truncated at
linear order.

As a result of following this procedure, we obtained 50 indepen-
dent sub-resolution halo catalogues at the three redshifts mentioned
above. Each contains approximately 17 million haloes with mass
between 5.48 × 1011 and 1 × 1016 h−1 M� at z = 0. In the following
subsection, we will explore the properties of these catalogues.

3.2 Abundance and clustering

In this subsection, we compare the abundance and clustering
strength in our sub-resolution halo catalogues with the same quan-
tities measured using haloes directly identified by an FoF algorithm
in a high-resolution simulation (for details of the FoF catalogues
see Angulo et al. 2008a).

The upper panels of Fig. 1 show the differential halo mass func-
tion from our catalogues (blue filled circles) and that from FoF
haloes identified in the BASICC simulation. In the lower panels, we
can see the differences between the two populations more clearly
on a linear scale. This figure shows that there is excellent agreement
between the number of haloes generated using our algorithm and
that obtained directly in the higher resolution N-body simulation.
This represents an initial validation of the ideas and their implemen-
tation presented in this paper. Our method predicts an abundance of
haloes that agrees with the direct simulation results to better than
10 per cent for objects of mass M < 7.51 × 1013 h−1 M� at z = 0,
M < 2.7 × 1013 h−1 M� at z = 0.5 and M < 1.14 × 1013 h−1 M�
at z = 1. There is a strong disagreement between the numbers
of sub-resolution and FoF haloes at the high-mass end. This is
caused by the fact that equation (2) is inconsistent for highly bi-
ased haloes in low-density regions where δh < −1 (the problem
is alleviated in the low-mass regime where b � 1) and because
we have truncated equation (3) at the linear bias term. As a con-
sequence of haloes of a fixed mass becoming more biased with
increasing redshift, the mass function of sub-resolution haloes pro-
vides an acceptable match to the simulation results (i.e. better
than 10 per cent agreement) over a reduced range of masses at
high redshift.
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3260 R. E. Angulo et al.

Figure 2. A test of the clustering predicted by our method. In this test case, sub-resolution haloes are generated for the full mass range plotted to assess the
range of validity of the technique. Top: the linear bias parameter as a function of halo mass (top axis) and peak height δc/σ (M, z) (bottom axis). Each panel
shows a different redshift as labelled. The blue filled circles with error bars show the mean bias and the dispersion for the sub-resolution haloes generated by
our algorithm applied to the 50 low-resolution L-BASICC simulations. The bias measured from FoF haloes in the high-resolution BASICC simulation is shown
as red triangles. Theoretical predictions from Mo et al. (1997) and Sheth, Mo & Tormen (2001) are also shown using different line styles as labelled. The lower
panels show the relative difference between the halo bias from the two different catalogues. The vertical dashed lines show where the clustering of haloes in
the sub-resolution catalogue first differs from that measured from the FoF haloes by 10 per cent, moving in the direction of increasing mass.

We extend the comparison by investigating the clustering strength
in the sub-resolution catalogues. Each column of Fig. 2 displays the
linear bias parameter as a function of the peak height,2 δc/σ (M, z)
on the bottom axis and as a function of mass on the top axis.
Note that we compute the linear bias, b, by smoothing the halo
and DM density fields in cells of size 167 h−1 Mpc, and taking
the ratio i.e. b2 = 〈δ2

hh/δ
2
mm〉. As in the previous plot, the vertical

lines indicate the maximum halo mass at which the result from
the sub-resolution haloes agrees to within 10 per cent with that of
the resolved haloes. Similar to the behaviour seen in Fig. 1, at the
high-mass end, the sub-resolution haloes fail to reproduce the clus-
tering measured from the resolved FoF catalogues, which suggests
a common origin for the discrepancies seen in the abundance and
clustering of sub-resolution haloes at high masses. Note that the 10
per cent-difference mass limit derived from the clustering compar-
ison is slightly smaller than that derived from the mass function at;
z = 0 Mmax = 5.23 × 1013 h−1 M� while at z = 0.5 and z = 1
4.3 × 1013 h−1 M� and 6.73 × 1012 h−1 M�, respectively. Again,
the very good agreement apparent at low masses validates our
approach.

Finally, we explore the spherically averaged clustering of the
halo catalogues in redshift space. Fig. 3 shows the ratio between the
linear bias parameter measured in redshift space and that measured
in real space for the sub-resolution haloes and for the FoF haloes. In

2 Here, δc is the threshold for collapse in linear perturbation theory and
σ (M, z) is the linear theory rms variance in the density field smoothed on a
scale enclosing mass M at redshift z.

linear perturbation theory, this quantity is equivalent to the square
root of the Kaiser ‘boost factor’ (Kaiser 1987):

f =
(

1 + 2

3
β + 1

5
β2

)
, (4)

where β = �m(z)0.55/b, with �m denoting the matter density param-
eter and b the linear bias parameter. This expression is overplotted
in Fig. 3 for comparison. Note that, in practice, the Kaiser factor
is only attained asymptotically (Jennings, Baugh & Pascoli 2011),
so we again measure the bias in redshift space by comparing den-
sities in grid cells of size 167 h−1 Mpc. Furthermore, there is no
reason to expect this relation to hold for highly non-linear objects
corresponding to high peaks (e.g. Angulo et al. 2005).

Despite the scatter among the sub-resolution halo catalogues, we
find reasonably good agreement between the theoretical expecta-
tions and the measurements from the BASICC FoF haloes. Given
the comparisons presented in previous figures, it is not surprising to
see the differences for haloes corresponding to high peaks. Never-
theless, our scheme to assign peculiar velocities to haloes performs
satisfactorily in the regime where the abundance and clustering in
real space are properly imprinted on the sub-resolution catalogues.
This is a remarkable success, extending the usability of the method
to modelling redshift-space distortions.

Now that we have established the range of mass scales over which
the sub-resolution halo catalogues give an accurate reproduction
of the results seen in high-resolution N-body simulations, in the
application of the method presented in the next section, we will use
a hybrid halo catalogue, made up of directly resolved haloes and
lower-mass, sub-resolution haloes.
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Figure 3. A test of the performance of the model predictions for the clustering measured in redshift space. In the test case, sub-resolution haloes are generated
across the full range of halo masses plotted to evaluate the performance of the technique. The linear bias parameter for haloes measured in redshift space,
bz, divided by that measured in real space, br, as a function of the peak height (bottom axis). The mean and dispersion of this quantity, measured from our
sub-resolution haloes in an ensemble of low-resolution simulations, is displayed using blue symbols with error bars. We display the results measured from FoF
haloes in the BASICC simulation using red triangles. For comparison, we have also included the prediction based on linear theory (solid line, see equation 4).
The lower panels show the relative difference between the sub-resolution results and those obtained from the BASICC run.

4 A PPLICATION: LARGE-SCALE
C L U S T E R I N G O F L R G S

Recently, the clustering of LRGs has been of great importance in
probing different cosmological scenarios. The low number density
but strong clustering of these galaxies means that the spatial dis-
tribution of LRGs can be mapped over vast regions of the sky at
relatively low-observational cost. A large survey volume enables
tight constraints to be placed on cosmological parameters, in partic-
ular by measuring the BAO feature (Eisenstein et al. 2005; Cabré &
Gaztañaga 2009; Gaztañaga, Miquel & Sánchez 2009; Sánchez et al.
2009). Unfortunately, there is still an incomplete understanding of
the errors associated with clustering measurements on large scales.
A realistic model for the uncertainties, including systematic errors,
is crucial to extract cosmological constraints from the data, since the
determination of the best-fitting model, together with the allowed
regions in cosmological parameter space, depend sensitively on the
availability of an accurate covariance matrix.

Semi-analytical modelling and observational evidence suggest
that LRGs not only populate very massive haloes but they can also
be found in haloes with masses as small as 1011 h−1 M� albeit with
a low probability (Almeida et al. 2008; Wake et al. 2008). Therefore,
the modelling of LRG clustering, and the BAO feature imprinted
on it, requires huge simulations with a considerable dynamic range
in mass. Although such extremes can be achieved in modern su-
percomputers these tend to be one-off runs and the computational
cost is enhanced to inaccessible levels when studying uncertain-
ties or subtle features present in the clustering which require many
realizations.

In this section, we approach this problem using the algorithm
we described above. Specifically, we generate 50 LRG catalogues
to compute the mean and variance of the two-point correlation

function. Details of the creation of the LRG catalogues as well as the
clustering measurements are presented in the following subsections.

4.1 The haloes and LRG catalogues

The starting point in the creation of the LRG mock catalogues is
to predict the abundance and spatial distribution of the DM haloes
that are likely to host such galaxies. For this purpose, we created 50
hybrid halo catalogues, each one spanning 4 orders of magnitude in
mass within a volume of 2.4 h−3 Gpc3 at z = 0.5.

The halo catalogues are hybrid in the sense that they
consist of two types of haloes. The high mass ones
(M > 1.85 × 1013 h−1 M� correspond to objects identified directly
using an FoF algorithm, with at least 10 particles, in each of the
L-BASICC simulations. Then, smaller mass sub-resolution haloes
(5.48 × 1011 < M/(h−1 M�) < 1.85 × 1013) were created using
the algorithm described in Section 2. We recall that our method is
accurate to better than the 10 per cent level for this mass range.
In this way, we are effectively extending the dynamic range of the
L-BASICC simulations towards lower masses. Combining the two
types of haloes also eliminates the need to reproduce high-mass
haloes in the sub-resolution catalogues, which proved to be trouble-
some (see Section 3.2).

Once we have generated the catalogues that contain all the haloes
that are expected to host LRGs, we use an HOD model to determine
how many LRGs on average populate each DM halo (for a review
of the halo model see Cooray & Sheth 2002). Following Wake et al.
(2008), we can express the mean number of central LRGs, Nc as a
function of the host halo mass, Mhalo as

〈Nc|Mhalo〉 = exp(−Mmin/Mhalo), (5)
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Figure 4. The application of the method to the construction of LRG cata-
logues. Here, we use a hybrid catalogue comprised of sub-resolution haloes
and haloes which are directly resolved in the simulations. Top: the mean
number of LRGs per halo as a function of the host halo mass in our simu-
lations. Bottom: the number density of LRGs per decade in host halo mass.
The grey lines in the top panel show the quantities in each of our simulations
while the blue symbols show the mean and dispersion.

and the mean number of satellite LRGs, Ns as

〈Ns|Mhalo〉 = (Mhalo/M1)α. (6)

Consequently, the total number of LRGs has an expected value of

〈NLRG|Mhalo〉 = 〈Nc|Mhalo〉[1 + 〈Ns|Mhalo〉], (7)

where α, Mmin and M1 are, in principle, free parameters that can
be constrained either by comparing to observational estimates of
clustering observations or through semi-analytical galaxy formation
modelling. Indeed, Wake et al. (2008), using the measured clustering
of 2SLAQ LRGs (Cannon et al. 2006), found that the best-fitting
values of Mmin, M1 and α are 2.19 × 1013, 2.82 × 1013 h−1 M�
and 1.86, respectively. In the second step, we assume that Nc and
Ns follow Poisson distributions with means given by equations (5)
and (6), which, combined with the values from Wake et al., allows
us to place LRGs within our hybrid halo catalogues. Note that the
alternative approach of applying full semi-analytic modelling to the
hybrid halo catalogues could also have been taken.

Each of our final catalogues contain 398 963 galaxies, or equiv-
alently, a number density of 1.66 × 10−4 h3 Mpc−3. Even though,
on average, there is less than one LRG per sub-resolution halo,
together the sub-resolution haloes host a total of 114 243 galaxies
which represents 28 per cent of whole LRG sample. Fig. 4 shows
the resulting mean number of LRG in our catalogues per halo (top
panel) as well as the total number LRGs (bottom panel), in both
cases as a function of the mass of the host halo.

4.1.1 Correlation function of LRGs

At this point, we are now in a position to investigate the clustering
of LRGs. We measure the correlation function using fast Fourier
transforms. This approach is considerably more efficient than com-
putations carried out in configuration space, when one is interested

in the correlation function on large scales measured from catalogues
containing a large number of objects.

In brief, the method uses a pixelization of the density field from
which the (real- and redshift-space) spherically averaged correlation
function can be estimated from the amplitude of Fourier modes as

ξ (r) = F−1 {||F [δ(x)]||} , (8)

where δ = (n(x) − 〈n〉)/〈n〉 is the density fluctuation (in real or
redshift space) on a grid, and F [δ] is its Fourier transform. Vertical
bars denote the modulus of a complex field, and F−1 an inverse
Fourier Transform. We carry out this operation using a fast Fourier
transform with a grid of dimensions Ngrid = 1024, which corre-
sponds to 1.3 h−1 Mpc for the L-BASICC simulation box size. This
method gives an accurate estimation of the correlation function for
scales larger than a few grid cells.

Fig. 5 shows the result of applying this procedure to compute
the correlation function for LRGs in each of our 50 catalogues.

Figure 5. The mean and variance of the correlation function measured from
LRG samples constructed from our hybrid catalogues of resolved and sub-
resolution haloes at z = 0.5. The top panel shows the real space correlation
function and the bottom panel shows redshift space. In each case, filled
circles indicate the clustering measured from the LRG catalogues created
by populating hybrid halo catalogues (i.e. the mixture of sub-resolution and
FoF haloes) with the LRG HOD inferred by Wake et al. (2008). The solid
lines show the mean correlation function measured from the DM particles of
all 50 L-BASICC realisations. To allow a full comparison, we have divided
each measurement (and the respective variance) by a constant bias, measured
in the range r = [60–70] h−1 Mpc, and by the expected Kaiser boost factor
in the case of redshift-space measurements. Note that we display ξ (r) × r3

on the y-axis to enhance the appearance of the BAO peak. For comparison,
in the bottom panel, we also display the measurements of Sánchez et al.
(2014) for the correlation function of BOSS-CMASS sample at z = 0.56 as
solid green squares.
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The top panel displays the measurements in real space while the
bottom panel shows redshift space. In both cases, the mean and
variance of the measurements are indicated by the filled circles
and error bars. In order to assess our results, we have measured
the correlation function for subsets of DM particles at z = 0.5
from the L-BASICC simulations. We display the mean of all 50
simulations in real and redshift space as a solid line in the top and
bottom panels, respectively. This allows us to compare the form of
the correlation function measured from our LRG catalogues with
that of the underlying DM distribution. Note that the y-axis shows
ξ × r3 instead of ξ , as in this way the acoustic peak is highlighted. In
addition, the results (including the errors) in both real and redshift
space have been renormalized as described in the figure caption.

By comparing the correlation function of LRGs with that of the
DM, we can see the effects of galaxy bias. Fig. 5 shows that the
respective correlation functions, after applying a scaling in ampli-
tude, agree fairly well with one another, implying that the LRG bias
is approximately scale independent over the range of pair separa-
tions plotted. There is a small residual dependence of the bias on
scale in real space which seems to be accentuated in redshift space.
Although the discrepancy is not significant given the size of the
errors associated with the simulation volume, using a simulation
with 10 times larger volume and 3375 times more particles, Angulo
et al. (2013c) recently showed that distortions of this type are ex-
pected in biased tracers of the DM field (see also Padmanabhan &
White 2009; Mehta et al. 2011). This scale-dependent bias, absent
in approaches that simply apply a biasing scheme on top of the DM
field, is an example of the benefits of an hybrid approach like the
one proposed here.

In addition, in the bottom panel of Fig. 5, we show the correla-
tion function of the BOSS-CMASS sample at z = 0.56, as mea-
sured by Sánchez et al. (2014). Our predictions are in very good
agreement with the data, and all but the last two points located at
r > 140 h−1 Mpc agree at the 1σ level. The residual difference is
likely to be caused by the differences between the fiducial cosmol-
ogy employed in our simulations and that preferred by the data. This
supports the idea that our method is accurate enough for modelling
and interpretation of the BAO signal.

In Fig. 6, we compare the variance measured from our ensemble
of LRG catalogues (filled circles) with that measured from the DM
samples (triangles). By comparing both measurements, we illustrate
the importance of shot-noise in the expected variance. The dotted
line shows a theoretical prediction for the variance based on power-
spectrum measurements which include the effects of a finite number
of modes, discreteness noise, bias and binning (see Sánchez, Baugh
& Angulo 2008, for more details). The theoretical predictions by
Sánchez et al. (2008) provide a fairly good match to the variance in
our LRG samples, showing that our catalogues have the expected
variance.

We extend this comparison in Fig. 7 in which we display the
normalized covariance matrix (Cohn 2006; Smith, Scoccimarro &
Sheth 2008), Cξ (r, r ′) ≡ 〈(ξ (r) − ¯ξ (r))(ξ (r ′) − ¯ξ (r ′))〉/σ (r)/σ (r ′),
in real space (left-hand plot) and in redshift space (right-hand plot).
The above diagonal part of the plot shows the expected covariance as
computed following Sánchez et al. (2008). The below diagonal part
shows the covariance for the LRG catalogues. The non-diagonal
parts of the covariance matrix show a reasonably good agreement
between the mock LRG catalogues and the theoretical expectations,
similar to the case of the comparison of the variances. The agree-
ment is not perfect and our LRG catalogues show slightly stronger
off-diagonal correlations than the expectation and also show more
structure, in particular an excess correlation at the BAO location.

Figure 6. The variance in the two-point correlation function measured
from 50 LRGs catalogues in real space (top) and redshift space (bottom)
at z = 0.5, constructed using the hybrid catalogues of resolved and sub-
resolution haloes. We also plot a theoretical estimate for the variance from
Sánchez et al. (2008, dotted lines)

One possible explanation could be the contribution of the higher
order moments of the halo density field, which are present in our
LRG samples but absent in the Sanchez et al. predictions. As shown
by Angulo et al. (2008b), the higher order moments of haloes dif-
fer considerably from those of the DM. As an example, recall that
even if the DM density field is Gaussian (i.e. the higher moments
are zero), then haloes will have non-zero higher order correlations
which contribute to the covariance matrix. Nevertheless, the results
are still noisy given the small number of simulations in our ensemble
and further investigation is required. In any case, the performance
of our catalogues is remarkable and illustrates the feasibility of con-
structing detailed covariance matrices from computationally cheap
N-body simulations that have the correct diagonal terms.

5 SU M M A RY

Due to the large volumes that future surveys are expected to map,
the resulting measurements of galaxy clustering will be of exquisite
accuracy, with the target of distinguishing between different models
for the acceleration of the cosmic expansion. The clustering signals
predicted by competing models often differ by small amounts. It
is therefore essential to understand the systematic and sampling
errors associated with the measurements. Only in this way will it
be possible to extract robust conclusions from the data. In practice,
this challenge can only be met by techniques which make use of
cosmological N-body simulations, since this approach gives the
best estimate of the contribution of various non-linear effects to the
measured clustering.

We have devised and illustrated the feasibility of a scheme that
allows the rapid and efficient creation of large numbers of galaxy
mock catalogues which are able to resolve all of the galaxies selected
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Figure 7. The normalized covariance matrix from our ensemble of LRG mock catalogues, constructed from the hybrid catalogues of resolved and sub-
resolution haloes (lower triangular region) and from an analytical prediction from Sánchez et al. (2008) that incorporates the correct volume, bias, number
density and binning (upper triangular region). The left-hand plot displays the results in real space while the right displays the covariance matrix in redshift
space.

in upcoming surveys. This is done by taking moderate-resolution
simulations and effectively extending their dynamic range in halo
mass to mimic running a simulation with a substantially larger num-
ber of particles. Our method uses the density field extracted from
the moderate-resolution N-body simulation and combines it with
the bias parameters and mass functions extracted from a higher res-
olution simulation. In this way, it is possible to predict statistically
the expected density field of DM haloes in the moderate-resolution
simulation volume. Since low-resolution simulations are relatively
easy to generate, our procedure allows the investigation of uncer-
tainties in both the measurements themselves and in the procedures
employed to extract robust information from the data.

We have shown that, on large scales, the generated halo popu-
lation agrees with the population seen directly in a high-resolution
simulation over a considerable range of masses. At z = 0, in partic-
ular, the abundance and clustering strength, in both real and redshift
space, of haloes less massive than 7.51 × 1013 h−1 M� agree to
within 10 per cent with those computed directly from FoF haloes
identified in a high-resolution simulation. For high-mass haloes or
at higher redshifts, our procedure performs less satisfactorily.

An interesting application of our scheme is to the creation of hy-
brid halo catalogues. High-mass haloes can be extracted directly
from cosmological N-body simulations, whilst low-mass haloes
which lie beyond the grasp of the simulation can be generated
using our technique. In this way, we can employ our algorithm in
the regime where it works best. As an example, we have created
50 such catalogues from the L-BASICC simulations which are com-
bined with an HOD for LRGs. From the resulting galaxy catalogues,
we are successfully able to predict their mean correlation function
along with the full covariance matrix. We found that the variance in
a sample of DM particles drawn from the simulations and analyt-
ical estimates are in agreement with measurements from the LRG
catalogues. In spite of this, differences in the off-diagonal terms of
the covariance matrix were found.

In the LRG example presented, we extended the halo mass res-
olution of the L-BASICC runs by a factor of ≈30, since this was
all that was demanded by this application. The specifications of
the available high-resolution N-body simulation set the limit on the
boost attainable in the resolution of the moderate resolution runs.
For example, if we had instead chosen to augment the L-BASICC

runs using the Millennium-II simulation of Boylan-Kolchin et al.
(2009), which modelled the growth of structure using 21603 parti-
cles in a volume of (100)3 h−3 Mpc3, then the resulting halo cata-
logue would be the equivalent of that expected from a simulation
employing 28 9443 or more than 24 trillion particles. This is around
50 times larger than the largest number of particles used in an N-
body simulation to date. Our approach will allow the production
of halo catalogues equivalent to running large numbers of such
simulations.

The algorithm presented here is already useful for generating
mock observations and in creating covariance matrices, particularly
if combined with novel techniques to mimic running very large
ensembles of simulations (e.g. Schneider et al. 2011). Nevertheless,
it could be enhanced in a number of ways, including the following.

(i) The placement of haloes within the smoothing volume could
be improved by distributing haloes following a given correlation
function.

(ii) Haloes could be placed recursively using different smoothing
scales, starting with the whole box and stopping at any desired
scale. Here, a parent cell puts constraints on all their child cells,
which could be used to include an arbitrary scale-dependent biasing
scheme.

(iii) A more complex biasing scheme could be implemented,
which can be calibrated directly using N-body simulations, and
could be different for haloes of different mass. Dependences in
addition to the density, such as the tidal field, could be taken into
account.
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(iv) The form of the probability distribution function of haloes
given a DM overdensity can be calibrated directly with N-body
simulations instead of making the assumption that this has a standard
form such as a Poisson distribution.

(v) Similarly, the covariance matrix among different halo mass
bins can be used in sampling the DM–halo relationship.

(vi) Extended features can be incorporated such as exclusion
effects between haloes, an additional density-dependent velocity
dispersion, and the substructure content of haloes.

(vii) The merger history tree associated to each DM halo can
be build using, for instance, Sheth & Lemson (1999) or Parkinson,
Cole & Helly (2008), which enables more complex and realistic
modelling of the galaxy hosted by the sub-resolution haloes. This
is another advantage of our method over those that simply sample
the DM density field.

Nevertheless, even without these improvements, we expect that
the simple technique presented in this paper will improve the under-
standing and treatment of uncertainties in observations and, there-
fore, will allow the full potential of measurements of the large-scale
distribution of galaxies to be reached.
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