Stable Isotopic (δ¹³C and δ¹⁵N) Characterization of Key Faunal Resources from Norse Period Settlements in North Iceland

Philippa L. Ascough^{1,*}, Mike J. Church², Gordon T. Cook¹, Árni Einarsson³, Thomas H. McGovern⁴, Andrew J. Dugmore⁵, and Kevin J. Edwards^{6,7}

Abstract - During the Viking Age, Norse peoples established settlements across the North Atlantic, colonizing the pristine and near-pristine landscapes of the Faroe Islands, Iceland, Greenland, and the short-lived Vinland settlement in Newfound-land. Current North Atlantic archaeological research themes include efforts to understand human adaptation and impact in these environments. For example, early Icelandic settlements persisted despite substantial environmental impacts and climatic change, while the Greenlandic settlements were abandoned ca. AD 1450 in the face of similar environmental degradation. The Norse settlers utilized both imported domestic livestock and natural fauna, including wild birds and aquatic resources. The stable isotope ratios of carbon and nitrogen (expressed as δ^{13} C and δ^{15} N) in archaeofaunal bones provide a powerful tool for the reconstruction of Norse economy and diet. Here we assess the δ^{13} C and δ^{15} N values of faunal and floral samples from sites in North Iceland within the context of Norse economic strategies. These strategies had a dramatic effect upon the ecology and environment of the North Atlantic islands, with impacts enduring to the present day.

Introduction

The Viking settlement of the North Atlantic commenced around AD 800, and was characterized by rapid expansion of the Norse over a wide geographical area, including Scotland, the Faroe Islands, Iceland, and Greenland (e.g., Arge et al. 2005, Dugmore et al. 2005, Sharples and Parker Pearson 1999, Vésteinsson et al. 2002). In a relatively short time, settlements were established in a broad set of ecological and climatic zones, and agriculture was established in many previously pristine environments (Dugmore et al. 2005, McGovern et al. 2007, Vésteinsson 1998). Macro-scale settlement outcomes varied markedly, from long-term sustainability in the Faroes and Iceland, to abandonment of Greenlandic settlements in the mid-15th century AD (Dugmore et al. 2007a, 2012). This variation is also evident on smaller geographical scales; in Iceland, the overall continuity of settlement is overlain by differences in the history and longevity of individual farm sites (Dugmore et al. 2007b). Understanding the mechanisms for this variation is a key component in the reconstruction of Viking histories in the North Atlantic, but this aim is frequently confounded by the complexity of social, economic, and environmental interactions that influenced the behavior of inhabitants at a site.

One recurring and crucial research question is: what economic strategy was in place at a particular settlement? Understanding economic practices, particularly in terms of diet and animal husbandry, is essential to the reconstruction of human–environment interactions. Over recent years, the utility of stable isotope analysis in this regard has become increasingly apparent (e.g., Ambrose 1986; Arneborg et al. 1999, 2012; Ascough et al. 2012; Barrett and Richards 2007; Richards and Hedges 1999; Richards et al. 2006; Schwarcz and Schoeninger 1991). In this study, we investigate the use of stable isotope ratios of carbon and nitrogen, expressed as δ^{13} C and δ^{15} N, as a tool to reconstruct economic practice at early Viking period sites within the region of Mývatnssveit, northern Iceland (Fig. 1).

Norse North Atlantic communities used both agricultural and wild resources to build a broad-spectrum, effective, and flexible subsistence system that was initially based on traditional economic knowledge from the Norse homelands and then adapted to local settings (Dugmore et al. 2005, 2012). The agricultural component involved cows, sheep, goats, pigs, horses, and dogs, plus, where possible, arable agriculture. The wild component varied but could include freshwater and marine fish, birds, and marine mammals. Individual farms generally operated as part of a multi-farm cooperative system, involving exchange of materials and products with communal management of practices, such as upland grazing. The economic system was not static, but instead

¹SUERC, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride G75 0QF, UK. ²Department of Archaeology, Durham University, South Road, Durham DH1 3LE, UK. ³ Mývatn Research Station, Skútustaðir, Iceland and Institute of Biology and Environmental Sciences, University of Iceland, Reykjavik, Iceland. ⁴Hunter Bioarchaeology Laboratory, Hunter College CUNY, New York, NY 10021, USA. ⁵Institute of Geography, School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH9 8XP, UK. ⁶Departments of Geography and Environment and Archaeology, University of Aberdeen, Elphinstone Road, Aberdeen AB24 3UF, UK. ⁷St. Catherine's College, University of Oxford, Manor Road, Oxford OX1 3UJ, UK. ^{*}Corresponding author - Philippa.ascough@gla.ac.uk.

responded to changing environmental conditions and social pressures.

Measurements of δ^{13} C and δ^{15} N are a valuable tool in archaeological palaeodietary reconstruction. These measurements represent an integration of δ^{13} C and δ^{15} N isotope values in food consumed over the time a tissue (e.g., bone collagen) was formed (Hedges et al. 2007, Hobson and Clark 1992, Tieszen 1978). There is also a diet-tissue offset, meaning that δ^{13} C and δ^{15} N increase within an organism with each trophic level up a food chain by typically ${\approx}1{-}2{\ensuremath{\mbox{\sc h}}}$ for ${\delta}^{13}C$ and 3–5% for ${\delta}^{15}N.$ An increase in trophic level has also been observed in the $\delta^{15}N$ of neonatal and suckling animals relative to the tissues of the mother in both modern and archaeological populations (e.g., Ascough et al. 2012, Fuller et al. 2006). Although the typical source-consumer $\delta^{13}C$ offset is minimal, it should be noted that the bone collagen diet-tissue $\delta^{13}C$ offset appears to show species and diet-dependant variations (e.g., Hare et al. 1991), with a recent survey suggesting an offset of +3.6‰ for mammalian collagen (Szpak et al. 2012a). If the isotopic values of possible dietary components are sufficiently different, then the proportion of each component that was consumed by an organism can be assessed by analysis of its body tissues. δ^{13} C and δ^{15} N measurements of archaeological samples are usually made using bone collagen and have proved particularly useful in discriminating between terrestrial and marine components in the diet of human populations, as there is a large and consistent difference between both carbon and nitrogen isotope values in marine and terrestrial organisms (Arneborg et al. 1999, Richards et al. 2006, Sveinbjörnsdóttir et al. 2010). Commonly, this approach involves modelling the proportion of different theoretical dietary components. The accuracy of such isotope-based diet reconstruction depends heavily on how accurately the source isotopic compositions for each resource group represent the resources actually consumed. Thus, the selection of appropriate end-member values for such a model is critical (Dewar and Pfeiffer 2010). Importantly, both the resources included in the economic strategy of the inhabitants of the archaeological site and the isotope values of these resources must be known.

Values of δ^{13} C and δ^{15} N show wide geographical variation, meaning that the values for a species in one region cannot necessarily be used in palaeodietary reconstruction for another region. Geographic variations occur due to a range of environmental and anthropogenic variables, summarized in Rubenstein and Hobson (2004). Terrestrial δ^{13} C decreases with increasing latitude and increases with altitude due to temperature effects, while in C₃-plant-based ecosystems, dry habitats are enriched in δ^{13} C compared to wet habitats due to differences in water-use efficiency (Lajtha and Marshall 1994). In marine environments, $\delta^{13}C$ decreases with latitude, leading to northern oceans being enriched in $\delta^{13}C$ compared to southern oceans, and benthic systems are enriched in δ^{13} C compared to pelagic systems. These effects

Figure 1. Location map of sites mentioned in the text

are ascribed to temperature differences, surfacewater CO₂ concentration offsets, and differences in plankton biosynthesis or metabolism (Kelly 2000). Terrestrial plant tissue $\delta^{15}N$ varies according to the method of nitrogen fixation, the influence of anthropogenically and naturally added fertilizers, land-use practices resulting in differential loss of ¹⁴N, and the enrichment of wet habitats in δ^{15} N relative to dry habitats (Kelly 2000). Marine $\delta^{15}N$ geographic patterns are less well understood, although $\delta^{15}N$ in northern oceans appears more enriched compared to southern oceans (Kelly 2000). In addition to the above variables, the isotope values of any resource (e.g., cattle) at a single location will show considerable variability due to factors such as individual feeding preferences, age, sex, or illness (Bocherens and Drucker 2003, Hobson 1999, Hobson and Schwartz 1986).

This paper compiles stable isotope (δ^{13} C and δ^{15} N) values for a range of resources available to early Norse settlements in northern Iceland, within the region of Mývatnssveit, surrounding Lake Mývatn (Fig. 1, Table 1). These data include both domestic animals and wild resources from four archaeological sites: Undir Sandmúla (McGovern 2005), Sveigakot (Vésteinsson 2002), Hofstaðir (Lucas 2010), and Hrísheimar (Edvardsson and McGovern 2007). The region has been the focus of an international research effort to investigate human-environment interaction over the past twenty years (McGovern et al. 2007). The dataset presented here includes the first investigation of archaeological bird bone $\delta^{13}C$ and $\delta^{15}N$ for the study region. This inclusion is significant, given the extensive evidence for exploitation of bird populations surrounding Mývatn by the Norse inhabitants of Mývatnssveit (McGovern et al. 2007). In addition, analysis of bird remains from archaeological and paleontological contexts have

Table 1. Site descriptions from which material was obtained for analysis in this study.

Site	Description					
Mývatn	A highland lake basin in the interior of North Iceland					
Haganes	Area adjacent to the Mývatn shoreline					
Kálfaströnd	Area adjacent to the Mývatn shoreline					
Seljahjallagil	Gorge located ~5 km south east of Mývatn					
Framengjar	A large wetland area directly to the south of Mývatn					
Hrúteyjarnes	An island within Mývatn					
Undir Sandmúla	Archaeological site. Indeterminate-status Norse period farmstead					
Sveigakot	Archaeological site. Low-status Norse pe- riod farmstead					
Hofstaðir	Archaeological site. High-status Norse pe- riod farmstead					
Hrísheimar	Archaeological site. Indeterminate-status Norse period farmstead					

contributed significantly to a better understanding of the ecology of a number of bird species (e.g., Chamberlain et al. 2005, Emslie and Patterson 2007, Fox-Dobbs et al. 2006), and so the results may have value beyond archaeological investigations.

The aim of the research is firstly to compile a new and more comprehensive assessment of the isotope values and their ranges for resources used in the Norse economy of the study area. Secondly, it aims to investigate the potential for using isotope analysis of archaeofaunal remains in informing researchers about animal husbandry practices in the study area. Animal husbandry is a key component within North Atlantic archaeology, but little research has addressed the direct reconstruction of animal diet through stable isotope analysis. This paper therefore assesses the isotopic values of archaeofauna from sites in Mývatnssveit (Table 1) to determine whether it is possible to use these data to detect differences in husbandry practices in differing environments and between sites of differing status or function. In omnivores, such as pigs, both δ^{13} C and δ^{15} N can vary significantly between animals obtaining nutrients through free-range pannage versus those that are stalled and fed upon domestic waste including animal protein. This difference is particularly evident if the domestic waste includes marine or freshwater resources. In herbivores, $\delta^{13}C$ values tend to show less variability in areas where plant communities are dominated by C₃ vegetation (as in Iceland). However, plant δ^{15} N values can vary widely, depending upon local environment. Of particular interest to the current study is that long-term intensive use of animal manure distinctly raises plant $\delta^{15}N$ values relative to unmanured areas (Bogaard et al. 2007; Bol et al. 2005; Commisso and Nelson 2006, 2007; Fraser et al. 2011; Kanstrup et al. 2011, 2012). This elevation is considerable and has been shown to be as high as 10‰ in cereal grains (Kanstrup et al. 2012). High δ^{15} N values in domestic animals may therefore indicate enhancement of production via manuring practices or feeding of stalled animals over winter. It is important to note that natural variation in plant $\delta^{15}N$ values can also be considerable, and baseline values are required. For this reason, the data presented here also include values of modern vegetation from zones unaffected by modern agriculture in Mývatnssveit.

Methods

Sample material

Modern sample material. Stable isotope values used in this study represent the δ^{13} C and δ^{15} N of

both modern and archaeological biota from Mývatnssveit. These values include a range of new analyses and previously published measurements. Modern vegetation was obtained from four locations close to Mývatn (Haganes, Kálfaströnd, Framengjar, and Hrúteyjarnes) and from two locations ≈ 5 km from the lake in the vicinity of the archaeological site of Sveigakot (Sveigakot and Seljahjallagil; see Fig. 1). At Framengjar and Hrúteyjarnes, multiple vegetation samples were collected along a short transect to assess isotope variability in terrestrial plants at these locations in more detail. Leaves were sampled from living vegetation, air-dried at 30 °C, and then freeze-dried. Samples were stored in precleaned glass vials or plastic bags prior to subsequent analysis. Living biota from within and around Mývatn, including freshwater fish, were obtained as described in Ascough et al. (2010). Wildfowl were procured from local gyrfalcon (Falco rusticolus) nests, or from gillnets in Lake Mývatn. Some were collected as roadkill adjacent to Mývatn as soon as practical after death. Full sample details are given in Table 2.

Archaeofaunal sample material. The dataset of Norse period archaeofauna included in this study were obtained from four sites of varying status in the Mývatnssveit region. Broadly, Hofstaðir is interpreted as a high-status farm, while specialist activities, such as industry, appear to have taken place at the farms of Hrísheimar and Undir Sandmúla. Finally, Sveigakot represents a lower-status farm site. The holdings at Hofstaðir, Hrísheimar, and Sveigakot are located at 250-350 m above sea level (asl), while the territory of Undir Sandmúla is located slightly higher, at ≈ 400 m asl. All samples retrieved date to the 9th to 11th centuries AD. The age of samples obtained was established through a combination of tephrochronology and radiocarbon (¹⁴C) dating. Archaeofaunal samples included in the dataset are the bones of domesticated mammals (cow, sheep, goat, pig, horse, and dog) and wild species (birds and freshwater fish). These materials were obtained during excavations for two main projects: the Leverhulme Trust-funded "Landscapes circum-landnám" (Edwards et al. 2004) and the NSF-funded "Long Term Human Ecodynamics in the Norse North Atlantic: cases of sustainability, survival, and collapse" (McGovern 2011). Full sample details are given in Table 3.

Laboratory methods

Pretreatment of dried vegetation involved homogenization of each sample by grinding using an agate mortar and pestle. A sub-sample ($\approx 2-3$ mg) of the ground material was then taken for analysis. Bone samples of modern organisms were de-fatted prior to collagen extraction with 2:1 (v/v) chloroform/methanol solution, followed by sonication for 60 minutes. The extraction was repeated until the solvent remained clear. Collagen was extracted from bone samples according to a modified Longin (1971) method. The sample surface was cleaned by abrasion with a Dremmel® tool, after which the bone was crushed and placed in 1M HCl at room temperature (≈ 20 °C). The bone was left in the HCl for up to 96 hours, after which dissolution of the bone mineral component was complete. The solution was then decanted, and the collagen washed in reverse-osmosis water. The collagen was placed in reverse-osmosis water and the solution pH adjusted to 3.0 by addition of 0.5 M HCl. The collagen was solubilized by gentle heating at ≈80 °C. After cooling, the resulting solution was filtered through Whatman GF/A glass-fiber paper and then freeze-dried to recover the collagen. A sub-sample ($\approx 0.5-1$ mg) of the dried collagen was transferred into tin capsules for measurement of elemental abundance and stable isotope ratios.

Sample elemental abundances of %C and %N, to calculate CN ratios, were measured using a Costech elemental analyser (EA) (Milan, Italy) and fitted with a zero-blank auto-sampler. Vegetation samples were measured at the University of St. Andrews Facility for Earth and Environmental Analysis, and bone collagen samples were measured at the Scottish Universities Environmental Research Centre. The sample CN ratio was used to screen collagen samples for purity; samples with ratios of 2.9–3.6 were included in the dataset (cf. DeNiro 1985). Following combustion in the EA, the δ^{13} C and δ^{15} N of vegetation samples was measured using a ThermoFinnegan Delta^{plus} XL, and the $\delta^{13}C$ and $\delta^{15}N$ of collagen was measured using a Thermo Fisher Scientific Delta V Advantage isotope ratio mass spectrometer (IRMS) (Thermo FisherScientific Inc. GmbH, Bremen, Germany). The EA and IRMS were linked via a ConFlo III (Werner et al. 1999). Isotope values thus obtained are reported as per mil (‰) deviations from the VPDB and AIR international standards for δ^{13} C and δ^{15} N. Samples were measured with a mix of appropriate laboratory standards and blanks, from which measurement precision (1 σ) for δ^{13} C was determined to be better than $\pm 0.2\%$, and measurement precision (1 σ) for δ^{15} N was better than ± 0.3 %. Statistical differences in isotope values between archaeological sites for each archaeofaunal species were assessed using one-way analysis of variance (ANOVA) and post hoc Tukey tests.

Table 2. Stable isotope measurements of modern samples from Mývatnssveit. Previously published measurements: *Ascough et al. 2010, **Ascough et al. 2011. Modern terrestrial vegetation δ^{13} C values are also given corrected for the Suess effect (i.e., -1.57‰; Feng and Epstein 1995, Keeling 1979, Keeling et al. 1979, McCarroll and Loader 2004, McCarroll et al. 2009).

~

						Suess-		
	Sample		_		C C	orrected	- 16	
ID	location	Latin name	Common name	Habitat; dietary preference	δ ¹⁵ C	δ ¹⁵ C	δ''N	C/N
SUERC- 19798*	Haganes	Poa sp.	Grass	Temperate grassland	-28.3	-26.7	1.3	37
SUERC- 19799*	Kálfaströnd	Poa sp.	Grass	Temperate grassland	-29.1	-27.5	2.6	23
StA-1	Sveigakot	<i>Poa</i> sp.	Grass	Temperate grassland	-28.2	-26.6	-6.3	33
StA-2*	Seliahiallagil	Poa sp.	Grass	Temperate grassland	-28.5	-26.9	-9.1	25
StA-3*	Seliahiallagil	Equisetum arvense	Field horsetail	Meadow	-26.9	-25.3	-2.6	19
StA-4	Kálfaströnd	Equisetum arvense	Field horsetail	Meadow	-29.2	-27.6	14	17
StA-5	Framengiar	Carex rostrata	Bottle sedge	Wet meadows Carr	-27.8	-26.2	-0.9	24
StA-6	Framengiar	Vaccinium uliginosum	Bog hilberry	Heaths blanket bog	-30.1	-28.5	-5.5	29
StA-7	Framengiar	Carex lynghyei	Lyngbye's sedge	Wetlands brackish water	-27.8	-26.2	-0.9	26
StA-8	Framengiar	Salix phylicifolia	Tea-leaved willow	Damp/freshwater zones	-29.0	-27.4	-43	28
StA-9	Framengiar	Betula nana	Dwarf birch	Heaths, bogs	-29.4	-27.8	-4.9	22
StA-10	Framengiar	Potentilla palustris	Marsh cinquefoil	Marsh, stream/lake banks	-27.5	-25.9	1.1	21
StA-11	Framengiar	Salix lanata	Woolly willow	Meadow, streamside	-28.4	-26.8	-4.1	26
StA-12	Framengiar	Empetrum nigrum	Crowberry	Heathland	-28.9	-27.3	-6.2	77
StA-13	Framengiar	Bartsia alpina	Alpine bartsia	Pastures and flushes	-29.4	-27.8	-3.6	25
StA-14	Framengiar	Galium verum	Lady's bedstraw	Meadows and pastures	-27.0	-25.4	-0.8	18
StA-15	Hrútevjarnes	Geranium sp.	Geranium	Meadows, woodlands	-30.2	-28.6	0.4	16
StA-16	Hrúteyjarnes	Geum rivale	Water avens	Wet meadow, bog, riparian zones	-29.0	-27.4	1.7	19
StA-17	Hrúteyjarnes	Salix phylicifolia	Tea-leaved willow	Damp/freshwater zones	-28.0	-26.4	2.3	17
StA-18	Hrútevjarnes	Ervsimum hieraciifolium	Wallflower	Open damp grasslands	-30.6	-29.0	1.8	9
StA-19	Hrúteyjarnes	Angelica archangelica	Angelica	Stream/lake shorelines	-30.9	-29.3	2.1	11
StA-20	Hrúteyjarnes	Geranium sp.	Geranium	Meadows, woodlands	-28.8	-27.2	4.0	12
StA-21	Hrúteyjarnes	Geum rivale	Water avens	Wet meadow, bog, riparian zones	-30.9	-29.3	1.5	14
StA-22	Hrúteyjarnes	Angelica archangelica	Angelica	Stream/lake shorelines	-29.3	-27.7	3.9	8
StA-23	Hrúteyjarnes	Salix phylicifolia	Tea-leaved willow	Damp and freshwater zones	-27.1	-25.5	3.9	15
StA-24	Hrúteyjarnes	Geum rivale	Water avens	Wet meadow, bog, riparian zones	-31.6	-30.0	1.9	16
StA-25	Hrúteyjarnes	Salix phylicifolia	Tea-leaved willow	Damp and freshwater zones	-29.1	-27.5	3.4	18
StA-26	Hrúteyjarnes	Geranium sp.	Geranium	Meadows, woodlands	-26.9	-25.3	2.1	14
StA-27	Hrúteyjarnes	Angelica archangelica	Angelica	Stream and lake shorelines	-29.5	-27.9	3.7	12
StA-28	Hrúteyjarnes	Geum rivale	Water avens	Wet meadow, bog, riparian zones	-29.1	-27.5	1.7	16
StA-29	Hrúteyjarnes	Salix phylicifolia	Tea-leaved willow	Damp and freshwater zones	-28.7	-27.1	4.8	20
StA-30	Hrúteyjarnes	Geranium sp.	Geranium	Meadows, woodlands	-28.8	-27.2	3.6	13
StA-31	Hrúteyjarnes	Geum rivale	Water avens	Wet meadow, bog, riparian zones	-30.9	-29.3	2.6	16
StA-32	Hrúteyjarnes	Salix phylicifolia	Tea-leaved willow	Damp and freshwater zones	-30.5	-28.9	5.0	16
StA-33	Hrúteyjarnes	Salix phylicifolia	Tea-leaved willow	Damp and freshwater zones	-30.5	-28.9	6.5	17
StA-34	Hrúteyjarnes	Salix phylicifolia	Tea-leaved willow	Damp and freshwater zones	-30.8	-29.2	4.1	17
StA-35	Hrúteyjarnes	Salix phylicifolia	Tea-leaved willow	Damp and freshwater zones	-31.3	-29.7	4.6	17
StA-36	Hrúteyjarnes	Geranium sp.	Geranium	Meadows, woodlands	-30.6	-29.0	3.0	12
SUERC-	Mývatn	Salvelinus alpinus	Arctic char	Fresh and/or marine waters;	-14.0	-	5.8	7.0
19788 SUERC-	Mývatn	Gasterosteus aculeatus	Three-spined	Insectivore/piscivore Fresh and/or marine waters;	-13.4	-	5.4	4.6
19/89 SUEDC	Melanata	<i>T</i> i	Stickleback	Enclose the Enclos	144		0.5	
10701*	wyvatn	Tanytarsus gractientus	Chinoholina mage	Fleshwater	-14.4	-	0.5	-
SUERC- 19792*	Mývatn	Tanytarsus gracilentus	Chironomid larvae	Freshwater, benthic detritivore	-11.8	-	-1.7	-
SUERC- 19793*	Mývatn	-	Bulk zooplankton	Freshwater pelagic; heterotrophic	-17.7	-	1.5	-
SUERC- 27076**	Mývatn	Daphnia longispina	Zooplankton	Freshwater pelagic ; algae and organic detritus	-17.0	-	1.2	7.2
SUERC- 27072**	Mývatn	Apatania zonella	Caddisfly larvae	Freshwater benthic; algae and detritus	-19.0	-	-0.9	6.6
SUERC- 27062**	Mývatn	Simulium vittatum	Blackfly larvae	Freshwater, benthic detritivore	-15.4	-	1.2	5.1
SUERC- 27070**	Mývatn	Tanytarsus gracilentus	Chironomid larvae	Freshwater, benthic detritivore	-15.8	-	6.1	5.1
SUERC- 27071**	Mývatn	Tanytarsus gracilentus	Chironomid larvae	Freshwater, benthic detritivore	-19.3	-	0.7	-

Table 2, continued. Suess-Sample corrected $\delta^{13}C$ $\delta^{15}N$ C/N ID $\delta^{13}C$ location Latin name Common name Habitat; dietary preference SUERC-Mývatn Tanytarsus gracilentus Chironomid larvae Freshwater, benthic detritivore -16.1 0.4 5.2 27068** SUERC-Tanytarsus gracilentus Chironomid larvae Freshwater, benthic detritivore -13.7 5.1 Mývatn 1.7 27069* SUERC-Radix peregra Mollusc Freshwater benthic; algae and -22.6 5.5 5.6 Mývatn _ 27082* detritus Mollusc SUERC-Mývatn Radix peregra Freshwater benthic; algae and -15.7 _ 3.6 5.0 27086** detritus SUERC-Radix peregra Mollusc Freshwater benthic; algae and -13.4 0.5 6.7 Mývatn _ 27081* detritus SUERC-Detritus Lake benthic detritus -16.4 -0.5 Mývatn _ -19797* SUERC-Detritus Lake benthic detritus -17 5 _ -1.9 . Mývatn 27059** Lake benthic detritus SUERC-Mývatn Detritus -18.3 -0.4 --27056* SUERC-Detritus Lake benthic detritus Mývatn -17.7 -3.1 6.6 27057** SUERC-Detritus Lake benthic detritus -16.5 -2 Mývatn 27058** Detritus Lake benthic detritus -19.2 6.3 SUERC-Mývatn _ _ 27060^{*} SUERC-Mývatn Detritus Lake benthic detritus -17.4 -2.1 _ -27061** SUERC-Mývatn Cladophora spp. Green algae Freshwater aquatic plant -14.8 -1.3 8.7 27067* -10.1 SUERC-Cladophora spp. Green algae Freshwater aquatic plant 3.4 16.7 Mývatn -27066* SUERC-Myriophyllum Freshwater aquatic plant -10.2Mývatn Alternate water-_ -13 _ 19800* alterniflorum milfoil SUERC-Potamogeton perfoliatus Perfoliate pondweed Freshwater aquatic plant -12.5 0.8 Mývatn -19801* SUERC-Potamogeton filiformis Slender-leaved Freshwater aquatic plant -16.9 2 26.6 Mývatn 27079** pondweed SUERC-17.1 Potamogeton filiformis Slender-leaved Freshwater aquatic plant -12.1 -16 Mývatn -27080** pondweed SUERC-Mývatn Potamogeton filiformis Slender-leaved Freshwater aquatic plant -13.1 _ -4.3 17.8 pondweed 27077* SUERC-Mývatn Potamogeton filiformis Slender-leaved Freshwater aquatic plant -11.9 -2.5 25.2 27078** pondweed StA-37 Mývatn Melanitta nigra Common scoter Inland/coastal waters: aquatic -7.9 5.4 3.4 invertebrates, fish, vegetation StA-38 Mývatn Anas penelope Wigeon Freshwater/coastal wetlands; -11.01.3 3.2 _ herbivorous StA-39 Mývatn Numenius phaeopus Whimbrel Freshwater/coastal wetlands; -12.6 _ 9.8 3.5 invertebrates, fish StA-41 Mývatn Sterna paradisaea Arctic tern Coastal zone (may breed on -17.1 11.1 2.9 _ inland water); piscivorous StA-42 Mývatn Podiceps auritus Slavonian grebe Inland/coastal waters; fish and -10.6 _ 8.0 32 invertebrates StA-44 7.7 3.3 Mývatn Podiceps auritus Slavonian grebe Inland/coastal waters; fish and -12.2_ invertebrates StA-45 Mývatn Podiceps auritus Slavonian grebe Inland/coastal waters; fish and -13.1 _ 10.5 3.1 invertebrates Slavonian grebe StA-46 Mývatn Podiceps auritus Inland/coastal waters; fish and -9.8 8.0 3.3 invertebrates Tufted duck StA-47 Mývatn Aythya fuligula Lakes, rivers, estuaries: -23.2 16.4 3.5 _ Omnivorous StA-49 Mývatn Anas crecca Teal Lake, marsh and river systems -20.6 5.4 3.5 StA-51 Bucephala islandica Barrow's goldeneye 5.2 2.9 Mývatn Inland/coastal waters; aquatic -13.4 _ insects, crustaceans and vegetation StA-52 Mývatn Podiceps auritus Slavonian grebe Inland/coastal waters; fish and -14.6 10.4 3.0 invertebrates

Table 3. Stable isotope measurements of archaeological samples from Mývatnssveit. [†]Ascough et al. 2007, ^{*}Ascough et al. 2010, [§]Ascough

et al. 2012. ^xNeonatal animal.

Measurement ID	Sample location	Context No.	Latin name	Common name	$\delta^{13}C$	$\delta^{15}N$	C/N
StA-133	Hofstaðir	4	Aythyinae	Diving duck	-12.6	6.1	3.0
StA-134	Hofstaðir	8	Anas platyrhynchos	Mallard	-11.9	5.1	3.3
StA-135	Hofstaðir	4	Anas platyrhynchos	Mallard	-11.6	7.0	2.9
StA-136	Hofstaðir	1144	Aythyinae	Diving duck	-9.7	5.8	3.0
StA-138	Hofstaðir	6h	Cepphus sp.	Guillemot	-15.9	8.7	3.3
StA-139	Hofstaðir	4a	Laridae (family)	Gull	-16.6	7.1	3.1
StA-140	Hofstaðir	4a	Lagopus sp.	Ptarmigan	-20.0	-4.9	3.4
StA-141	Hofstaðir	4a	Phalacrocorax carbo	Cormorant	-12.0	5.4	3.3
StA-142	Hofstaðir	5a	Alle alle	Little Auk	-21.0	5.2	2.9
StA-143	Hofstaðir	16	Aythyinae sp.	Diving duck	-15.0	13.9	2.9
StA-144	Hofstaðir	4	Aythyinae sp.	Diving duck	-13.1	4.8	2.9
SUERC-3429 ^{*x}	Hofstaðir	7a	Bos taurus	Cow	-21.0	5.9	3.1
SUERC-3431 ^{*x}	Hofstaðir	6d	Bos taurus	Cow	-20.3	1.6	3.1
SUERC-3433*	Hofstaðir	6g	Bos taurus	Cow	-20.9	3.8	3.3
SUERC-6393 [§]	Hofstaðir	62	Bos taurus	Cow	-21.2	-0.1	3.2
SUERC-6397 [§]	Hofstaðir	159	Bos taurus	Cow	-21.3	-0.1	3.2
SUERC-6398 [§]	Hofstaðir	159	Bos taurus	Cow	-21.4	0.6	3.1
SUERC-6399 [§]	Hofstaðir	159	Bos taurus	Cow	-21.4	-0.2	3.2
SUERC-8618 [†]	Hofstaðir	6N	Bos taurus	Cow	-21.2	1.4	3.2
SUERC-8619 ^{†x}	Hofstaðir	6N	Bos taurus	Cow	-21.0	2.6	3.3
SUERC-8623	Hofstaðir	6N	Bos taurus	Cow	-21.2	0.1	3.1
SUERC-8624	Hofstaðir	6N	Bos taurus	Cow	-21.4	-0.2	3.3
GU-14804 ^s	Hofstaðir	1495	Bos taurus	Cow	-21.5	0.2	3.5
SUERC-83538	Hofstaðir	233	Ovicaprine	Sheep/Goat	-21.7	0.7	3.4
SUERC-8354 ⁸	Hofstaðir	254	Ovicaprine	Sheep/Goat	-21.3	1.1	3.2
SUERC-8360 ⁸	Hofstaðir	170	Ovicaprine	Sheep/Goat	-21.4	1.3	3.2
SUERC-11541 ⁸	Hofstaðir	/60	Ovicaprine	Sheep/Goat	-21.3	0.4	3.6
SUERC-1154/*	Hoistaoir	170	Ovicaprine	Sheep/Goat	-21.4	1.8	3.4
$GU-15207^{\circ}$	Holstaolf	0M	Ovicaprine	Sheep/Goat	-21.5	4.0	3.1
GU-15268°	Holstaolf	0M	Ovicaprine	Sheep/Goat	-21.5	2.5	3.1
GU-15209° GU-15270§	Holstaolf	0IVI 6M	Ovicaprine	Sheep/Goat	-21.0	0.5	3.1 2.1
GU 15270°	Hofstaðir	6M	Ovicaprine	Sheep/Goat	-20.9	1.0	5.1 2.1
GU 15271 ⁸	Hofstaðir	6M	Ovicaprine	Sheep/Goat	-20.8	0.2	3.1
SUERC-8356 [§]	Hofstaðir	254	Ovicapinic Ovis arias	Sheen	-21.8	0.2	3.1
SUERC-11542§	Hofstaðir	4480	Ovis aries	Sheen	-21.8	0.1	3.3
SUERC-11546 [§]	Hofstaðir	1480	Ovis aries	Sheep	-21.0	1.1	33
GU-14805 [§]	Hofstaðir	1166	Ovis aries	Sheep	-21.5	1.1	33
SUERC-11540*	Hofstaðir	219/470	Salmo trutta	Brown trout	-12.2	6.8	3.5
SUERC-11539*	Hofstaðir	219/470	Salvelinus alpinus	Arctic char	-12.5	5 7	3.4
SUERC-3430 [*]	Hofstaðir	7a	Sus scrofa	Domestic pig	-21.0	4.6	3.4
SUERC-3432*	Hofstaðir	6d	Sus scrofa	Domestic pig	-21.5	0.5	3.5
SUERC-3438*	Hofstaðir	6g	Sus scrofa	Domestic pig	-19.8	3.7	3.2
SUERC-8355 [†]	Hofstaðir	254	Sus scrofa	Domestic pig	-16.9	7.4	3.2
GU-15273 ^{§x}	Hofstaðir	6N	Sus scrofa	Domestic pig	-21.7	4.4	3.3
GU-15274 ^{§x}	Hofstaðir	6N	Sus scrofa	Domestic pig	-21.2	0.9	3.3
GU-15275§	Hofstaðir	6N	Sus scrofa	Domestic pig	-21.3	1.8	3.3
GU-15276 [§]	Hofstaðir	6N	Sus scrofa	Domestic pig	-18.9	6.6	3.4
GU-15277 [§]	Hofstaðir	6N	Sus scrofa	Domestic pig	-21.5	0.3	3.1
GU-15278 [§]	Hofstaðir	6N	Sus scrofa	Domestic pig	-21.3	3.1	3.3
StA-150	Hrísheimar	45	Anas crecca	Teal	-23.6	3.6	3.4
StA-154	Hrísheimar	384	Anser sp.	Goose	-10.4	4.9	3.0
SUERC-3445 ^{§x}	Hrísheimar	60	Bos taurus	Cow	-20.9	1.5	3.2
SUERC-3446 ^{*x}	Hrísheimar	2	Bos taurus	Cow	-21.4	1.0	3.1
SUERC-6431 [†]	Hrísheimar	45	Bos taurus	Cow	-21.7	-0.4	3.2
SUERC-6432 [†]	Hrísheimar	45	Bos taurus	Cow	-21.6	1.5	3.2
SUERC-6433 [†]	Hrísheimar	45	Bos taurus	Cow	-21.8	0.0	3.2
SUERC-6437 [†]	Hrísheimar	45	Bos taurus	Cow	-20.9	1.8	3.2
GU-14807 [§]	Hrísheimar	429	Bos taurus	Cow	-20.4	3.1	3.4
GU-14808 ⁸	Hrísheimar	429	Bos taurus	Cow	-21.6	2.3	3.3
GU-14809 ⁸	Hrisheimar	429	Ovis aries	Sheep	-21.0	1.6	3.4
GU-15286 ⁸	Hrisheimar	3	Ovis aries	Sheep	-21.2	-0.5	3.3

Journal of the North Atlantic	Special Volume 7
P.L. Ascough, M.J. Church, G.T. Cook, Á. Einarsson, T.H. McGovern, A.J. Dugmore, and K.J. Edwa	irds

Table 3, continued.							
Measurement ID	Sample location	Context No.	Latin name	Common name	$\delta^{13}C$	$\delta^{15}N$	C/N
GU-15287§	Hrísheimar	3	Ovis aries	Sheep	-21.0	0.9	3.3
GU-15288§	Hrísheimar	3	Ovis aries	Sheep	-21.3	0.6	3.4
GU-15289 [§]	Hrísheimar	3	Ovis aries	Sheep	-21.1	1.6	3.2
GU-15290§	Hrísheimar	3	Ovis aries	Sheep	-22.0	1.7	3.6
GU-15291§	Hrísheimar	3	Ovis aries	Sheep	-21.2	-0.2	3.3
GU-15292 [§]	Hrísheimar	3	Ovis aries	Sheep	-21.2	0.6	3.2
GU-15293 [§]	Hrísheimar	3	Ovis aries	Sheep	-21.3	-1.5	3.3
GU-15294§	Hrísheimar	3	Ovis aries	Sheep	-21.6	0.3	3.4
SUERC-9045 [†]	Hrísheimar	45	Salvelinus alpinus	Arctic char	-15.9	6.0	3.1
SUERC-9049 [†]	Hrísheimar	45	Salvelinus alpinus	Arctic char	-16.0	5.7	3.3
SUERC-9050 [†]	Hrísheimar	45	Salvelinus alpinus	Arctic char	-15.5	5.6	3.2
SUERC-9051 [†]	Hrísheimar	45	Salvelinus alpinus	Arctic char	-15.9	5.8	3.2
SUERC-3440*	Hrísheimar	3	Sus scrofa	Domestic pig	-21.3	0.1	3.1
SUERC-3442*	Hrísheimar	2	Sus scrofa	Domestic pig	-20.1	1.3	3.1
GU-14806 [§]	Hrísheimar	429	Sus scrofa	Domestic pig	-20.6	3.9	3.5
GU-15279 ^{§x}	Hrísheimar	3	Sus scrofa	Domestic pig	-22.5	-1.2	3.4
GU-15280 ^{§x}	Hrísheimar	3	Sus scrofa	Domestic pig	-22.2	-0.7	3.5
GU-15281 ^{sx}	Hrísheimar	3	Sus scrofa	Domestic pig	-21.8	0.0	3.3
GU-15282 [§]	Hrisheimar	3	Sus scrofa	Domestic pig	-22.2	-0.4	3.5
GU-152838	Hrisheimar	3	Sus scrofa	Domestic pig	-22.0	-0.5	3.3
GU-15284 ⁸	Hrisheimar	3	Sus scrofa	Domestic pig	-21.3	0.1	3.2
GU-15285 ⁸	Hrisheimar	3	Sus scrofa	Domestic pig	-21.9	-0.6	3.3
StA-155	Sveigakot	27	Aythyinae	Diving duck	-20.5	-2.7	2.9
StA-156	Sveigakot	58	Gavia immer	Great Northern diver	-14.5	14.2	3.4
StA-158	Sveigakot	55	Podiceps auritus	Slavonian grebe	-1/.0	11.5	3.1
StA-159	Sveigakot	4	Podiceps auritus	Slavonian grebe	-11.9	11.1	3.0
StA-160	Sveigakot	2	Anser sp.	Goose	-13.5	14.1	2.9
StA-101	Sveigakot	54	Anatidae	Ducks, geese, swans (lamily)	-13.8	8.0	2.9
StA-102	Sveigakot	1427	Aythyinae		-12.2	4.2	2.9
StA-105	Sveigakot	1437	Cavia stallata	Bad threated diver	-13.0	13.0	5.1 2.1
GUsi-1312	Sveigakot	2859	Bos taurus	Cow	-13.0	2.0	3.1
GU-15461 [§]	Sveigakot	55	Bos taurus	Cow	-21.5	1.2	3.5
GU-15462§	Sveigakot	55	Bos taurus	Cow	-21.3	0.2	33
GU-15463 [§]	Sveigakot	55	Bos taurus	Cow	-21.5	0.2	33
GU-15464 [§]	Sveigakot	55	Bos taurus	Cow	-21.3	0.9	33
GU-15465 ^{§x}	Sveigakot	55	Bos taurus	Cow	-20.9	2.3	3 4
GU-15466 ^{§x}	Sveigakot	55	Bos taurus	Cow	-21.2	2.3	3 5
GU-15467 [§]	Sveigakot	55	Ovicaprine	Sheep/Goat	-21.1	0.0	3.3
GU-15468 [§]	Sveigakot	55	Ovicaprine	Sheep/Goat	-21.1	-0.6	3.4
GU-15469 [§]	Sveigakot	55	Ovicaprine	Sheep/Goat	-21.1	0.3	3.3
GU-15470 [§]	Sveigakot	55	Ovicaprine	Sheep/Goat	-21.5	0.4	3.6
GU-15471 [§]	Sveigakot	55	Ovicaprine	Sheep/Goat	-21.3	0.0	3.3
GU-15472 [§]	Sveigakot	55	Ovicaprine	Sheep/Goat	-21.1	-0.3	3.3
GUsi-1316	Sveigakot	2859	Ovis aries	Sheep	-21.8	0.5	3.4
GUsi-1317	Sveigakot	2859	Ovis aries	Sheep	-21.2	1.2	3.2
GUsi-1318	Sveigakot	2859	Ovis aries	Sheep	-21.9	1.4	3.6
GUsi-1319	Sveigakot	2859	Ovis aries	Sheep	-21.3	1.2	3.3
GUsi-1314	Sveigakot	2859	Sus scrofa	Domestic pig	-21.6	5.0	3.6
GU-15473§	Sveigakot	55	Sus scrofa	Domestic pig	-19.8	3.0	3.5
GU-15474	Sveigakot	55	Sus scrofa	Domestic pig	-21.3	0.2	3.3
GU-15475	Sveigakot	55	Sus scrofa	Domestic pig	-17.8	8.7	3.4
GU-15476 ^x	Sveigakot	55	Sus scrofa	Domestic pig	-21.3	2.0	3.5
GU-15477	Sveigakot	55	Sus scrofa	Domestic pig	-20.4	3.3	3.4
GU-15478	Sveigakot	55	Sus scrofa	Domestic pig	-21.5	3.0	3.3
SUERC-11548	Undir Sandmúla	2	Bos taurus	Cow	-21.6	2.1	3.4
SUERC-11549	Undir Sandmúla	2	Bos taurus	Cow	-21.6	0.1	3.6
GU-14803 [§]	Undir Sandmúla	2	Capra hircus	Goat	-21.4	-1.0	3.3
GU-14799 ⁸	Undir Sandmúla	2	Ovicaprine	Sheep/Goat	-21.3	-1.3	3.3
GU-14800 [§]	Undir Sandmúla	2	Ovicaprine	Sheep/Goat	-21.4	-0.2	3.5
GU-14801 [§]	Undır Sandmúla	2	Ovicaprine	Sheep/Goat	-21.3	-0.8	3.5
GU-14802 ⁸	Undır Sandmúla	2	Ovicaprine	Sheep/Goat	-21.5	-1.0	3.6

2014

Results and Interpretations

Modern vegetation and biota from Mývatnssveit

Modern terrestrial vegetation. The raw δ^{13} C values of modern terrestrial vegetation were adjusted by +1.57‰ (Feng and Epstein 1995, McCarroll and Loader 2004, McCarroll et al. 2009) to account for the decrease in atmospheric δ^{13} C since ca. AD 1880 due to human burning of fossil fuels (the Suess effect; Keeling 1979, Keeling et al. 1979)). The corrected δ^{13} C values ranged from -30.0 to -25.3‰, and the δ^{15} N values ranged from -9.0 to +6.5‰ (Table 2, Fig. 2). These values accord with previous measurements by Wang and Wooller (2006) and Gratton et al. (2008) of plant $\delta^{15}N$ values for a range of locations in Iceland. The δ^{13} C values of all sites falls within the same broad range. In contrast, the $\delta^{15}N$ values of samples from Haganes, Kálfaströnd, and Hrúteyjarnes (+0.4 to +6.5‰; average = +2.9‰) is higher than that of samples from Framengjar, Sveigakot, and Seljahjallagil (-9.0 to +1.1%; average = -3.7%). The sampling sites of Hrúteyjarnes and Framengjar in particular were selected due to the lack of modern grazing animals at these locations, meaning that the elevated $\delta^{15}N$ values at Hrúteyjarnes are unlikely to be due to the effect of manuring via these species. An alternative explanation for higher plant δ^{15} N values at Haganes, Kálfaströnd, and Hrúteyjarnes is higher $\delta^{15}N$ of bioavailable soil nitrogen (as NH_4^+ or NO_3^-) at these sites. One potential source is the transportation of nitrogen from the lake to the shore in the bodies of chironomids (nonbiting midges). Gratton et al. (2008) estimated that, on average, 17 kg N ha-1 d-1 (kilograms of nitrogen per hectare, per day) were transported from Lake Mývatn to the terrestrial environment in this way, and that midge abundances decreased logarithmically with distance from shore. In contrast to our results, Gratton et al. (2008) did not find elevated $\delta^{15}N$ values in plants close to Mývatn. A further potential source of elevated plant $\delta^{15}N$ values close to the lake is that of guano from nesting bird populations. Bird guano has been shown to elevate plant $\delta^{15}N$ values considerably in experimental studies (Szpak et al. 2012b).

The results of stable isotope measurements on modern vegetation show that there is a wide range

Figure 2. Modern vegetation samples from Mývatnssveit. Bars represent 1 σ measurement precision (i.e., $\pm 0.2\%$ for δ^{13} C and $\pm 0.3\%$ for δ^{15} N). δ^{13} C values are given corrected for the Suess effect (i.e., -1.57‰; Feng and Epstein 1995, Keeling 1979, Keeling et al. 1979, McCarroll and Loader 2004, McCarroll et al. 2009).

in δ^{13} C and δ^{15} N values in plants in the Mývatn area. While δ^{13} C is variable at all sites, δ^{15} N values appear to differ significantly between locations. The expected δ^{15} N values of modern herbivores consuming plants exclusively from Framengjar, Sveigakot, and Seljahjallagil would therefore be $\approx 0-2\%$, whereas the expected $\delta^{15}N$ values of animals consuming plants at Haganes, Kálfaströnd, and Hrúteyjarnes would be $\approx 6-8\%$. These values are based on the average $\delta^{15}N$ value of plants at these locations, meaning that the actual range in animal $\delta^{15}N$ values at any location is likely to be larger than the values quoted above. Despite this, the overall $\delta^{15}N$ value of a population at Hrúteyjarnes, for example, would be expected to be higher than an equivalent population at Framengjar.

Modern freshwater biota and birds. The range in δ^{13} C and δ^{15} N values within modern freshwater biota in Mývatn, with respect to internal spatial lake variability, is discussed in detail in Ascough et al. (2011). However, the overall δ^{13} C and δ^{15} N values of lake biota also have relevance for the isotope values of wild resources (freshwater fish and birds) that were exploited by the Norse inhabitants of Mývatnssveit. The range in isotope values for individual species fits the established food web of Mývatn presented

in Einarsson et al. 2004, where the trophic pathways from detritus up to waterfowl and fish are illustrated. The overall δ^{13} C value of modern freshwater biota is higher than that of terrestrial plants, meaning that the δ^{13} C values of fish and birds obtaining carbon from the lake will generally be higher than that of terrestrial herbivores (cf. Ascough et al. 2012). In contrast, the $\delta^{15}N$ values of aquatic plants and invertebrates are within the range of that represented in terrestrial vegetation samples. Excluding an extreme δ^{15} N value of -16‰ (discussed in Ascough et al. 2011), the δ^{15} N value range is -4.3 to +6.1‰. Thus, the $\delta^{15}N$ of organisms consuming freshwater resources will overlap with that of organisms consuming terrestrial plants in Mývatnssveit (Ascough et al. 2012). An important point concerning the δ^{13} C and $\delta^{15}N$ values of modern freshwater biota is that values for both these isotopes show large variability within the lake. This variation may therefore be reflected in the $\delta^{13}C$ and $\delta^{15}N$ values of organisms consuming lake biota.

The δ^{13} C values of modern bird bones from around Mývatn ranged from -23.2 to -7.9‰, and the δ^{15} N values for these samples ranged from +1.3 to +16.4‰ (Table 2, Fig. 3). The very wide range in these values reflects the broad diet of the sampled

Figure 3. Modern and archaeofaunal bird bone collagen isotope values for archaeofaunal samples from Mývatnssveit. Bars represent 1σ measurement precision (i.e., $\pm 0.2\%$ for δ^{13} C and $\pm 0.3\%$ for δ^{15} N).

2014 *Journal of the North Atlantic* Special Volume 7 P.L. Ascough, M.J. Church, G.T. Cook, Á. Einarsson, T.H. McGovern, A.J. Dugmore, and K.J. Edwards

birds. While some species have a diet of terrestrial material (e.g., the whimbrel), the majority of other species incorporate freshwater and marine resources in their diets. The broad range in freshwater biota δ^{13} C and δ^{15} N values discussed above is hence represented in the δ^{13} C and δ^{15} N values of bird tissues. In addition, some birds represented in the sample group are piscivorous (Slavonian grebe), and hence will be at higher trophic levels than other species. In addition, most are migratory, spending part of the year in marine environments. This life history means that the δ^{13} C and δ^{15} N values of their tissues represent an integration of many different dietary resources from a variety of locations. One important point here regards differences in tissue turnover rates; the isotopic values of tissues with rapid turnover (e.g., muscle) reflect recent diet, whereas tissues with slower turnover (e.g., bone collagen) reflect longerterm dietary averages (Hobson and Clark 1992). Therefore, the bone collagen δ^{13} C and δ^{15} N values of migratory birds measured in this study may not exactly reflect the values of the tissues consumed by humans exploiting these birds as a dietary resource, a factor that should be considered before applying these data within the context of a palaeodietary baseline.

Archaeological biota from Mývatnssveit

Cows: inter-site comparison. The δ^{13} C values of archaeofaunal cow samples ranged from -22.1 to -20.3‰ (Table 3, Fig. 4). Excluding neonatal cattle, there is a barely significant difference between cattle δ^{13} C values at the four sites (ANOVA: P =0.4659). Although values from Undir Sandmúla appear slightly lower than those from the other sites, the significance of this offset is difficult to assess owing to the small sample size at Undir Sandmúla (2 animals) relative to other locations. Although the majority of the vegetation-cow-bone offsets are reasonably explained by a trophic effect, it should be borne in mind in future work that some higher cow δ^{13} C values could indicate the deliberate feeding of cattle with fish bones, a practice that is documented in Icelandic historical records.

The $\delta^{15}N$ values of neonatal cattle were not higher than that of adult animals, with the exception

Figure 4. *Bos taurus* (cow) bone collagen isotope values for archaeofaunal samples from Mývatnssveit. Bars represent 1σ measurement precision (i.e., $\pm 0.2\%$ for δ^{13} C and $\pm 0.3\%$ for δ^{15} N).

of SUERC-3429 ($\delta^{15}N = +5.9$); this result is in contrast to the effective trophic level increase observed in neonates and suckling animals relative to the adult mother in previous studies (e.g., Ascough et al. 2012, Fuller et al. 2006). There is no statistically significant difference in the $\delta^{15}N$ of non-neonatal cattle between the four sites (ANOVA: P = 0.52737). However the range of δ^{15} N values of cows at Sveigakot, Undir Sandmúla, and Hrísheimar (2.5‰, 2.0‰, and 3.5‰, respectively) is lower that that of cows at Hofstaðir (4‰). The farm holdings of Hofstaðir and Sveigakot (Thomson and Simpson 2007) are shown on Figure 1. It is possible that the larger range in δ^{15} N values at Hofstaðir may reflect the larger size of the potential area available for grazing of animals at this site, incorporating zones with more-varied vegetation δ^{15} N values.

Ovicaprine: inter-site comparison. In some instances, it was possible to identify samples within the ovicaprine group to species (Ovis aries or Capra hircus) on an archaeozoological basis. Where further identification was possible, there was no apparent difference between the isotope values of these species and the larger group of indeterminate ovicaprines. The range of δ^{13} C values in ovicaprine samples was -22.0 to -20.8‰ (Table 3, Fig. 5). This range is not different from the range of δ^{13} C values in cattle samples, and there is no significant difference in ovicaprine $\delta^{13}C$ values between sites (ANOVA: P = 0.73311). The δ^{15} N values of the ovicaprine sample group ranged from -1.5 to +4.0‰. The two highest values belonged to two identified neonatal animals (GU-15267 and GU-15268), resulting from the trophic offset between neonates and mothers discussed above. Exclusion of these values from the dataset gives a maximum $\delta^{15}N$ value of +1.8‰. The average $\delta^{15}N$ value of the archaeofaunal ovicaprine bones is hence lower than that of the cattle bones. If neonatal animals are excluded, the average cattle $\delta^{15}N$ value is +1.0‰, versus an average of +0.4‰ for ovicaprines. This finding could be the result of a physiological difference between cattle and ovicaprines, although we are not aware of any studies that demonstrate that such a difference results in a $\delta^{15}N$ offset between the two groups of the kind observed here. An alternative explanation is that there was a variation in the average $\delta^{15}N$ value of material consumed by cattle versus that of ovicaprines. Such a dietary difference between the two groups could be the result of food selection by the organisms directly, or a difference in the type of food to which ovicaprines and cattle had access as a result of human control. The findings may therefore be suggestive of different husbandry practices

Figure 5. Ovicaprine (sheep/goat) bone collagen isotope values for archaeofaunal samples from Mývatnssveit. Bars represent 1 σ measurement precision (i.e., $\pm 0.2\%$ for δ^{13} C and $\pm 0.3\%$ for δ^{15} N).

between species, such as grazing of cattle and ovicaprines in different areas of the region. Specialization in husbandry practices between species has also been used to explain similar dietary differences between domestic animal species expressed in isotopic values in previous archaeofaunal studies (e.g., Fuller et al. 2012a). The range of ovicaprine $\delta^{15}N$ values shows these animals did not frequently consume plants with the high $\delta^{15}N$ values observed at Haganes, Kálfaströnd, and Hrúteyjarnes. This finding argues against grazing of ovicaprines in intensively manured areas or zones of high natural plant $\delta^{15}N$ values.

The $\delta^{15}N$ of non-neonatal ovicaprines from Undir Sandmúla are significantly lower than animals from Hofstaðir (ANOVA, Tukey posthoc: P =0.0003), Hrísheimar (ANOVA, Tukey posthoc: P =0.0079), and Sveigakot (ANOVA, Tukey posthoc: P = 0.0152). Values from Sveigakot are significantly lower than values from Hofstaðir (ANOVA, Tukey posthoc: P = 0.3489). It seems likely this difference is a function of the rangeland areas of sheep and goats at Undir Sandmúla, where plant $\delta^{15}N$ values are low in modern vegetation samples. Simlarly, $\delta^{15}N$ values are also lower in animals from Sveigakot, though to a lesser extent. As observed in the cattle bones, the range in $\delta^{15}N$ values at Hofstaðir is larger than at other sites, even when neonatal animals are excluded. This result is potentially a function of site status, with greater access to herds grazing in a variety of different vegetation catchments or a wider range of fodder sources procured by the inhabitants of the site

Pigs: inter-site comparison. The δ^{13} C values of pig bone samples from the archaeofaunal sites ranged from -22.5 to -16.9‰, and the δ^{15} N values of these samples covers a range of -1.2 to +8.7% (Table 3, Fig. 6). There are significant differences between sites for non-neonatal animals for both δ^{13} C (ANO-VA P = 0.29374) and δ^{15} N (ANOVA P = 0.03839). The broad range in isotope values at all three sites (Sveigakot, Hrísheimar, and Hofstaðir) from which pig bones were obtained, is likely to reflect a mixed and variable range of husbandry practices. Their diet clearly included a variety of resources and was not restricted to terrestrial material. The most distinctive difference between the sites is between the samples from Hrísheimar and those from Sveigakot and Hofstaðir. At Hrísheimar, the δ^{13} C and δ^{15} N values in the majority of sampled pig bones falls within a narrow range that is characteristic of animals existing on a diet of terrestrial vegetation. Thus, the δ^{13} C of pigs at Hrísheimar is significantly lower than those at Sveigakot (ANOVA, Tukey posthoc P = 0.4425) and Hofstaðir (ANOVA, Tukey posthoc P = 0.3067), while there is no difference in δ^{13} C between pigs from Sveigakot and Hofstaðir (ANOVA, Tukey posthoc

Figure 6. Sus scrofa (pig) bone collagen isotope values for archaeofaunal samples from Mývatnssveit. Bars represent 1σ measurement precision (i.e., $\pm 0.2\%$ for δ^{13} C and $\pm 0.3\%$ for δ^{15} N).

P = 0.9842). Similarly, the δ^{15} N of pigs at Hrísheimar is significantly lower than those at Sveigakot (ANOVA, Tukey posthoc P = 0.058) and Hofstaðir (ANOVA, Tukey posthoc P = 0.0716), while there is no difference in δ^{13} C between pigs from Sveigakot and Hofstaðir (ANOVA, Tukey posthoc P = 0.957). These results suggest that animal protein or non-terrestrial resources did not feature significantly in the diet of pigs from Hrísheimar, which have isotope values consistent with free-range pannage of plant material with low δ^{15} N values (such as in the modern vegetation sampled at Framengjar, Sveigakot, and Seljahjallagil). This finding could be a function of the early landnám date of the Hrísheimar midden layers, as previous research has suggested the use of free-range pannage pig husbandry as a means of clearing woodland (Dugmore et al. 2005; McGovern et al. 2006, 2007). In contrast, pig bone samples at Sveigakot and Hofstaðir show significantly higher δ^{13} C and δ^{15} N values that covers a wider range between animals. Clearly, non-plant material featured more heavily in the diet of pigs at these sites, which included a mix of terrestrial, freshwater, and (potentially) marine material. Animals with δ^{13} C values characteristic of terrestrial herbivores but with high $\delta^{15}N$ values could represent free-range pannage on vegetation that had high $\delta^{15}N$ values. Alternatively, these values could represent the inclusion of terrestrial animal protein in the diet of these pigs. Unfortunately, these two possibilities are not readily discriminated with bulk δ^{13} C and δ^{15} N values, although analysis of the isotopic values of amino acids may be a method that can shed further insight (e.g., Choy et al. 2010) and could be a possible focus for future work. However, where pig bone collagen δ^{13} C values are also elevated suggests inclusion of freshwater or marine protein in the diet. Potential sources of this material include fish-processing waste, fish bones, and bird eggs. The presence of freshwater protein in the diet of pigs from Mývatnssveit is also evidenced in ¹⁴C dating, which has revealed a freshwater ¹⁴C reservoir effect in the bones of pig samples from these sites (Ascough et al. 2010, 2012). The range of pig husbandry practices represented at Sveigakot and Hofstaðir is therefore characteristic of a varied strategy, including some animals that were fed upon domestic waste, potentially while styed.

Wild species

The isotope values of archaeofaunal freshwater fish (δ^{13} C from -12.2 to -16.0‰, δ^{15} N from 5.6 to 6.8‰) are within the range of modern fish from Mývatn (δ^{13} C from -13.4 to -14.0‰, δ^{15} N from +5.4 to +5.8‰), although there is some variation within the group (Ascough et al. 2007, 2010). The δ^{13} C range for freshwater fish overlaps with that of previous values for archaeofaunal marine fish bone collagen (Atlantic cod from Norse and medieval period sites in northern Scotland; Russell et al. 2011), but the δ^{15} N is several per mill lower than average cod bone values from Russell et al. (2011) and other studies (e.g., Barrett et al. 2011). The $\delta^{13}C$ and $\delta^{15}N$ values of fish from freshwater systems show great site-specific variation on geographic scales; for example, Fuller et al. (2012b) found δ^{13} C values of -20.3 to -28.2‰ for freshwater fish in Belgium, while Grupe et al. (2009) measured δ^{13} C values of -11.7 to -27.4‰ for non-marine species in a brackish fjord in northern Germany. In these studies, the average δ^{15} N of freshwater fish bone collagen was several per mill higher than that of modern or archaeofaunal fish from Mývatn.

The δ^{13} C values of archaeofaunal bird bone samples from sites in Mývatnssveit were -23.6 to -9.7‰ (Table 3, Fig. 3). This range is approximately equivalent to that of the sample of modern bird bones, and similarly reflects the range in diet of the species represented. The lowest $\delta^{13}C$ values indicate a diet containing more terrestrial resources, while higher values denote increasing amounts of freshwater and/ or marine material in the diet. This pattern is also reflected in the δ^{15} N values of the samples, which range from -4.9 to +15.2%. If the resources consumed by the birds were simply terrestrial and marine in origin, a positive linear correlation between $\delta^{13}C$ and δ^{15} N values in the sample group would be expected. This is not the case, due to the confounding influence of freshwater resources in the diet of the birds. As discussed above, the isotope values for freshwater resources in the lake are highly variable. The isotope values of waterfowl in the region therefore incorporate varying proportions of terrestrial, marine, and freshwater food, whereas the isotope values for freshwater resources cover a very large range. This variability is apparent in both archaeological and modern bird samples and has implications for palaeodietary reconstructions of omnivorous organisms such as humans. Along with consumption of waterfowl themselves, exploitation of waterfowl populations by Norse populations around Mývatnssveit involved the collection of large quantities of waterfowl eggs (McGovern et al. 2006, 2007). Egg production by a bird uses nutrients obtained in the diet, and it is likely that the large variation in isotope values reflected in the bone collagen of samples analyzed in this study would be reflected in the $\delta^{13}C$ and $\delta^{15}N$ values of eggs consumed by human populations.

Journal of the North Atlantic

Special Volume 7

P.L. Ascough, M.J. Church, G.T. Cook, Á. Einarsson, T.H. McGovern, A.J. Dugmore, and K.J. Edwards

Conclusions

The research presented here compiles isotope values for Norse economic resources in Mývatnssveit, representing the most comprehensive suite of archaeofaunal δ^{13} C and δ^{15} N measurements for sites in the region and anywhere in Iceland. The analyses emphasize the wide range in isotope values of resources used by the Norse settlers of Mývatnssveit. As previously noted, there is separation between the δ^{13} C values of terrestrial and freshwater resources, but considerable overlap between the δ^{15} N values of these groups (Ascough et al. 2012). This overlap means that paleodietary reconstruction of individuals in the region based solely on δ^{13} C and δ^{15} N values will always be problematic.

The results provide information that is useful to reconstructing animal husbandry practices in the study area. While herbivore bone $\delta^{13}C$ and $\delta^{15}N$ are unlikely to reveal subtle husbandry differences (e.g., small-scale differences in grazing areas or in the duration of over-winter stalling), it is clear that with sufficiently large datasets, differences and similarities between isotope values at individual sites begin to emerge. In particular, $\delta^{13}C$ and $\delta^{15}N$ measurements of pig bone enable detailed investigation of husbandry in the region as these animals are omnivores and consume a potential range of resources with large separation in terms of isotope values (e.g., terrestrial versus marine material). Within the dataset represented here, quite marked differences in pig husbandry are apparent between a relatively small number of sites.

Finally, the work highlights methodological "best practice" in the application of stable isotope analysis for archaeological research. Variation in animal management practices, rather than animals having unrestricted access to a landscape, means that particular isotopic patterns at a site could arise from a range of practices. Therefore, careful research design is required and the results need to be placed within a secure archaeological, chronological, and palaeoenvironmental framework.

Acknowledgments

This research was supported by funding from the Leverhulme Trust ("Landscape circum-*landnám*" Programme Award: grant number F/00 152/F), US National Science Foundation (grant number 0732327 "IPY: Long Term Human Ecodynamics in the Norse North Atlantic: Cases of sustainability, survival, and collapse" awarded by the Office of Polar Programs Arctic Social Sciences International Polar Year program 2007–2010), the Carnegie Trust for the Universities of Scotland, and the Royal Scottish Geographical Society. Thanks are due to Olafur K. Nielsen, Institute of Natural History, Iceland, for providing some of the bird samples from the Lake Mývatn area. We would also like to thank Ian Lawson and Katy Roucoux for help gathering the modern vegetation samples; Kerry Sayle, Helen Hastie, and Elaine Dunbar for stable isotope support at SUERC; and to three reviewers of the original submission for their helpful and constructive comments.

Literature Cited

- Ambrose, S.H. 1986. Stable carbon and nitrogen isotope analysis of human and animal diet in Africa. Journal of Human Evolution 15:707–731.
- Arge, S.V., G. Sveinbjarnardóttir, K.J. Edwards, and P.C. Buckland. 2005. Viking and Medieval settlement in the Faroes: People, place, and environment. Human Ecology 33:597–620.
- Arneborg, J., J. Heinemeier, N. Lynnerup, H.L. Nielsen, N. Rud, and Á.E. Sveinbjörnsdóttir. 1999. Change of diet of the Greenland Vikings determined from stable carbon isotope analysis and ¹⁴C dating of their bones. Radiocarbon 41:157–168.
- Arneborg, J., N. Lynnerup, J. Heinemeier. 2012. Human diet and subsistence patterns in Norse Greenland AD c. 980–AD c. 1450: Archaeological interpretations. Journal of the North Atlantic, Special Volume 3:94–133.
- Ascough, P.L., G.T. Cook, M.J. Church, A.J. Dugmore, T.H. McGovern, E. Dunbar, Á. Einarsson, A. Friðriksson, and H. Gestsdóttir. 2007. Reservoirs and radiocarbon: ¹⁴C dating problems in Mývatnsveit, northern Iceland. Radiocarbon 49:947–961.
- Ascough, P.L., G.T. Cook, M.J. Church, E. Dunbar, Á. Einarsson, T.H. McGovern, A.J. Dugmore, S. Perdikaris, H. Hastie, A. Friðriksson, and H. Gestsdóttir. 2010. Temporal and spatial variations in freshwater ¹⁴C reservoir effects, Lake Mývatn, northern Iceland. Radiocarbon 52:1098–1112.
- Ascough, P.L., G.T. Cook, H. Hastie, E. Dunbar, M.J. Church, Á. Einarsson, T.H. McGovern, and A.J. Dugmore. 2011. An Icelandic freshwater radiocarbon reservoir effect: Implications for lacustrine ¹⁴C chronologies. The Holocene 21:1073–1080.
- Ascough, P.L., M.J. Church, G.T. Cook, E. Dunbar, H. Gestsdóttir, T.H. McGovern, A.J. Dugmore, A. Friðriksson, and K.J. Edwards. 2012. Radiocarbon reservoir effects in human bone collagen from northern Iceland. Journal of Archaeological Science 39:2261–2271.
- Barrett, J.H., and M.P. Richards. 2007. Identity, gender, religion, and economy: New isotope and radiocarbon evidence for marine resource intensification in early historic Orkney, Scotland, UK. European Journal of Archaeology 7:249–271.
- Barrett, J.H., D. Orton, C. Johnstone, J. Harland, W. Van Neer, A. Ervynck, C. Roberts, A. Locker, C. Amundsen, I.B. Enghoff, S. Hamilton-Dryer, D. Heinrich, A.K. Hufthammer, A.K.G. Jones, L. Jonsson, D. Makowiecki, P. Pope, T.C. O'Connell, T. de Roo, and M.P. Richards. 2011. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. Journal of Archaeological Science 38:1516–1524.

Journal of the North Atlantic

Special Volume 7

- Bocherens, H., and D. Drucker. 2003. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: Case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology 13:1099–1212.
- Bogaard, A., T.H.E. Heaton, P. Poulton, and I. Merbach. 2007. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science 34:335–343.
- Bol, R., J. Eriksen, P. Smith, M.H. Garnett, K. Coleman, and B.T. Christensen. 2005. The natural abundance of ¹³C, ¹⁵N, ³⁴S, and ¹⁴C in archived (1923–2000) plant and soil samples from the Askov long-term experiments on animal manure and mineral fertilizer. Rapid Communications in Mass Spectrometry 19:3216–3226.
- Chamberlain, C.P., J.R. Waldbauer, K. Fox-Dobbs, S.D. Newsome, P.L. Koch, D.R. Smith, M.E. Church, S.D. Chamberlain, K.J. Sorenson, and R. Risebrough. 2005. Pleistocene to recent dietary shifts in California Condors. Proceedings of the National Academy of Sciences of the United States of America 102:16707–16711.
- Choy, K., C.I. Smith, B.T. Fuller, and M.P. Richards. 2010. Investigation of amino acid
 ³C signatures in bone collagen to reconstruct human palaeodiets using liquid chromatography isotope ratio mass spectrometry. Geochimica et Cosmochimica Acta 74:6093–6111
- Commisso, R.G., and D.E. Nelson. 2006. Modern plant d¹⁵N values reflect ancient human activity. Journal of Archaeological Science 33:1167–1176.
- Commisso, R.G., and D.E Nelson. 2007. Patterns of plant δ^{15} N values on a Greenland Norse farm. Journal of Archaeological Science 34:440–450.
- Dewar, G., and S. Pfeiffer. 2010. Approaches to estimating marine protein in human collagen for radiocarbon date calibration. Radiocarbon 52:1611–1625.
- DeNiro, M.J. 1985. Post-mortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317:806–809.
- Dugmore, A.J., M.J. Church, P.C. Buckland, K.J. Edwards, I.T. Lawson, T.H. McGovern, E. Panagiotakopulu, I.A. Simpson, P. Skidmore, and G. Sveinbjarnardóttir. 2005. The Norse *landnám* on the north Atlantic islands: An environmental impact assessment. Polar Record 41:21–37.
- Dugmore, A.J., C. Keller, and T.H. McGovern. 2007a. Norse Greenland settlement: Reflections on climate change, trade, and the contrasting fates of human settlements in the north Atlantic islands. Arctic Anthropology 44:12–36.
- Dugmore, A.J., M.J. Church, K-A. Mairs, T.H. McGovern, S. Perdikaris, and O. Vésteinsson. 2007b. Abandoned farms, volcanic impacts, and woodland management: Revisiting Þjórsárdalur, the "Pompeii of Iceland". Arctic Anthropology 44:1–11.
- Dugmore, A.J., T.H. McGovern, O. Vésteinsson, J. Arneborg, R. Streeter, and C. Keller. 2012. Cultural adaptation, compounding vulnerabilities, and conjunctures in Norse Greenland. Proceedings of the National Academy of Sciences 109:3658–3663.

- Edvardsson, R., and T.H. McGovern. 2007. Hrísheimar 2006: Interim report. Unpublished North Atlantic Biocultural Organisation field report. Available online at http://www.nabohome.org/publications/fieldreports/ fieldreports.html. Accessed 7 February 2013.
- Edwards, K.J., P.C. Buckland, A.J. Dugmore, T.H. Mc-Govern, I.A. Simpson, and G. Sveinbjarnardóttir. 2004. Landscapes circum-Landnám: Viking settlement in the North Atlantic and its human and ecological consequences: A major new research programme. Pp. 260–271, *In* R. Housley and G.M. Coles (Eds.). Atlantic Connections and Adaptations: Economies, Environments, and Subsistence in Lands Bordering the North Atlantic. Oxbow, Oxford, UK. 271 pp.
- Einarsson, Á., G. Stefánsdóttir, H. Jóhannesson, J.S. Ólafsson, G.M. Gíslason, I. Wakana, G. Gudbergsson, and A. Gardarsson. 2004. The ecology of Lake Mývatn and the River Laxá: Variation in space and time. Aquatic Ecology 38:317–348.
- Emslie, S.D., and W.P. Patterson. 2007. Abrupt recent shift in δ^{13} C and δ^{15} N values in Adélie penguin egg-shell in Antarctica. Proceedings of the National Academy of Sciences 104:11666–11669.
- Feng, X., and S. Epstein. 1995. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO² concentration. Geochimica et Cosmochimica Acta 59:2599–2608.
- Fox-Dobbs, K., T.A. Stidham, G.J. Bowen, S.D. Emslie, and P.L. Koch. 2006. Dietary controls on extinction versus survival among avian megafauna in the late Pleistocene. Geology 34:685–688.
- Fraser, R.A., A. Bogaard, T. Heaton, M. Charles, G. Jones, B.T. Christensen, P.H.I. Merbach, P.R. Poulton, D. Sparkes, and A.K. Styring. 2011. Manuring and stable nitrogen isotope ratios in cereals and pulses: Towards a new archaeobotanical approach to the inference of land use and dietary practices. Journal of Archaeological Science 38:2790–2804.
- Fuller, B.T., J.L. Fuller, D.A. Harris, and R.E.M. Hedges. 2006. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. American Journal of Physical Anthropology 129:279–293.
- Fuller, B.T., B. De Cupere, E. Marinova, W. van Neer, M. Waelkens, and M.P. Richards. 2012a. Isotopic reconstruction of human diet and animal husbandry practices during the Classical-Hellenistic, Imperial, and Byzantine Periods at Sagalassos, Turkey. American Journal of Physical Anthropology 149:157–171.
- Fuller, B.T., G. Müldner, W. van Neer, A. Ervynck, and M.P. Richards. 2012b. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish, and marine fish from Belgian, archaeological sites (1st and 2nd millennium AD). Journal of Analytical Atomic Spectrometry 27: 807–820.
- Gratton, C., J. Donaldson, and M.J. van der Zanden. 2008. Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland. Ecosystems 11:764–774.

Journal of the North Atlantic

Special Volume 7

P.L. Ascough, M.J. Church, G.T. Cook, Á. Einarsson, T.H. McGovern, A.J. Dugmore, and K.J. Edwards

- Grupe, G., D. Heinrich, and J. Peters. 2009. A brackish water aquatic foodweb: Trophic levels and salinity gradients in the schlei fjord, Northern Germany, in Viking and medieval times. Journal of Archaeological Science 36:2125–2144.
- Hare, P.E., M.L. Fogel, T.W. Stafford Jr., A.D. Mitchell, and T.C. Hoering. 1991. The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. Journal of Archaeological Science 18:277–292.
- Hedges, R.E.M., J.G. Clement, C.D.L. Thomas, and T.C. O'Connell. 2007. Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. American Journal of Physical Anthropology 133:808–816.
- Hobson, K.A. 1999. Stable carbon and nitrogen isotope ratios of songbird feathers grown in two terrestrial biomes: Implications for evaluating trophic relationships and breeding origins. The Condor 101:799–805.
- Hobson, K.A., and R.G. Clark. 1992. Assessing avian diets using stable isotopes I: Turnover of ¹³C in tissues. The Condor 94:181–188.
- Hobson, K.A., and H.P. Schwarcz. 1986. The variation in δ^{13} C values in bone collagen for two wild herbivore populations: Implications for palaeodiet studies. Journal of Archaeological Science 13:101–106.
- Kanstrup, M., I.K. Thomsen, A.J. Andersen, A. Bogaard, and B.T. Christensen. 2011. Abundance of ¹³C and ¹⁵N in emmer, spelt and naked barley grown on differently manured soils: Towards a method for identifying past manuring practice. Rapid Communications in Mass Spectrometry 25:2879–2887.
- Kanstrup, M., I.K. Thomsen, P.H. Mikkelsen, and Christensen. 2012. Impact of charring on cereal grain characteristics: Linking prehistoric manuring practice to δ^{15} N signatures in archaeobotanical material. Journal of Archaeological Science 39:2533–2540.
- Keeling, C.D. 1979. The Suess effect: ¹³Carbon–¹⁴Carbon interrelations. Environment International 2:229–300.
- Keeling, C.D., W.G. Mook, and P.P. Tans. 1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277:121–123.
- Kelly, J.F. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78:1–27.
- Lajtha, K., and J.D. Marshall. 1994. Sources of variation in the stable isotopic composition of plants. Pp. 1–21, *In* K. Lajtha, and R.H. Michener (Eds.). Stable Isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, New York, NY, USA. 336 pp.
- Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241–242.
- Lucas, G. (Ed.) 2010. Hofstaðir: Excavations of a Viking age feasting hall in northeastern Iceland. Icelandic Institute of Archaeology Monograph Series No. 1, Reykjavík, Iceland. 440 pp.
- McCarroll, D., and N.J. Loader. 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23:771–801.

- McCarroll, D., M. Gagen, N.J. Loader, I. Robertson, K.J. Anchukaitis, S. Los, R. Jalkanen, A. Kirchhefer, and J.S. Waterhouse. 2009. Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochimica et Cosmochimica Acta 73:1539–1547.
- McGovern, T.H. 2005. Report of Midden Investigations at Undir Sandmúla, Bardadalur, Northern Iceland. Unpublished North Atlantic Biocultural Organisation field report Available online at http://www.nabohome. org/publications/fieldreports/fieldreports.html. Accessed 7 February 2013.
- McGovern, T.H. 2011. Vikings in the International Polar Year 2007–09: Still bloodthirsty, but also ecodynamical and educational. Pp 290–309, *In* S. Sigmundsson, A. Holt, G. Sigurðsson, G. Ólafsson, and O. Vésteinsson (Eds.). Viking Settlements and Viking Society. Hið íslenzka fornleifafélag and University of Iceland Press, Reykjavík, Iceland. 511 pp.
- McGovern, T.H., S.P. Perdikaris, Á. Einarsson, and J. Sidell. 2006. Coastal connections, local fishing, and sustainable egg harvesting: Patterns of Viking age inland wild resource use in Mývatn district, northern Iceland. Environmental Archaeology 11:187–206.
- McGovern, T.H., O. Vésteinsson, A. Friðriksson, M.J. Church, I.T. Lawson, I.A. Simpson, Á Einarsson, A.J. Dugmore, G.T. Cook, S. Perdikaris, K.J. Edwards, A.M. Thomson, P.W. Adderly, A.J. Newton, G. Lucas, Edvardsson, R., O. Aldred, and E. Dunbar. 2007. Landscapes of settlement in northern Iceland: Historical ecology of human impact and climate fluctuation on the millennial scale. American Anthropologist 109:27–51.
- Richards, M.P., and R.E.M. Hedges. 1999. Stable isotope evidence for similarities in the types of marine foods used by late Mesolithic humans at sites along the Atlantic coast of Europe. Journal of Archaeological Science 26:717–722.
- Richards, M.P., B.T. Fuller, and T.I. Molleson. 2006. Stable isotope palaeodietary study of humans and fauna from the multi-period (Iron Age, Viking and late Medieval) site of Newark Bay, Orkney. Journal of Archaeological Science 33:122–131.
- Rubenstein, D.R., and K.A. Hobson. 2004. From birds to butterflies: Animal movement patterns and stable isotopes. Trends in Ecology and Evolution 19:256–263.
- Russell N., G.T. Cook, P.L. Ascough, J.H. Barrett, and A.J. Dugmore. 2011. Species-specific Marine Radiocarbon Reservoir Effect: A comparison of ΔR values between *Patella vulgata* (limpet) shell carbonate and *Gadus morhua* (Atlantic cod) bone collagen. Journal of Archaeological Science 38:1008–1015.
- Schwarcz, H.P., and M.J. Schoeninger. 1991. Stable isotope analyses in human nutritional ecology. American Journal of Physical Anthropology 34:283–321.
- Sharples, N., and M. Parker Pearson. 1999. Norse settlement in the Outer Hebrides. Norwegian Archaeological Review 32:41–62.

Special Volume 7

- Sveinbjörnsdóttir, A., J. Heinemeier, J. Arneborg, N. Lynnerup, G. Olafsson, and G. Zoëga. 2010. Dietary reconstruction and reservoir correction of ¹⁴C dates on bones from pagan and early Christian graves in Iceland. Radiocarbon 52:682-696.
- Szpak, P., T.J. Orchard, I. McKechnie, and D.R. Gröcke. 2012a. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: Isotopic and zooarchaeological perspectives. Journal of Archaeological Science 39:1553-1571.
- Szpak, P., F.J. Longstaffe, J-F. Millaire, and C.D. White. 2012b. Stable isotope biogeochemistry of seabird guano fertilization: Results from growth chamber studies with maize (Zea Mays). PLoS ONE 7(3):doi:10.1371/ journal.pone.0033741
- Thomson, A.M., and I.A. Simpson. 2007. Modeling historic rangeland management and grazing pressures in landscapes of settlement. Human Ecology 35:151-168.
- Tieszen, L.L. 1978. Carbon isotope fractionation in biological material. Nature 276:97-98.
- Vésteinsson, O. 1998. Patterns of settlement in Iceland: A study in prehistory. Saga Book 28:1-29.
- Vésteinsson, O. 2002. Archaeological Investigations at Sveigakot, 2001. Unpublished Fornleifastofnun Íslands field report. Available online at http://www. nabohome.org/cgi bin/fsi reports.pl. Accessed 7 February 2013.
- Vésteinsson, O., T.H. McGovern, and C. Keller. 2002. Enduring impacts: Social and environmental aspects of Viking age settlement in Iceland and Greenland. Archaeologia Islandica 2:98–136.
- Wang, Y., and M.J. Wooller. 2006. The stable isotopic (C and N) composition of modern plants and lichens from northern Iceland, with paleoenvironmental implications. Jökull 56:27-37.
- Werner, R.A., B.A. Bruch, and W.A. Brand. 1999. ConFlo III—an interface for high precision ¹³C and ¹⁵N analysis with an extended dynamic range. Rapid Communications in Mass Spectrometry 13:1237-1241.