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1 Introduction

Following the discovery of the Higgs boson by the ATLAS and CMS experiments [1, 2]

particle physics has entered a new epoch. The particle spectrum of the Standard Model

is now complete yet nevertheless, we know that the Standard Model cannot be a complete

theory of particle interactions, even if we do not worry about gravity. The more fundamen-

tal theory should be able to address and predict the matter-anti-matter asymmetry of the

universe, the observed dark matter abundance, and it should stabilise the Standard Model
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Higgs potential. It should also incorporate neutrino masses and mixings. In addition it is

desirable to have a particle physics implementation of cosmological inflation and possibly

a solution to the strong CP problem. Finally there is still a question of the naturalness of

the electroweak scale; the Standard Model accommodates and provides the description of

the Higgs mechanism, but it does not, and of course was not meant to, explain the origin

of the electroweak scale and why it is so much lighter than the UV cut-off scale.

In this paper we concentrate on a particular approach of exploring Beyond the Standard

Model (BSM) physics, based on the fact that the Standard Model contains a single mass

scale, the negative Higgs mass squared parameter, −µ2SM, in the SM Higgs potential,

V (H)SM = −1

2
µ2SMH

†H + λSM(H†H)2 . (1.1)

In the unitary gauge, H(x) = 1√
2
(0, h(x)), the vacuum expectation value (vev) v and the

mass mh SM of the physical SM Higgs field h(x) are triggered by the µSM scale,

v =
µSM

(2λSM)1/2
' 246 GeV , mh SM = µSM ' 126 GeV . (1.2)

If this single mass scale is generated dynamically in some appropriate extension of the SM,

the resulting theory will be manifestly classically scale-invariant. Such theories contain

no explicit mass-scales (all masses have to be generated dynamically), but allow for non-

vanishing beta functions of their dimensionless coupling constants. In section 2 we employ

the seminal mechanism of mass-scale generation due to Coleman and Weinberg (CW) [3]

and show how the electroweak scale emerges in the Standard Model coupled to the CW

sector.

Classically Scale-Invariant Extensions of the Standard Model — CSI ESM —

amount to a highly predictive model building framework. The high degree of predic-

tivity/falsifiability of CSI ESM arises from the fact that one cannot start extending or

repairing a CSI model by introducing new mass thresholds where new physics might en-

ter [4, 5]. All masses have to be generated dynamically and, at least in the simple models

studied in this paper, they are all related to the same dynamical scale, which is not far above

the electroweak scale. This is consistent with the manifest CSI and as the result protects

the electroweak scale itself by ensuring that there are no heavy mass-scales contributing

radiatively to the Higgs mass. Furthermore, in the CSI ESM approach one naturally ex-

pects the common origin of all mass scales, i.e. the EW scale relevant to the SM, and the

scales of new physics. In other words the CSI ESM framework, if it works, realises the

Occam’s razor succinctness.

The CSI ESM theory is a minimal extension of the SM which should address all the sub-

Planckian shortcomings of the SM, such as the generation of matter-anti-matter asymmetry,

dark matter, stabilisation of the SM Higgs potential, neutrino masses, inflation, without in-

troducing scales much higher the electroweak scale. It was shown recently in ref. [6] that the

CSI U(1)CW× SM theory where the Coleman-Weinberg U(1)CW sector is re-interpreted as

the gauged B− L U(1) symmetry of the SM, can generate the observed value of the matter-

anti-matter asymmetry of the Universe without introducing additional mass scales nor re-

quiring a resonant fine-tuning. This CSI U(1)B−L× SM theory also generates Majorana
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masses for the right-handed sterile neutrinos in the range between 200 MeV and 500 GeV

and leads to visible neutrino masses and mixings via the standard sea-saw mechanism [6, 7].

It follows that not only the baryonic matter-anti-matter asymmetry, but also the ori-

gin of dark matter must be related in the CSI ESM to the origin of the electroweak scale

and the Higgs vacuum stability. Papers [8, 9] have shown that in the non-Abelian CSI

SU(2)CW× SM theory there is a common origin of the vector dark matter and the elec-

troweak scale. It was also pointed out in [10] that a CSI ESM theory with an additional

singlet that is coupled non-minimally to gravity, provides a viable particle theory imple-

mentation of the slow-roll inflation. Furthermore, the singlet responsible for inflation also

provides an automatic scalar dark matter candidate.

The main motivation of the present paper is to study in detail the link between

the stability of the electroweak vacuum and the properties of multi-component (vector

and scalar) dark matter in the context of CSI ESM theory. Our main phenomenological

results are described in sections 4 and 5. There, in a model by model basis we determine

regions on the CSI ESM parameter space where the SM Higgs vacuum is stabilised and

the extended Higgs sector phenomenology is consistent with the LHC exclusion limits.

We then investigate the dark matter phenomenology, compute the relic abundance and

impose constraints from direct detection for vector and scalar components of dark matter

from current and future experiments.

Our discussion and computations in sections 4 and 5 are based on the CSI EST

model-building features and results derived in section 2 and on solving the renormalisation

group equations in section 3.

2 CSI ESM building & generation of the EW scale

In the minimal Standard Model classical scale invariance is broken by the Higgs mass

parameter µ2SM in eq. (1.1). Scale invariance is easily restored by reinterpreting this scale

in terms of a vacuum expectation value (vev) of a new scalar Φ, coupled to the SM via

the Higgs portal interaction, −λP|H|2|Φ|2. Now, as soon as an appropriate non-vanishing

value for 〈Φ〉 �MUV can emerge dynamically, we get µ2SM = λP〈|Φ|〉2 in (1.1) which triggers

electroweak symmetry breaking.

In order to generate the required vev of Φ we shall follow the approach reviewed

in [5, 10] and employ the seminal mechanism of the mass gap generation due to Coleman

and Weinberg [3]. In order for the CW approach to be operational, the classical theory

should be massless and the scalar field Φ should be charged under a gauge group GCW.

The vev of the CW scalar Φ appears via the dimensional transmutation from the running

couplings, leading to spontaneous breaking of GCW and ultimately to EWSB in the SM.

The CSI realisations of the Standard Model which we will concentrate on in this paper

are thus characterised by the gauge group GCW× SU(3)c× SU(2)L×U(1)Y where the first

factor plays the role of the hidden sector. The requirement of classical scale invariance

implies that the theory has no input mass scales in its classical Lagrangian; as we already

mentioned, all masses have to be generated dynamically via dimensional transmutation.
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The basic tree-level scalar potential is

Vcl(H,Φ) = λφ(Φ†Φ)2 + λH(H†H)2 − λP(H†H)(Φ†Φ) . (2.1)

The matter content of the hidden sector gauge group GCW can vary: in the minimal case

it consists only of the CW scalar Φ; more generally it can contain additional matter fields,

including for example the SM fermions. We will discuss a few representative examples

involving Abelian and non-Abelian gauge groups with with a more- and a less-minimal

matter content.

The minimal U(1)CW theory coupled to the SM via the Higgs portal with the scalar

potential (2.1) was first considered in [11]. The phenomenology of this model was analysed

more recently in the context of the LHC, future colliders and low energy measurements

in [5]. Classical scale invariance is not an exact symmetry of the quantum theory, but

neither is it broken by an arbitrary amount. The violation of scale invariance is controlled

by the anomaly in the trace of the energy-momentum tensor, or equivalently, by the loga-

rithmic running of dimensionless coupling constants and their dimensional transmutation

scales. In weakly coupled perturbation theory, these are much smaller than the UV cutoff.

Therefore, in order to maintain anomalously broken scale invariance, one should select a

regularisation scheme that does not introduce explicit powers of the UV cut-off scale [12].

In the present paper we use dimensional regularisation with the MS scheme. In dimensional

regularisation, and in theories like ours that contain no explicit mass scales at the outset, no

large corrections to mass terms can appear. In this regularisation, which preserves classical

scale invariance, the CSI ESM theory is not fine-tuned in the technical sense [5, 10].

Other related studies of CSI ESModels can be found in [13–19]. We would also like

to briefly comment on two scale-invariance-driven approaches which are different from

ours. The authors of refs. [4, 20–23] envision CSI models with dimensional transmutation,

which are not based on the CW gauge-sector-extension of the SM, but rather appeal to an

extended matter content within the SM, or to a strongly coupled hidden sector. One can

also consider model building based on the approach with an exact quantum scale invariance

of the UV theory, as discussed recently in [24] and [25]. It is important to keep in mind that

classical scale invariance of the effective theory below the Planck scale does not necessarily

assume or is directly related to the hypothesised conformal invariance of the UV embedding

of the SM.

2.1 CSI U(1)CW×SM

This is the minimal classically scale-invariant extension of the SM. The SM Higgs doublet

H is coupled via the Higgs-portal interactions to the complex scalar

Φ =
1√
2

(φ+ iφ2) , (2.2)

where Φ is a Standard Model singlet, but charged under the U(1)-Coleman-Weinberg gauge

group. The hidden sector consists of this U(1) with Φ plus nothing else. In the unitary

gauge one is left with two real scalars,

H =
1√
2

(0, h) , Φ =
1√
2
φ , (2.3)
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and the tree-level scalar potential (2.1) reads

V0(h, φ) =
λ
(0)
φ

4
φ4 +

λ
(0)
H

4
h4 − λ

(0)
P

4
h2φ2 , (2.4)

where the superscripts indicate that the corresponding coupling constants are the tree-level

quantities.

We now proceed to include radiative corrections to the classically scale-invariant po-

tential above. Our primary goal in this section is to show how quantum effects generate

the non-trivial vacuum with non-vanishing vevs 〈φ〉 and v = 〈h〉, to derive the matching

condition between coupling constants in the vacuum and to compute the scalar mass eigen-

states, m2
h1

and m2
h2

of the mixed scalar fields h and φ. We then determine the SM Higgs

self-coupling λSM in terms of λH and other parameters of the model. The fact that λSM is

not identified with λH will be of importance later when we discuss the stability of the SM

Higgs potential in our model(s).

For most of this section we will follow closely the analysis of ref. [5], but with a special

emphasis on two aspects of the derivation. First, is that the effective potential and the

running couplings need to be computed in the MS scheme, which is the scheme we will also

use later on for writing down and solving the RG equations.

Following the approach outlined in [5] one can simplify the derivation considerably by

first concentrating primarily on the CW sector and singling out the 1-loop contributions

∝ e4CW arising from the hidden U(1) gauge field.1 Perturbative corrections arising from the

SM sector will then be added later. Effective potentials and running couplings in this paper

will always be computed in the MS scheme. In this scheme the 1-loop effective potential

for φ reads, cf. [26],

V1(φ;µ) =
λ
(0)
φ

4
φ4 +

3

64π2
e4CW(µ)φ4

(
log

e2CW(µ)φ2

µ2
− 5

6

)
, (2.5)

which depends on the RG scale µ that appears both in the logarithm and also in the 1-loop

running CW gauge coupling constant eCW(µ). The running (or renormalised) self-coupling

λφ at the RG scale µ is defined via

λφ(µ) =
1

3!

(
∂4V1(φ;µ)

∂φ4

)
φ=µ

= λ
(0)
φ +

10eCW(µ)4 + 3eCW(µ)4 log
(
eCW(µ)2

)
16π2

. (2.6)

We can now express the effective potential in terms of this renormalised coupling con-

stant by substituting λ
(0)
φ = λφ − (10e4CW + 3e4CW log e2CW)/(16π2) into eq. (2.5), obtaining

V1(φ;µ) =
λφ(µ)φ4

4
+

3eCW(µ)4

64π2
φ4
(

log

(
φ2

µ2

)
− 25

6

)
. (2.7)

The vacuum of the effective potential above occurs at 〈φ〉 6= 0. Minimising the poten-

tial (2.7) with respect to φ at µ = 〈φ〉 gives the characteristic Coleman-Weinberg-type

1Radiative corrections due to the CW scalar self-coupling ∝ λ2
φ will be sub-leading in this approach

cf. eq. (2.8) below.
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λφ ∝ e4CW relation between the scalar and the gauge couplings,

λφ =
11

16π2
e4CW at µ = 〈φ〉 . (2.8)

It is pleasing to note that this matching relation between the couplings takes exactly the

same form as the one obtained in the CW paper in the cut-off scheme — i.e. accounting

for the 3! mismatch in the definition of the coupling in [3] we have λφ = 1
3!λ where λ is the

coupling appearing in [3], λ = 33
8π2 e

4.

Shifting the CW scalar by its vev φ → 〈φ〉 + φ and expanding the effective potential

in (2.7), we find the mass of φ,

m2
φ =

3e4CW

8π2
〈φ〉2 , (2.9)

and the mass of the Z ′ U(1) vector boson,

M2
Z′ = e2CW〈φ〉2 � m2

φ =
3e4CW

8π2
〈φ〉2 . (2.10)

The MS expressions above are once again identical to those derived in the cut-off scheme

in [3, 5].

We now turn to the SM part of the scalar potential (2.4), specifically

V0(h) =
λ
(0)
H

4
h4 − λP〈φ〉2

4
h2 , (2.11)

where we have dropped the (0) superscript for the portal coupling, as it will turn out that

λP does not run much. The SM scale µ2SM is generated by the CW vev in the second term,

µ2SM = λP〈φ〉2 , (2.12)

and this triggers in turn the appearance of the Higgs vev v as in the first equation in (1.2).

The presence of the portal coupling in the potential (2.11) (or more generally (2.4))

provides a correction to the CW matching condition (2.8) and the CW mass (2.9). By

including the last term on the r.h.s. of (2.4) to the effective potential in (2.5) and (2.7), we

find the λP-induced correction to the equations (2.8)–(2.9) which now read

λφ =
11

16π2
e4CW + λP

v2

2〈φ〉2 at µ = 〈φ〉 (2.13)

m2
φ =

3e4CW

8π2
〈φ〉2 + λPv

2 (2.14)

in full agreement with the results of [5]. In this paper, we consider small values of λP so

that these corrections are negligible, since λPv
2/(2〈φ〉2) ∼ λ2P/(4λH)� 1.

Our next task is to compute the Higgs mass including the SM radiative corrections.

To proceed we perform the usual shift, h(x) → v + h(x), and represent the SM scalar

potential (2.11) as follows,

V (h) =
λ
(0)
H

4
(v + h)4 − µ2SM

4
(v + h)2 +

1

2
∆m2

h,SM h2 , (2.15)
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where for overall consistency we have also included one-loop corrections to the Higgs mass

arising in the Standard Model,

∆m2
h,SM =

1

16π2
1

v2
(
6m4

W + 3m4
Z +m4

h − 24m4
t

)
≈ −2200 GeV2 . (2.16)

These corrections are dominated by the top-quark loop and are therefore negative. The

appearance of v2 in the denominator of ∆m2
h,SM is slightly misleading, and it is better to

recast it as,

∆m2
h,SM = 2∆λH v

2 , where ∆λH ' −0.018 . (2.17)

The vev v is determined from (2.15) by minimisation and setting h(x) = 0, and thus the

last term in (2.15) does not affect the value of v, however it does contribute to the one-loop

corrected value of the Higgs mass. We have,

v2 =
λP

2λ
(0)
H

〈φ〉2 , m2
h = 2λH v

2 , λH = λ
(0)
H + ∆λH ' λ(0)H − 0.018 , (2.18)

where λH is the one-loop corrected value of the self-coupling.

The two scalars, h and φ, both have vevs and hence mix via the mass matrix,

M2 =

 2λH v
2 −

√
2λPλ

(0)
H v2

−
√

2λPλ
(0)
H v2 m2

φ

 , (2.19)

where m2
φ is given in (2.14) (and already includes the λP correction).2 The mass eigenstates

are the two Higgs fields, h1 and h2 with the mass eigenvalues,

m2
h1,h2 =

1

2

(
2λHv

2 +m2
φ ±

√(
2λHv2 −m2

φ

)2
+ 8λPλ

(0)
H v4

)
. (2.20)

It is easy to see that in the limit where the portal coupling λP is set to zero, the mixing

between the two scalars h and φ disappears resulting in m2
h and m2

φ mass eigenvalues, as one

would expect. However, for non-vanishing λP, the mass eigenstates h1 and h2 are given by(
h1
h2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
h

φ

)
(2.21)

with a nontrivial mixing angle θ. Which of these two mass eigenstates should be identified

with the SM Higgs m2
h SM

=' (126 GeV)2 of eq. (1.2)?

The answer is obvious, the SM Higgs is the eigenstate h1 which is ‘mostly’ the h scalar

(i.e. cos θ×the scalar coupled to the SM electroweak sector) for small values of the mixing

angle,

hSM := h1 = h cos θ − φ sin θ , mh1 = 125.66 GeV . (2.22)

2The mass mixing matrix (2.19) is equivalent to the mass matrix derived in [5] which was of the form:

M2 =

(
m2
h,0 + ∆m2

h,SM −κm2
h,0

−κm2
h,0 m2

φ,0 + κ2m2
h,0

)
in terms of m2

h,0 = 2λ
(0)
H v2 and m2

φ,0 = 3e4CW〈φ〉2/(8π2), with

κ =

√
λP/(2λ

(0)
H ).

– 7 –



J
H
E
P
0
8
(
2
0
1
4
)
0
2
6

The SM Higgs self-coupling constant λSM appearing in the SM Higgs potential (1.1) can be

inferred from m2
h1

= 2λSMv
2, but it is not the relevant or primary parameter in our model

(λH is).

In our computations for the RG evolution of couplings and the analysis of Higgs po-

tential stabilisation carried out in this paper, we solve the initial condition (2.22) for the

eigenvalue problem of (2.19) numerically without making analytical approximations. How-

ever, we show some simple analytic expressions to illuminate our approach.

In the approximation where (8λPλ
(0)
H v4)/(2λHv

2 −m2
φ)2 is small we can expand the

square root in (2.20) and obtain:

m2
h1 = m2

+ = 2v2λH

(
1 +

λP(λ
(0)
H /λH) v2

2λHv2 −m2
φ

)
, for 2λHv

2 > m2
φ , (2.23)

m2
h1 = m2

− = 2v2λH

(
1− λP(λ

(0)
H /λH) v2

m2
φ − 2λHv2

)
, for m2

φ > 2λHv
2 . (2.24)

Note that our requirement of assigning the SM Higgs mass value of 126 GeV to the ‘mostly

h state’ selects two different roots of (2.20) in the equations above, depending on whether

the h state or the φ state is lighter. As the result, there is a ‘discontinuity of the SM Higgs

identification’ with m2
h1
> 2v2λH in the first equation, while m2

h1
< 2v2λH in the second

equation. Similarly, the value of λH is smaller or greater than the perceived value of λSM

in the SM, in particular,

λSM = λH

(
1− λP(λ

(0)
H /λH) v2

m2
φ − 2λHv2

)
, for m2

φ > 2λHv
2 . (2.25)

One concludes that in the case of the CW scalar being heavier than the SM Higgs, it should

be easier to stabilise the SM Higgs potential, since the initial value of λH here is larger

than the initial value of the λSM coupling and as such, it should be useful in preventing λH
from going negative at high values of the RG scale.3

On a more technical note, in our computations we also take into account the fact that

the requirement of stability of the Higgs potential at high scales goes beyond the simple

condition λH(µ) > 0 at all values of µ, but should be supplemented by the slightly stronger

requirement emerging from the tree-level stability of the potential (2.4), which requires that

λH > λ2P/(4λφ).

In the following sections 2.2–2.4, we extend the construction above to models with more

general hidden sectors. First of all, the GCW Coleman-Weinberg sector can be extended so

that SM fermions are charged under GCW, and, secondly, GCW can also be non-Abelian. In

addition, these CSI ESM models can include a gauge singlet with portal couplings to the

Higgs and the CW scalar field. In sections 4 and 5 we will explain how the combination of

3This point has been noted earlier in the literature in [8, 27, 28] in the context of assisting the stabilisation

of the SM Higgs by integrating out a heavy scalar. In our case the second scalar does not have to be

integrated out. In fact, the required stabilising effect arises when the second scalar is not much heavier

than the SM Higgs, which manifests itself in keeping the denominator in (2.25) not much greater than the

square of the EW scale.
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constraints arising from the Higgs vacuum stability, collider exclusions, and dark matter

searches and phenomenology will apply to and discriminate between these varieties of CSI

SM extensions.

2.2 CSI U(1)B−L×SM

The B− L theory was originally introduced in [29–31], and in the context of the CW

classically scale-invariant extension of the SM this theory was recently studied in [17] and

by the two of the present authors in [6]. In the latter reference it was shown that this model

can explain the matter-antimatter asymmetry of the universe by adopting the ‘Leptogenesis

due to neutrino oscillations’ mechanism of [32] in a way which is consistent with the CSI

requirement that there are no large mass scales present in the theory.

The U(1)B−L× SM theory is a particularly appealing CSI ESM realisation, since the

gauge anomaly of U(1)B−L cancellation requires that the matter content of the model au-

tomatically includes three generations of right-handed Majorana neutrinos. All SM matter

fields are charged under the U(1)B−L gauge group with charges equal to their Baryon minus

Lepton number. In addition, the CW field φ carries the B− L charge 2 and its vev generates

the Majorana neutrino masses and the mass of the U(1)B−L Z
′ boson. The standard see-saw

mechanism generates masses of visible neutrinos and also leads to neutrino oscillations.

The scalar field content of the model is the same as before, with H being the complex

doublet and Φ = 1√
2
(φ + iφ2), the complex singlet under the SM. The tree-level scalar

potential is given by (2.1) which in the unitary gauge takes the form (2.4). Our earlier

discussion of the mass gap generation in the CW sector, the EWSB and the mass spectrum

structure, proceeds precisely as in the previous sections, with the substitution eCW →
2 eB−L. The one-loop corrected potential (2.7) becomes:

V1(φ) =
λφ
4
φ4 +

3

64π2
(2eB−L)4φ4

(
log

4e2B−Lφ
2

µ2
− 5

6

)
− λP

4
h2φ2 . (2.26)

Minimising it at µ = 〈φ〉 gives the matching condition for the couplings and the expansion

around the vacuum at 〈φ〉 determines the mass of the CW scalar field (cf. (2.13)–(2.14)),

λφ =
11

π2
e4B−L + λP

v2

2〈φ〉2 at µ = 〈φ〉 (2.27)

m2
φ =

6e4B−L

π2
〈φ〉2 + λPv

2 (2.28)

in agreement with [6]. The expressions for the Higgs field vev, v, and the Higgs mass, mh,

are unchanged and given by (2.18). The mass mixing matrix is the same as in (2.19) with

m2
φ given by (2.28).

2.3 CSI SU(2)CW×SM

One can also use a non-Abelian extension of the SM in the CSI ESM general framework. In

this section we concentrate on the simple case where the CW group is SU(2) and for sim-

plicity we assume that there are no additional matter fields (apart from the CW scalar Φ)

charged under this hidden sector gauge group. This model was previously considered in [8]
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and subsequently in [9]. The novel feature of this model is the presence of the vector dark

matter candidate — the SU(2) Coleman-Weinberg gauge fields [8].

The classical scalar potential is the same as before,

Vcl(H,Φ) = λφ(Φ†Φ)2 + λH(H†H)2 − λP(H†H)(Φ†Φ) , (2.29)

where Φ as well as the Higgs field H are the complex doublets of the SU(2)CW and the

SU(2)L respectively. In the unitary gauge for both of the SU(2) factors we have,

H =
1√
2

(0, h),Φ =
1√
2

(0, φ) . (2.30)

The analogue of the one-loop corrected scalar potential (2.7) now becomes becomes:

V1(φ) =
λφ
4
φ4 +

9

1024π2
g4CWφ

4

(
log

g2CWφ
2

4µ2
− 5

6

)
− λP

4
h2φ2 , (2.31)

where gCW is the coupling of the SU(2) CW gauge sector. Minimising at µ = 〈φ〉 gives:

λφ =
33

256π2
g4CW + λP

v2

2〈φ〉2 at µ = 〈φ〉 (2.32)

m2
φ =

9

128π2
g4CW 〈φ〉2 + λPv

2 . (2.33)

2.4 CSI ESM ⊕ singlet

All Abelian and non-Abelian CSI extensions of the SM introduced above can be easily

extended further by adding a singlet degree of freedom, a one-component real scalar field

s(x). Such extensions by a real scalar were recently shown in ref. [10] to be instrumental in

generating the slow-roll potential for cosmological inflation when the scalar s(x) is coupled

non-minimally to gravity. The two additional features of models with the singlet, which are

particularly important for the purposes of this paper, are that (1) the singlet portal coupling

to the Higgs will provide an additional (and powerful) potential for the Higgs stabilisation,

and (2) that the singlet s(x) is also a natural candidate for scalar dark matter.

The gauge singlet s field is coupled to the ESM models of sections 2.1–2.3 via the

scalar portal interactions with the Higgs and the CW field Φ,

Vcl(H,φ, s) =
λHs

2
H†Hs2 +

λφs
2

Φ†Φs2 +
λs
4
s4 + Vcl(H,Φ) . (2.34)

Equations (2.1), (2.34) describe the general renormalisable gauge-invariant scalar potential

for the three classically massless scalars as required by classical scale invariance. The

coupling constants in the potential (2.34) are taken to be all positive, thus the potential

is stable and the positivity of λHs and λφs ensure that no vev is generated for the singlet

s(x). Instead the CW vev 〈φ〉 generates the mass term for the singlet,

m2
s =

λHs
2

v2 +
λφs
2
|〈φ〉|2 , (2.35)

in the vacuum s = 0, φ = 〈φ〉, H = v√
2

=
√

λP
λH
|〈φ〉|.
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3 RG evolution

In this section our aim is to put together a tool kit which will be necessary to determine

regions of the parameter spaces of CSI ESModels where the Higgs vacuum is stable. To do

this we first need to specify the RG equations for all CSI ESM theories of interest, with and

without the additional singlet. We will also fix the initial conditions for the RG evolution.

Following this more technical build up in the present section, the Higgs vacuum stabil-

ity and collider constraints on the Higgs-sector phenomenology will be analysed in section 4.

3.1 Standard Model × U(1)CW

This is the simplest scale-invariant extension of the SM. The hidden sector is an Abelian

U(1) which couples only to the CW scalar (of charge 1) and no other matter fields. We

now proceed to write down the renormalisation group equations for this model.

The scalar couplings λH , λφ and λP are governed by:

(4π)2
dλH
d logµ

=−6y4t + 24λ2H + λ2P + λH

(
12y2t −

9

5
g21 − 9g22 − 3g2mix

)
+

27

200
g41 +

9

20
g22g

2
1 +

9

8
g42 +

3

4
g22g

2
mix +

9

20
g21g

2
mix +

3

8
g4mix (3.1)

(4π)2
dλφ
d logµ

=20λ2φ + 2λ2P − 12λφ e
2
CW + 6e4CW (3.2)

(4π)2
dλP
d logµ

=λP

(
6y2t +12λH+8λφ−4λP−6e2CW−

9

10
g21−

9

2
g22−

3

2
g2mix

)
−3g2mixe

2
CW (3.3)

The RG equation for the top Yukawa coupling yt is,

(4π)2
dyt

d logµ
= yt

(
9

2
y2t −

17

20
g21 −

9

4
g22 − 8g23 −

17

12
g2mix

)
. (3.4)

Finally, eCW, gmix and gi denote the gauge couplings of the U(1)CW × SM, which obey,

(4π)2
deCW

d logµ
=

1

3
e3CW +

41

6
eCWg

2
mix (3.5)

(4π)2
dgmix

d logµ
=

41

6
gmix

(
g2mix + 2g21

)
+

1

3
e2CWgmix (3.6)

(4π)2
dg3

d logµ
= −7g33 , (4π)2

dg2
d logµ

= −19

6
g32 , (4π)2

dg1
d logµ

=
41

10
g31 . (3.7)

A characteristic feature of the Abelian ESM theory is gmix, the kinetic mixing of the two

Abelian factors, U(1)CW × U(1)Y . For a generic matter field ϕ transforming under both

U(1)’s with the charges QCW and QY , the kinetic mixing is defined as the coupling constant

gmix appearing in the the covariant derivative,

Dµϕ = ∂µϕ + i

√
3

5
g1Q

YAYµ + i(gmixQ
Y + eCWQ

CW)ACW
µ . (3.8)

Kinetic mixing is induced radiatively in so far as there are matter fields transforming under

both Abelian factors. In the present model it is induced by the mass eigenstates of the

scalar fields. In what follows for simplicity we will choose gmix(µ = Mt) = 0 at the top mass.
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3.2 Standard Model × U(1)B−L

The RG equations in the B− L theory are the appropriate generalisation of the equations

above. These equations were first derived in [33] and were also discussed recently in [17].

In our conventions the RG evolution in the CSI U(1)B−L× SM theory with the classical

scalar potential (2.1) is determined by the set of RG equations below:

(4π)2
dλH
d logµ

= r.h.s. (3.1) (3.9)

(4π)2
dλφ
d logµ

= 20λ2φ + 2λ2P − 48λφ e
2
B−L + 96e4B−L − Tr[(yM )4] + 8λφTr[(y

M )2] (3.10)

(4π)2
dλP
d logµ

= λP

(
6y2t + 12λH + 8λφ − 4λP − 24e2B−L −

9

10
g21 −

9

2
g22 −

3

2
g2mix

+4Tr[(yM )2]

)
− 12g2mixe

2
B−L . (3.11)

The Yukawas for the top quark and for 3 Majorana neutrinos are determined via

(4π)2
dyt

d logµ
= yt

(
9

2
y2t −

17

20
g21 −

9

4
g22 − 8g23 −

17

12
g2mix −

2

3
e2B−L −

5

3
gmixeB−L

)
(3.12)

(4π)2
dyMi
d logµ

= yMi
(
4(yMi )2 + Tr[(yM )2]− 6e2B−L

)
, (3.13)

and the gauge couplings are given by eqs. (3.7) together with

(4π)2
deB−L

d logµ
= 12e3B−L +

32

3
e2B−L gmix +

41

6
eB−L g

2
mix (3.14)

(4π)2
dgmix

d logµ
=

41

6
gmix

(
g2mix +

6

5
g21

)
+ 2

16

3
eB−L

(
g2mix +

3

5
g21

)
+ 12e2B−L gmix . (3.15)

3.3 Standard Model × U(1)B−L ⊕ real scalar

When discussing the Higgs vacuum stability we will soon find out that the size of the

available region on the CSI ESM parameter space will be significantly dependent on whether

or not the theory includes an additional singlet field. We are thus led to extend the RG

equations above to the case with the singlet.

The scalar self-couplings and portal couplings in this model are governed by the fol-

lowing equations,

(4π)2
dλH
d logµ

= r.h.s. (3.9) +
1

2
λ2Hs (3.16)

(4π)2
dλφ
d logµ

= r.h.s. (3.10) +
1

2
λ2φs (3.17)

(4π)2
dλP
d logµ

= r.h.s. (3.11) − λHsλφs (3.18)

(4π)2
dλs
d logµ

= 18λ2s + λ2φs + 2λ2Hs (3.19)
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(4π)2
dλHs
d logµ

= λHs

(
6y2t + 12λH + 6λs + 4λHs −

9g21
10
− 9g22

2

)
− 2λPλφs (3.20)

(4π)2
dλφs
d logµ

= λφs
(
12λφ + 6λs + 4λφs − 18e2B−L

)
− 4λPλHs . (3.21)

The rest of the RG equations are the same as before. Equations for Yukawa couplings

are (3.12)–(3.13), and the gauge couplings are given by eqs. (3.7) together with (3.14)–

(3.15). As always, we set gmix(µ = Mt) = 0.

Note that it is easy to derive a simple formula, eq. (3.24) below, which computes the

coefficients in front of scalar couplings on the right hand sides of the RG equations. First,

let us write the classical scalar potential in the form,

V0 =
∑
ϕ

λϕ
4

(~ϕ 2)2 +
∑
ϕ<ϕ′

λϕϕ′

4
(~ϕ 2)(~ϕ ′ 2) , (3.22)

where in our case ϕ = {h, φ, s}, and the second sum is understood as over the three pairs

of indices, (h, φ), (h, s) and (φ, s). The notation ~ϕ denotes the canonically normalised real

components of the Higgs, ~h = (h1, . . . , h4), the complex doublet ~φ = (φ1, . . . , φ4) and the

real singlet ~s = s. In general we denote the number of real components of each of the species

of ~ϕ and Nϕ. It is then easy to derive the expressions for scalar-coupling contributions

to all the self-interactions, by counting the contributing 4-point 1PI diagrams involving 2

scalar vertices. For the beta functions of the self-couplings we get,

(4π)2
dλϕ
d logµ

3 2(Nϕ + 8)λ2ϕ +
∑
ϕ̃

Nϕ̃

2
λ2ϕϕ̃ , (3.23)

and the portal couplings are governed by,

(4π)2
dλϕϕ′

d logµ
3
∑
ϕ

2(Nϕ + 2)λϕλϕϕ′ +
∑
ϕ′

2(Nϕ′ + 2)λϕϕ′λϕ′ +
∑
ϕ̃

Nϕ̃ λϕϕ̃λϕ′ϕ̃ + 4λ2ϕϕ′

(3.24)

This formula is valid for all of the CSI ESM examples considered in this paper.

3.4 Standard Model × SU(2)CW

We can also write down the relevant renormalisation group equations for the classically

scale-invariant Standard Model × SU(2)CW theory with the scalar potential given by

eq. (2.29). These RG equations were first derived in refs. [8, 9]. For scalar self-couplings

λH and λφ, and the portal coupling λP we have:

(4π)2
dλH
d logµ

=−6y4t +24λ2H+2λ2P+λH

(
12y2t −

9

5
g21−9g22

)
+

27

200
g41+

9

20
g22g

2
1+

9

8
g42 (3.25)

(4π)2
dλφ
d logµ

=24λ2φ + 2λ2P − 9λφ g
2
CW +

9

8
g4CW (3.26)

(4π)2
dλP
d logµ

=λP

(
6y2t + 12λH + 12λφ − 4λP −

9

2
g2CW −

9

10
g21 −

9

2
g22

)
, (3.27)
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where the top Yukawa coupling obeys

(4π)2
dyt

d logµ
= yt

(
9

2
y2t −

17

20
g21 −

9

4
g22 − 8g23

)
, (3.28)

and gCW, g3,2,1 are the gauge couplings of the SU(2)CW× SU(3) × SU(2) × U(1),

(4π)2
dgCW

d logµ
= −43

6
g3CW −

1

(4π)2
259

6
g5CW (3.29)

(4π)2
dg3

d logµ
= −7g33 , (4π)2

dg2
d logµ

= −19

6
g32 , (4π)2

dg1
d logµ

=
41

10
g31 , (3.30)

where for the U(1) coupling we use the normalisation g21 = 5
3g

2
Y .

All running couplings are computed in the MS scheme and furthermore we use the

physical freeze-out condition for the SU(2)CW degrees of freedom at the RG scales below

their mass shell. In other words, the SU(2)CW contributions to the β-functions for gCW, λφ
and λP will be set to zero when µ < MZ′ = 1

2gCW〈φ〉.

3.5 Standard Model × SU(2)CW ⊕ real scalar

RG-equations for the three scalar self-couplings now take the form:

(4π)2
dλH
d logµ

= −6y4t + 24λ2H + 2λ2P +
1

2
λ2Hs

+λH

(
12y2t −

9

5
g21 − 9g22

)
+

27

200
g41 +

9

20
g22g

2
1 +

9

8
g42 (3.31)

(4π)2
dλφ
d logµ

= 24λ2φ + 2λ2P +
1

2
λ2φs − 9λφ g

2
CW +

9

8
g4CW (3.32)

(4π)2
dλs
d logµ

= 18λ2s + 2λ2φs + 2λ2Hs , (3.33)

and for the three portal couplings we have,

(4π)2
dλP
d logµ

= λP

(
6y2t + 12λH + 12λφ − 4λP −

9

2
g2CW −

9

10
g21 −

9

2
g22

)
− λHsλφs (3.34)

(4π)2
dλHs
d logµ

= λHs

(
6y2t + 12λH + 6λs + 4λHs −

9

10
g21 −

9

2
g22

)
− 4λPλφs (3.35)

(4π)2
dλφs
d logµ

= λφs

(
12λφ + 6λs + 4λφs −

9

2
g2CW

)
− 4λPλHs . (3.36)

3.6 Initial conditions and stability bounds

To solve the RG equations and determine the RG evolution of the couplings of our models,

we first need to specify the initial conditions for all the couplings.

First, we specify the initial conditions for the SM coupling constants at Mt: the top

Yukawa coupling yt and the SM gauge couplings initial values are taken from ref. [34],

yt(µ=Mt) = 0.93558 + 0.00550

(
Mt

GeV
− 173.1

)
+

−0.00042
α3(Mz)− 0.1184

0.0007
− 0.00042

MW − 80.384GeV

GeV
± 0.00050th (3.37)
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g3(µ=Mt) = 1.1666 + 0.00314
α3(Mz)− 0.1184

0.0007
− 0.00046

(
Mt

GeV
− 173.1

)
(3.38)

g2(µ=Mt) = 0.64822 + 0.00004

(
Mt

GeV
− 173.1

)
+ 0.00011

MW − 80.384GeV

GeV
(3.39)

g1(µ=Mt) =

√
5

3

(
0.35761+0.00011

(
Mt

GeV
−173.1

)
−0.00021

MW−80.384GeV

GeV

)
. (3.40)

In our numerical analysis we will always assume the central values for Mt and MW .

The CW portal coupling, λP and the CW gauge coupling are taken as the two free

input parameters specifying the 2-dimensional BSM parameter space of our U(1) or SU(2)

× SM theories. When an additional singlet field s(x) is present, the input parameters also

include λHs, λs and λφs.

The input values of the two remaining couplings, the Higgs self-coupling λH , and

the self-coupling of the CW scalar, λφ, are then determined from the value of the SM

Higgs mass, and from the CW matching condition (2.13), respectively. To find λH we

numerically compute the eigenvalues of the mass matrix (2.19) and set mh1 = 125.66 GeV,

as was outlined in eq. (2.22). We then iteratively solve for λφ(µ = Mt) by running it from

the top mass scale to µ = 〈φ〉 and checking that we fulfil the CW matching relation (2.13)

at the latter scale.

Having thus specified the initial conditions for all couplings at the low scale, µ = Mt,

we run them up to the high scale µ = MPl by numerically solving the RG equations. To

determine the region of the parameter space where the Higgs potential is stable, we check

that the conditions,

4λH(µ)λφ(µ) > λ2P(µ) , λH(µ) > 0 , for all µ ≤MPl , (3.41)

arising from the positive definiteness of eq. (2.1) are fulfilled. We also check that the model

remains perturbative, requiring that all its scalar couplings are bounded by an order-1

constant all the way to the Plank scale,

λi(µ) < constO(1) = 3 , (3.42)

where for concreteness we chose a conservative numerical value of the upper bound = 3;

in practice our results do not depend significantly on this choice.

4 Higgs physics: stability and phenomenology

It is well known that in the Standard Model the Higgs self-coupling becomes negative at

µ ∼ 109 GeV making the SM Higgs potential unstable below the Planck scale [34, 35] (see

also [36, 37] for a review of earlier work). This effect can be seen in figure 1 which shows the

solution of RG equations in the limit where all Higgs portal interactions are switched off.

For our classically scale invariant extensions of the SM to be meaningful and practical

natural theories valid all the way up to the Planck scale, the Higgs potential has to be
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Figure 1. RG evolution in the Standard Model. The Higgs self-coupling turns negative at

µ & 109 GeV thus signalling that the SM Higgs potential becomes unstable below the Planck scale.

In this and all other figures we use Mt = 173.1 GeV.

stabilised.4 There are two mechanisms, both relying on the Higgs portal interactions, to

achieve this:

1. The SM Higgs is the mixed mass eigenstate h1 between H and the CW scalar as

dictated by eq. (2.22). As we explained at the end of section 2.1 in the case where

the second scalar is heavier than the Higgs, mh2 > mh1 , the initial value of the Higgs

self-coupling λH is larger than in the SM, cf. eq. (2.25), and this helps with the Higgs

stabilisation [8, 27, 28].

2. The portal couplings of other scalars to the Higgs, such as λP and λHs contribute

positively to the beta function of λH as can be seen e.g. from the RG equation (3.31) in

the SU(2)CW + scalar case, where βλH 3 2λ2P+ 1
2λ

2
Hs. This effect (in particular due to

the otherwise unconstrained but still perturbative λHs coupling) will be instrumental

in achieving the Higgs stability in models with an extra scalar, [38, 39].

Examples of RG running for some specific input values of parameters for three different

classes of models which result in stable Higgs potential are shown in figure 2 where cases

(a) and (c) give an example of mechanism (1.) and the model with an additional scalar in

case (b) is a representative of mechanism (2.) at work.

In the rest of this section we will quantify the regions of the parameter spaces for

individual models where the scalar potential is stabilised. We will also combine these

4In this paper we will concentrate on the more conservative case of absolute stability. Another phe-

nomenologically acceptable possibility analysed recently in [34] is that the SM vacuum is metastable, with

a lifetime much greater than the age of the Universe. In that case one would also have to argue why

after reheating the Universe ended up in the metastable vacuum near the origin, for example following the

approach of [40].
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Figure 2. RG evolution in CSI ESM theories with (a) E = U(1)B−L, (b) E = U(1)B−L + s(x), and

(c) E = SU(2)CW. With these initial conditions the Higgs coupling λH stays positive and satisfies

the tree-level stability bound (3.41).

– 17 –



J
H
E
P
0
8
(
2
0
1
4
)
0
2
6

0.4 0.5 0.6 0.7 0.8 0.9 1.0
eCW

10-3

10-2

10-1

λ
P

0.0500.1000.200

0.200

0.100

0.050

0.0

62.5

125.0

150.0

200.0

250.0

300.0

500.0

M
as

s 
of

 s
ec

on
d 

hi
gg

s 
m
h
2
[G

eV
]

Figure 3. Parameter space in the minimal U(1)CW× SM classically scale invariant theory. The

black wedge-shaped contour shows the region of the (λP, eCW) parameter space of the model where

the Higgs potential is stabilised. The dotted lines represent contours of fixed values sin2 θ = 0.05,

0.1 and 0.2 of the Higgs mixing angle. Finally, the colour-coding indicates the mass of the second

scalar h2 in GeV.

considerations with the current LHC limits applied to the extended Higgs sectors of our

Higgs portal theories in a model by model basis.

4.1 CSI U(1)CW×SM

In this theory the mechanism (1.) is operational for stabilising the Higgs potential in a

region of the 2-dimensional parameter space of the model described by λP and the CW

gauge coupling. As shown in figure 3 we get a wedge shaped region inside the black contour

inside which the Higgs potential is stable.

Higgs stabilisation in this region can be traced to the initial value of λH being enhanced

compared to the SM due to mixing between h and the CW scalar field. The wedge shape

can be understood as follows. The upper edge of the wedge follows the mass contour where

mh2 > mh since the enhancement of the initial value of λh only happens when mh2 > mh1 ,

see (2.25). The mechanism is only effective when the two masses are not too far from each

other (cf. the denominator of the second term in eq. (2.25)). The lower contour of the

wedge signifies when the mass difference becomes too large. The effect is enhanced when

the off-diagonal element is larger as we get more mixing. This explains why the stability

wedge in figure 3 is wider for larger values of λP. We get an upper limit on eCW ≈ 0.9 since

for larger values we find a Landau pole before the Planck scale.

Higgs sector phenomenology of this model in the context of LHC and LEP, future

colliders and low energy measurements was analysed recently in [5]. In particular, it was

shown there that on the part of the parameter space where the second scalar is light,
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10−4 GeV < mh2 < mh1/2 the presently available Higgs data (and specifically the limits

on the invisible Higgs decays) constrain the model quite tightly by placing the upper limit

on the portal coupling to be λP . 10−5.

However, from figure 3 we see that the Higgs stability in the minimal model (and more

generally in all portal models without additional scalar s(x), i.e. relying on the stabilisation

mechanism (1.) ) requires the second scalar to be heavier than the SM Higgs, mh2 > mh1

(see also figures 4, 5). Thus Higgs stability pushes these models in to the region of the pa-

rameter space with the heavier second scalar, precisely where the collider limits on invisible

Higgs decays and on non-observation of other Higgs-like states are much less stringent.

Collider limits which do constrain the stability region in figure 3 are the exclusion

limits on the heavier Higgs production normalised to the expected SM cross-section at this

Higgs mass. In all Higgs portal models we consider in this paper, the expected cross-section

for the h2 scalar is given by the SM cross-section times sin2 θ of the mixing angle. With

the currently available ATLAS and CMS data for the search of the heavier Higgs boson at

integrated luminosity of up to 5.1 fb−1 at
√
s = 7 TeV and up to 5.3 fb−1 at

√
s = 8 TeV,

the observed signal strength in the units of the SM cross-section for the heavier Higgs is

roughly at the level of 10−1, or slightly above, as can be seen from plots in [41–43]. This

gives an upper limit on the mixing angle sin2 θ . 0.1.

The contours of constant values of sin2 θ = 0.05, 0.1 and 0.2 are shown on figure 3 as

dotted lines. As we can see for sin2 θ . 0.1 there is no overlap left between what is allowed

by the collider limits and what is consistent with the Higgs stability in this model. We thus

conclude that the combination of the Higgs potential stabilisation and the LHC limits on

the heavier Higgs essentially rule out the minimal U(1)CW× SM theory. This conclusion

is based on the one-loop RG analysis, on the methodology we adopted for the selection of

initial values, and on the use of the central value for the top mass. As such there is an

intrinsic theoretical uncertainty in the exact position of the wedge. By lowering the top

mass from its central value by 1 GeV, the wedge in figure 3 would touch the sin2 θ = 0.1

contour making the model viable in the limited corner of the parameter space.

Instead, to get a stable viable model with the current central value of the top mass

and without relying upon the sub-leading RG effects, we will simply extend the theory by

adding a singlet s(x) in sections 4.3, 4.5.

4.2 CSI U(1)B−L×SM

One way to extend the minimal model is to allow for interactions of the hidden sector

with the SM fermions. As we have seen already, a simple implementation of this idea is

described by the U(1)B−L × SM classically scale invariant theory. We proceed to solve the

RG equations in this model and search for the region on the parameter space where the

scalar potential is stable, with the results shown in figure 4.

The stability region in figure 4 is shorter along the horizontal eB−L-direction than in

the minimal CW model of figure 3 before. This is caused by the slope of the B− L gauge

coupling being steeper than for the minimal U(1)CW× SM theory, due to the SM quarks and

leptons which are now charged under the U(1)B−L gauge group. We therefore get a Landau

pole before the Planck Scale if eB−L(µ = mt) & 0.35, and this shortens the allowed region.
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Figure 4. Parameter space of the U(1)B−L× SM theory showing the region where the Higgs

potential is stabilised and the sin2 θ contours. The legend is the same as in figure 3.

The width of the stability wedge reflects the fact that in the B− L model the CW

scalar φ has the charge of two. As the result one would expect that the width of the B− L

model stability region for a fixed value of the gauge coupling, say at eB−L = 0.3, should

be of similar size to the case of the pure U(1) CW sector at the twice the value of the

coupling, i.e. at eCW = 0.6, which is indeed the case.

Collider exclusion limits of sin2 θ . 0.1 are indicated in figure 4 as before by the dotted

lines showing contours of constant sin2 θ = 0.05, 0.1 and 0.2. We see that the combination

of the Higgs potential stabilisation and the LHC limits on the heavier Higgs rules out also

the U(1)B−L× SM theory without an additional singlet.

In the U(1)B−L model we also have a Z ′ boson which couples to the Standard Model

fermions. The ATLAS and CMS experiments give lower limits for MZ′ of about 3 TeV [44,

45]. This implies,

MZ′ = 2eB−L 〈φ〉 = 2eB−L

√
2λH
λp

v , (4.1)

and therefore √
λP <

2v
√

2λH
3 TeV

eB−L =⇒ λp . (0.1 eB−L)2 . (4.2)

For eB−L = 0.35 we find that λP . 10−3, which is clearly outside the stability wedge of the

B− L model. Therefore Higgs stabilisation in the minimal U(1)B−L × SM theory is also

not compatible with the collider limits on Z ′.
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λP eB−L λHs

10−5 0.1 0.34

10−5 0.2 0.34

10−5 0.3 0.33

0.0001 0.1 0.35

0.0001 0.2 0.34

0.0001 0.3 0.33

0.001 0.1 0.35

0.001 0.2 0.29

0.001 0.3 0.33

λP gCW λHs

10−5 0.8 0.35

10−5 1.4 0.35

10−5 2.0 0.35

0.0001 0.8 0.35

0.0001 1.4 0.35

0.0001 2.0 0.35

0.001 0.8 0.34

0.001 1.4 0.35

0.001 2.0 0.35

Table 1. Minimal values of λHs needed to stabilise the Higgs potential in the CSI ESM ⊕ singlet

models with λs = 0.1 and λφs = 0.01. Left table: U(1)B−L. Right table: SU(2)CW.

4.3 CSI U(1)B−L×SM ⊕ singlet

When we add a real scalar s(x) to the U(1)CW or U(1)B−L× SM theory, the scalar potential is

stabilised by the mechanism (2.) which relies on the positive shift in the β-function for λH ,

βλH 3 +
λHs

2
. (4.3)

We have checked that the stabilisation occurs on the entire (λP, e) 2d parameter space for

values of λHs ∼ 0.34 or above, as can be seen from the left table in table 1.

4.4 CSI SU(2)CW×SM

Solving RG equations in the non-Abelian CW theory coupled to the SM, gives the Higgs

stability region shown in figure 5 together with the sin2 θ exclusion contours. The stability

wedge is now shifted to larger values of gCW as φ has an equivalent charge of 1/2. From

figure 5 we conclude that the combination of the Higgs potential stabilisation and the LHC

limits on the heavier Higgs leaves a small corner of the parameter space available in the

minimal SU(2)CW× SM theory.

4.5 CSI SU(2)CW×SM ⊕ singlet

The Higgs potential in the SU(2)CW× SM can be stabilised on the entire 2d plane (λP, gCW)

by extending the model with a vev-less singlet s(x) portally coupled to the Higgs, as

in eq. (4.3). The table on the right in table 1 shows the critical value of λHs for this

stabilisation mechanism to work in the CSI SU(2)CW × SM ⊕ singlet model.

Before we conclude this section we would like to make a comment. We have shown that

the minimal Higgs portal models without an additional scalar are largely ruled out by the

combination of Higgs (in)stability and the LHC constraints (except for a small region of

the parameter space still available in the non-Abelian model). At the same time we showed

that if these models include an additional scalar field with a portal coupling λHs ∼ 0.35,

the Higgs stability restrictions are completely lifted and the models are completely viable.
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Figure 5. Parameter space of the SU(2)CW× SM theory showing the region where the Higgs

potential is stabilised and the sin2 θ contours. The legend is the same as in figure 3.

The question arises if this conclusion would also apply to models without an additional

scalar, but instead with the Higgs-CW portal coupling being relatively large, λP ∼ 0.3, so

that βλH would instead receive a positive contribution from 2λ2P. This approach would not

work for the following reason. In order not to get a large mixing angle sin2 θ > 0.1 in this

case we require that the second scalar is quite heavy, mh2 > 300 GeV. This in turn requires

a large CW gauge coupling of gCW ≈ 3.5. Such a large gauge coupling leads to a large value

for λφ at the scale of 〈φ〉. λφ therefore develops a Landau pole already at low scales.

5 Dark matter physics: relic abundance and constraints

Having demonstrated that the Higgs sector can be stabilised and that it is in agreement

with all current observations, we now show that this framework can accommodate the

observed dark matter content in the Universe. In the scenarios that we have studied, there

are two potential dark matter candidates. The first candidate is the vector dark matter [46–

48] given by the triplet of gauge bosons Z ′i of the SU(2)CW sector and considered recently

in [8, 9]. These particles have the same mass MZ′ and are stable because of an unbroken

global SO(3) ‘custodial symmetry’, which also ensures that each component has the same

relic abundance. The second candidate is the singlet scalar particle s coupled to the Higgs

through the Higgs portal.5 This is a much studied dark matter candidate [50–57] that is

stable because of a Z2 symmetry of the classically scale-invariant SM×GCW theory with

the real singlet [10].6

5Magnetic monopoles are also a possible third dark matter candidate [49]; in this work we ignore this

possibility.
6The s→ −s symmetry of the potential eq. (2.34) is an automatic consequence of scale-invariance and

gauge invariance, which does not allow odd powers of H and Φ.
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Figure 6. The upper three diagrams show the process Z ′iZ
′
j → Z ′kh2, which is the dominant

contribution to the semi-annihilation cross-section. The process Z ′iZ
′
j → Z ′kh1 also occurs but is

suppressed by tan2 θ. The lower four diagrams show the processes that dominate the annihilation

of Z ′iZ
′
i. Other diagrams are suppressed by at least one power of sin θ or λP.

Having argued that the vector triplet and scalar particles are stable and therefore

potential dark matter candidates, we must calculate the relic abundance in order to show

that they can saturate, or form a component of the observed dark matter abundance, for

which we take ΩDMh
2 = 0.1187±0.0017, the value inferred from Planck+WP+HighL+BAO

data [58]. Owing to the reasonable couplings to the Standard Model particles, the scalar

and vector dark matter components are in thermal equilibrium with the Standard Model

degrees of freedom in the early Universe. Their abundance is therefore determined by the

thermal freeze-out mechanism. To calculate it, we must solve the Boltzmann equation,

which is [59, 60],

dni
dt

+ 3Hni = −〈σiiv〉
(
n2i − neq 2i

)
−
∑
j,k

〈σijkv〉
(
ninj −

nk
neqk

neqi n
eq
j

)
, (5.1)

where ni is the number density of one component χi of the dark matter abundance, 〈σiiv〉
is the usual annihilation cross-section term for reactions of the form χiχj → XX, where

X is a particle in equilibrium with the thermal bath, and 〈σijkv〉 is the cross-section for

the semi-annihilation reaction χiχj → χkX.

5.1 Vector dark matter

We first consider the case of vector dark matter only, which is similar to Hambye’s

model [46] except that here there are no explicit µ terms. This model is interesting as

it was the first example of a model containing both annihilation and semi-annihilation

processes, as shown in figure 6.

The annihilation cross-section is dominated by the lower four diagrams of figure 6,

which contribute to the process Z
′
iZ
′
i → h2h2. The leading order terms contributing to the

non-relativistic (s-wave) cross-section from these diagrams are

〈σiiv〉 =
11g4CW − 60g2CWλφ + 108λ2φ

2304π

cos4 θ

M2
Z′

+O
(
m2
h2

M2
Z′
, sin θ, λP

)
. (5.2)
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Figure 7. The coloured contours and the wedge-shaped regions in black in both panels indicate

when the vector triplet forms more less than 100%, 10% and 1% of the observed dark matter

abundance, and the parameter values where the Higgs potential is stabilised respectively. Also

shown in the left panel are the LUX and projected LZ limits (the region above these lines is

excluded), which account for the fact that the dark matter is a subcomponent of the total density

in much of the parameter space, and the limit sin2 θ = 0.1. The right panel shows that the vector

mass should lie between 500 GeV and 1 TeV to improve Higgs stability.

In our numerical work, we include all sub-leading terms in this cross-section as well as

including the contributions from Z ′iZ
′
i → h1h1, Z

′
iZ
′
i → f̄f , Z ′iZ

′
i → W+W− and Z ′iZ

′
i →

Z0Z0, all of which are suppressed by at least one power of sin θ or λP.

The diagrams that contribute to the semi-annihilation process are shown by the upper

three diagrams in figure 6. In the non-relativistic limit, the (s-wave) cross-section for

Z ′iZ
′
j → Z ′kh2 is

〈σijkv〉 =
3g4CW

128π

cos2 θ

M2
Z′

(
1−

m2
h2

3M2
Z′

)−2(
1−

10m2
h2

9M2
Z′

+
m4
h2

9M4
Z′

)3/2

. (5.3)

There is also a subdominant process Z ′iZ
′
j → Z ′kh1 whose cross-section is obtained from

eq. (5.3) by substituting mh2 → mh1 and cos θ → sin θ. For completeness, we include this

in our numerical work. Comparing eqs. (5.2) and (5.3), we observe that 〈σijkv〉 ∼ 5〈σijv〉
so the semi-annihilation processes dominate.

The global custodial symmetry ensures that the vector triplet is degenerate in mass

and each Z ′i contributes one-third to the relic abundance. That is the total abundance

nZ′ is related to the individual components by nZ′ = 3nZ′1 = 3nZ′2 = 3nZ′3 . It should also

be clear that 〈σ11v〉 = 〈σ22v〉 = 〈σ33v〉 := 〈σv〉ann and 〈σ123v〉 = 〈σ132v〉 = 〈σ213v〉 =

〈σ231v〉 = 〈σ312v〉 = 〈σ321v〉 := 〈σv〉semi−ann. Therefore, the Boltzmann equation for the

total abundance is

dnZ′

dt
+ 3HnZ′ = −〈σv〉ann

3

(
n2Z′ − neq 2Z′

)
− 2〈σv〉semi−ann

3
nZ′

(
nZ′ − neqZ′

)
. (5.4)

We solve this equation numerically by the method outlined in [61].
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Figure 8. The leading contributions to the scalar annihilation cross-section 〈σv〉s,ann. Other

diagrams are suppressed by at least one power of sin θ.

The coloured regions in the left and right panels of figure 7 show the total relic abun-

dance of the vector triplet as a fraction of the observed abundance. For instance, in the

lower left (blue) part of the left panel, the abundance exceeds the observed value and is

therefore excluded. The thick black wedge indicates the region where the Higgs potential is

stabilised up to the Planck scale (as in figure 5). We see that for most of wedge, the vector

triplet contributes between 1% and 100% of the total dark matter abundance. However,

when we combine this with the LHC constraint on sin2 θ, we see from figure 7 that the

vector dark matter component contributes less than 10% to the total relic abundance, and

we need to add another dark matter component. The right panel in figure 7 shows the dark

matter fraction as a function of MZ′ and mh2 . To lie within the Higgs vacuum stability

wedge, we see that the MZ′ lies between 500 GeV and 1000 GeV.

Also shown on the left panel are the direct detection current constraints from LUX [62]

and the projected limits from LZ [63]. At a direct detection experiment, a vector Z ′i
can elastically scatter with a nucleon N via exchange of h1 or h2. The resulting spin-

independent scattering cross-section for this to occur is

σSIN =
g2CW sin2 2θ

16π

f2Nm
2
Nµ

2
red

v2

(
1

m2
h2

− 1

m2
h1

)2

, (5.5)

where fN := 〈N |∑qmq q̄q |N〉 /mN ≈ 0.295 is the Higgs-nucleon coupling [64], mN is the

nucleon mass and µred is the vector-nucleon reduced mass. When setting a limit from the

experimental data, we account for the fact that the the vector triplet forms a subcomponent

of the total dark matter density over much of the parameter space of interest. We make

a scaling ansatz that the fraction of the local dark matter density ρZ′/ρDM is the same as

the fraction of the dark matter relic abundance ΩZ′/ΩDM. The limits from LUX and LZ

after taking into account this scaling are shown in figure 7 by the lines with the appropriate

label. In the left panel, the region above and to the left of the lines are excluded. We have

also checked that the LUX exclusion limit, when applied to the right panel, excludes the

entire lower island. Therefore, while the current LUX limits do not constrain the region

where the Higgs potential is stabilised, the projected LZ limit excludes all of this region.

5.2 Singlet scalar dark matter

We have previously motivated the introduction of a real singlet scalar field to allow the

Higgs potential to be stabilised over a much larger range of the parameter space. Providing

a candidate to saturate the observed dark matter abundance provides a second motivation.
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Figure 9. Scalar dark matter (ms, λHs) plane in the CSI U(1)B−L× SM ⊕ singlet model. The

solid lines show the fraction of of the total DM density the scalar singlet makes up. The dotted

lines show the direct detection constraints from LUX and the project limits from LZ. In the shaded

region the extra singlet does not stabilise the Higgs potential.

The two examples of CSI ESM with a U(1) Coleman-Weinberg sector that we have con-

sidered in sections 4.1 and 4.2, do not have a dark matter candidate. This is because the

U(1)CW gauge boson is unstable, owing to its kinetic mixing with hypercharge, and the

only scalar field present, φCW, mixes with the SM Higgs. The SU(2)CW sector does have a

stable component in the form of the Z ′i triplet, but we have seen cf. left panel in figure 7)

that after LHC constraints have been taken into account, the vector triplet forms only a

sub-component of the total dark matter abundance in the region where the Higgs potential

is stabilised. Therefore, in the case of an SU(2) extended Standard Model, an additional

dark matter component is also required.

Having motivated the singlet scalar as a dark matter candidate, we first study the case

where the singlet forms all of the dark matter (as required in the U(1) case) before turning

to the case where it forms a sub-component (as required in the SU(2) case).

In the CSI U(1)B−L× SM ⊕ singlet model, the ATLAS and CMS limit that

MZ′ & 3 TeV implies that λP, and therefore sin θ, is small. As a result, the diagrams that

dominantly contribute to the total annihilation cross-section 〈σv〉s,ann are those shown in

figure 8. The Z2 symmetry of this theory ensures that all semi-annihilation processes van-

ish, so that the Boltzmann equation describing the evolution of the scalar number density

ns is the usual one:
dns
dt

+ 3Hns = −〈σv〉s,ann
(
n2s − neq 2s

)
. (5.6)

The main parameters of our singlet dark models are the scalar dark matter mass, ms, and

its coupling, λHs, to the Higgs field. We solve the Boltzmann equation numerically and
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Figure 10. The plots show the available parameter space when the scalar and vector dark matter

together makes up the total dark matter density in the of the CSI SU(2)CW×SM ⊕ singlet model.

The colour-coded regions show the scalar dark matter mass in GeV. In the white regions the

combined density is either larger or smaller than the observed dark matter density. On the left we

fixed λHs = 0.36, and the right panel has λHs = 1.

the results are displayed in figure 9 on the (ms, λHs) plane. In this figure, we have initially

fixed eB−L = 0.3 and λP = 5 × 10−4 resulting in a mixing angle θ ≈ 5 × 10−3 and mass

MZ′ = 3.6 TeV. When eB−L and λP are chosen so that MZ′ lies above the bounds from

direct searches by ATLAS and CMS, we have found that the positions of the lines are not

sensitive to the values of eB−L and λP. The coupling constant λφs can be traded in for m2
s

cf. eq. (2.35)) so that the only remaining free parameters are ms and λhs (the quadratic

coupling λs plays no role in the Born-level freeze-out calculation). For each value of ms, the

value of λHs that gives 100%, 10% or 1% of the observed dark matter density ΩDM is shown

in figure 9. The region below λHs ∼ 0.34 is excluded because for these values of λHs, the real

scalar does not help to stabilise the Higgs potential cf. table 1. We also impose that λHs . 1

in order that λHs does not develop a Landau pole before the Planck scale. In order that the

singlet scalar saturates the observed dark matter density, we find that its mass should lie

in the range between 1 TeV and 3.2 TeV. In this range, the annihilation channel ss→ Z ′Z ′

is not allowed kinematically, justifying its exclusion from the diagrams in figure 8.

Finally, we also show the current direct detection constraints from LUX and the pro-

jected limits from LZ. The scalar can scatter at a direct detection experiment through t-

channel exchange of h1 and h2 and the resulting spin-independent scattering cross-section

to scatter off a nucleon N is

σSIN =
λ2Hs cos4 θ

4π

f2Nm
2
Nµ

2
red

m2
sm

4
h1

[
1− tan θ

(
λφs
λHs

−
m2
h1

m2
h2

(
λφs
λHs

+ tan θ

))]2
. (5.7)

As in the case of the vector triplet, we account for the fact that the scalar makes up a sub-

component of the dark matter in much of the parameter space. While the current LUX

limit constrains low values of ms where the scalar density Ωs is very low, the projected LZ

limits should constrain the full parameter space of interest.
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Figure 11. The region on the mass plane (MZ′ ,mh2) where the combined density of the scalar

and vector dark matter equals the observed dark matter density. The colours show the scalar dark

matter mass in GeV and in the white regions the combined density is either larger or smaller than

the observed dark matter density. Here we have fixed λHs = 0.36.

5.3 Scalar and vector dark matter

Finally, we consider the CSI SU(2)CW× SM ⊕ singlet model in which the dark matter is

comprised of both the singlet scalar and vector triplet. In this case we solve the Boltzmann

equations (5.4) and (5.6) as before, but we now include the annihilation process ss→ Z ′iZ
′
i

or the reverse process, depending on which is kinematically allowed.

Figure 10 shows the results in the (gCW, λP) plane for λHs = 0.36 and λHs = 1.0

in the left and right panels respectively. The coloured contours indicate the values of

ms that results in the total density of vector and scalar saturating the observed value

i.e. ΩZ′+Ωs = ΩDM. There is a limited portion of the parameter space in which the vector

and scalar make up all of the dark matter and this region is smaller in the case where λHs
is bigger. These results can be understood with reference to figures 7 and 9. From figure 7,

we observe that in the upper right corner of the left panel, the vector density is very small,

so that the scalar should make up most of the density. From the right panel, we also see

that in this region, MZ′ . 1 TeV, which because g ≈ 2, implies that 〈φ〉 . 1 TeV. Now,

from figure 9, we see that for λHs = 0.36, we require ms ≈ 1 TeV in order that Ωs ≈ ΩDM.

However, given that m2
s ≈ λφs|〈φ〉|2/

√
2 (cf. eq. (2.35)), we see that we can not achieve

ms ≈ 1 TeV unless λφs & 1, in which case, it develops a Landau Pole before the Planck

scale. Figure 9 also allows us to see why the parameter space is smaller for larger λHs.

This is because the value of ms that is required to obtain Ωs ≈ ΩDM is larger for larger

λHs and this is more difficult to do, again because of the perturbativity restriction on λφs.

Figure 11 shows the vector and Coleman-Weinberg scalar mass and contours of the

scalar mass in which the total density is saturated. This plot has λHs = 0.36. We see that

both the vector and scalar are required to be around the TeV scale.
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6 Conclusions

The classically scale-invariant extensions of the Standard Model constitute a highly predic-

tive and minimal model building framework. In this CSI ESM set-up, all mass scales have

to be generated dynamically and should therefore have a common origin. These models

have to address all sub-Planckian shortcomings of the Standard Model. In this paper we

have analysed the CSI ESM theories from the perspective of solving the instability problem

of the SM Higgs potential and at the same time providing viable dark matter candidates.

In simple CSI models with Abelian hidden sectors, we identified regions of parameter

space where the SM Higgs potential is stabilised all the way up to the Planck scale. These

are the wedge-shaped regions in figures 3 and 4. When combined with LHC constraints

on heavier Higgs bosons we found that these regions did not survive (see dotted lines in

figures 3 and 4).

In the case of a non-Abelian SU(2) hidden sector in figure 5 a small part of the pa-

rameter space with the stable Higgs potential is compatible with the LHC constraints.

We then argued that by adding a real scalar singlet with a portal coupling to the Higgs

λHs & 0.35, all of our CSI ESM models have a stable Higgs potential and are consistent

with the LHC exclusion limits on extended Higgs sectors.

For Abelian models the singlet of mass ms is the only dark matter candidate, and fig-

ure 9 shows the available parameter space on the (ms, λHs) plane. If this singlet contributes

100% of the total observed dark matter density, its mass lies between 1 TeV and 3 TeV.

The LUX direct detection limits do not yet constrain the model, however the projected

reach of LZ would cover all of the viable parameter space.

In non-Abelian models we have two components of dark matter — the singlet and

the hidden sector SU(2) gauge bosons, Z ′i. Without the singlet, the combination of Higgs

stability and LHC constraints implies that vector dark matter contributes less than 10%

of the observed relic density, as can be seen in figure 7. Thus, to saturate the dark matter

density and stabilise the Higgs potential we are required to have a singlet dark matter

component. Finally, we have investigated the phenomenology of two-component dark mat-

ter. The viable regions of parameter space are shown in figures 10 and 11. Typically, both

components have mass close to 1 TeV.

We see that CSI ESM models are viable and predictive. They provide a non-trivial

link between the electroweak scale, including the Higgs vacuum stability, and the nature

and origin of dark matter. Furthermore, future dark matter direct detection and collider

experiments will be able to explore a significant fraction of their parameter space.
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