
PHYSICAL REVIEW E 89, 062905 (2014)

Thermal enhancement and stochastic resonance of polaron ratchets

L. S. Brizhik* and A. A. Eremko†

Bogolyubov Institute for Theoretical Physics, 03680 Kyiv, Ukraine

B. M. A. G. Piette‡ and W. J. Zakrzewski§

Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
(Received 17 March 2014; published 9 June 2014)

We study the ratchet drift of large polarons (solitons) in molecular diatomic chains induced by unbiased time
periodic electric fields at nonzero temperature below its critical value. We show that, at a nonzero temperature,
the critical value of the intensity of the electric field above which the ratchet phenomenon takes place is lower
than at zero temperature for the same frequency of the field. We show that there is a range of temperatures for
which the polaron drift is larger than that at zero temperature. We also show that temperature decreases the value
of the lowest critical period of the field. And, finally, we demonstrate that there is a stochastic resonance in a
polaron ratchet, namely that there is an optimal temperature at which the polaron drift is a maximum. The values
of the stochastic resonance temperature, the lowest critical values of the field intensity, and its period depend on
various parameters of the system and, in particular, on the anisotropy of the chain parameters. This temperature
induced decrease of the critical value of the field intensity and its period, as well as the stochastic resonance
itself, may be important for practical applications of the ratchet phenomenon in systems involving conducting
polymers and other low-dimensional materials. They may also be important in some biological macromolecules
where the ratchet phenomenon could take place in biomotors and energy and/or charge transport.
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I. INTRODUCTION

Low-dimensional molecular systems such as conducting
polymers, macromolecules, and others are of great practical
importance and are widely used in microelectronics and
nanotechnologies because of their special physical properties,
one of which is their unusually high conductivity, which can
be explained in terms of the large polaron mechanism.

For some of these systems the physical parameters take
their values in the range in which their relevant equations
can be obtained within the adiabatic approximation. In some
of them the values of the electron-phonon coupling and of
the nonadiabaticity parameter are just such that they lead to
the formation of a large polaron state which, in quasi-one-
dimensional systems, is called the “molecular soliton.”

Such a soliton describes a quasiparticle (exciton, electron,
or hole), which extends over a few lattice sites and is
self-trapped in a solitonlike state due to its binding to the
local distortions of the lattice [1–5]. A few years ago it was
shown theoretically that an external nonbiased (zero mean)
periodic field, under certain conditions, can induce a drift of
charged solitons [6–9]. This phenomenon, known as the ratchet
behavior [10], has been attracting a great deal of attention due
to its importance both for the understanding of the functioning
of biological motors [11–16] and for promising technical
applications in nanotechnologies, including molecular motors.
Hence, as a result of many studies, the fundamentals of
the ratchet phenomenon are now well understood and many
interesting theoretical models of ratchets have been proposed.

*brizhik@bitp.kiev.ua
†eremko@bitp.kiev.ua
‡B.M.A.G.Piette@durham.ac.uk
§W.J.Zakrzewski@durham.ac.uk

Moreover, a large variety of experimental realizations have
become available (for a review see, e.g., [10] and references
therein).

In general, the necessary conditions for the ratchet phe-
nomenon induced by external forces, both in classical and
quantum systems, involve energy dissipation in the system and
the breaking of possible spatial and/or temporal symmetries
of the system [10,17]. The mechanism responsible for the
appearance of a directed motion caused by a zero-mean force
has been well understood for particles moving in spatial
periodic potentials, such as particle separating devices [18] and
relativistic particles [19]. Relatively recently ratchet dynamics
has been shown to exist for quasiparticles, such as solitons
and large polarons [6–9,20–23]. In particular, it has been
demonstrated that directed transport of bright solitons formed
in a quasi-one-dimensional nondissipative Bose-Einstein con-
densate can be induced by a weak spatiotemporal biharmonic
optical lattice potential [24–27].

Furthermore, it has been shown [10] that the ratchet
phenomenon in some systems can also arise due to the action
of not only deterministic but also stochastic unbiased time
periodic forces (ac), such as temporal [10], spatial [28], and
quenched temporal [29] disorder. In most cases these studies
were performed for the case of zero temperature, although it
has been shown that solitons can exhibit ratchet behavior at
nonzero temperatures as well [30].

As mentioned above, the ratchet mechanism at zero tem-
perature in (quasi-)one-dimensional molecular chains, which
supports the existence of electron self-trapped states, was
studied in Refs. [6–9]. These papers have shown that the
phenomenon arises due to the presence of the Peierls-Nabarro
potential barrier and that it takes place only when the intensity
of the field and its period are sufficiently large (i.e., there exist
critical values of these quantities below which the effect does
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not take place). Hence it is natural to ask if such solitons can
exist and drift, in nonbiased ac electric fields, also at nonzero
temperatures.

Hence in this paper we study the ratchet behavior of
charged polarons (electrosolitons) in thermalized anisotropic
molecular chains and, in particular, chains which in their unit
cell contain two different atoms. We show that under certain
conditions the thermal noise not only does not prevent the drift
of polarons but that it even generates it at a lower critical value
of the intensity of the field than at zero temperature. We also
show that the lower critical value of the period of the electric
field decreases with the increase of the temperature. Moreover,
our numerical results demonstrate the existence of a stochastic
resonance in the polaron drift, namely, that the amplitude of the
polaron drift has a nonmonotonic dependence on temperature,
described by a characteristic �-shaped curve.

It is worth mentioning here that the thermal fluctuations
modify the properties of the solitons and, when the temperature
is sufficiently high, they can even destroy them: as the thermal
oscillations of the lattice become too strong, the electron
(hole) cannot remain bound with the self-induced local lattice
distortions and, as a consequence, the polaron is unstable and
decays into an unbound delocalized state. So our study was
restricted to temperatures for which the polaron was stable.

II. HAMILTONIAN OF THE SYSTEM AND
DYNAMICAL EQUATIONS

To study the ratchet phenomenon for molecular solitons,
we consider an extra electron in a diatomic molecular chain,
in the nearest-neighbor approximation and in the presence of
an external periodic unbiased electromagnetic field at nonzero
temperature. The states of an extra electron in such a system are
described by the Fröhlich Hamiltonian which can be written
as a sum of three terms:

H = Hph + He + He-ph. (1)

Here Hph is the Hamiltonian of the lattice vibrations,
He is the electron Hamiltonian, and He-ph describes the
electron-phonon interaction. For the numerical simulations it
is convenient to use each of these Hamiltonians in the site
representation.

Let z0
n,1 = na, z0

n,2 = na + b denote the equilibrium
positions of two different atoms, or groups of atoms, per unit
cell, periodically arranged along the chain axis, with a being
the lattice constant and b being the distance between the two
atoms in one unit cell.

The Hamiltonian of the lattice vibrations, Hph, in the
harmonic approximation is given by

Hph = 1

2

∑
n

[
p2

n,1

M1
+ p2

n,2

M2
+ ws(un,1 − un,2)2

+wl(un,1 − un−1,2)2

]
, (2)

where M1 and M2 are masses of atoms, un,j are longitudinal
displacements of atoms from their equilibrium positions,
zn,j = z0

n,j + un,j , and pn,j are the momenta, canonically
conjugate to un,j . Finally, ws and wl are the elasticity
constants describing the strengths of the interactions between

the nearest-neighbor atoms belonging to, respectively, the
same cell and to the neighboring cells.

Introducing creation and annihilation operators of an
electron on the site (n,j ), a

†
n,j , an,j , the electron Hamiltonian

can be written as

He =
∑

n

[E1 a
†
n,1an,1 + E2 a

†
n,2an,2 − Js(a

†
n,1an,2 + a

†
n,2an,1)

− Jl(a
†
n,1an−1,2 + a

†
n−1,2an,1)], (3)

where Ej is the on-site electron energy which includes also
the influence of the neighboring atoms; Js and Jl are the
resonant (exchange) energies of an electron on the nearest
neighbors from the same unit cell and from the neighboring
cells, respectively.

The electron-phonon interaction describes the dependence
of the exchange interaction energies Js , Jl and of the on-site
energy Ej on the interatomic separation. Taking into account
such a dependence of the on-site energy only, we obtain the
electron-phonon interaction Hamiltonian, He-ph, which, in the
linear approximation with respect to the lattice displacements,
takes the form

He-ph =
∑

n

[ a
†
n,1an,1 [χl (un,1−un−1,2) + χs (un,2−un,1)]

+ a
†
n,2an,2 [χl (un+1,1 − un,2) + χs (un,2 − un,1)]].

(4)

Here χs and χl are the coefficients of the electron-phonon
interaction between the nearest neighbors belonging to, re-
spectively, the same unit cell and to the neighboring cells.

Diagonalizing the electron and phonon Hamiltonians (3)
and (2), we find that in such a chain there are two electron
bands and two phonon modes. The dispersion laws Eλ(q) of
the two electronic bands, labeled by the index λ = U,L for the
upper and lower ones, are

Eλ(q) = E0 ± 1

2

√
�2

0 + 4J 2 − 16JsJl sin2
qa

2
. (5)

The frequencies of the two phonon modes, acoustical (ac)
and optical (op), are given by

ω2(q) = 1

2

(
W

μ
+ εmode

√
W 2

μ2
− 16

wswl

M1M2
sin2

qa

2

)
. (6)

where εac = −1 and εop = 1. Here q = 2π
Na

ν (ν = 0,±1, . . . )
denotes the quasimomentum, and we have introduced the
following notation: E0 = (E2 + E1)/2, �0 = E2 − E1, J =
Js + Jl and μ = M1M2/M , M = M1 + M2, W = ws + wl .

Self-trapped states of electrons correspond to the energy
ground states in molecular systems which satisfy the con-
ditions of the adiabatic approximation. This approximation
is equivalent to the semiclassical considerations in which
the lattice subsystem can be treated as a classical one. In
the adiabatic approximation the wave function of the system
is represented in a multiplicative Born-Oppenheimer form
which, for one extra electron in the chain, takes the form

|
〉 = U |ψe〉, |ψe〉 =
∑
n,j


n,j a
†
n,j |0〉, j = 1,2, (7)
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where U is the unitary operator of the coherent displacements of atoms induced by the presence of an electron in the state |ψe〉.
Here |0〉 denotes the corresponding vacuum state and 
n,j is the electron wave function, normalized to unity.

One can then easily compute the Hamiltonian function H = 〈
|H |
〉:

H =
∑

n

[
E1|
n,1|2 + E2|
n,2|2 − ( Js
n,1


∗
n,2 + Jl
n,1


∗
n−1,2 + c.c.) + 1

2

[
p2

n,1

M1
+ p2

n,2

M2
+ ws(un,1 − un,2)2

+wl(un,1 − un−1,2)2

]
+ χl [|
n,1|2(un,1 − un−1,2) + |
n,2|2(un+1,1 − un,2) ]

+χs [|
n,1|2(un,2 − un,1) + |
n,2|2(un,2 − un,1) ]

]
. (8)

From the Hamiltonian function (8) we obtain a system of
coupled dynamical equations for the electron and lattice
variables un,l and 
n,l and their conjugated momenta.

For numerical simulations it is convenient to use dimen-
sionless units; thus, we introduce time measured in units
of �/J , energy measured in units of J , and displacements
measured in units of length l = �

√
2/JM . We also introduce

the dimensionless parameters m, w, d, and x by the relations

M1,2 = 1
2M(1 ± m), ws,l = 1

2W (1 ± w),
(9)

Js,l = 1
2J (1 ± d), χs,l = 1

2X(1 ± x),

or, respectively,

m = M1 − M2

M
, w = ws − wl

W
, d = Js − Jl

J
,

(10)

x = χs − χl

X
, X = χs + χl.

To study the ratchet phenomenon induced by the electro-
magnetic oscillating field, E(t), in a thermalized diatomic
chain we have to include in the corresponding equations terms
describing the interaction of the system with the external field,
the presence of the energy dissipation in the system, as well
as terms describing the thermal fluctuations of the lattice.
Therefore, we add the term E(t)(n − n0)
n,l to the equation
for 
n,l to describe the action of the electric field. We also add
the terms F (t) − �

dun,j

dt
to the equations for un,j where the first

one is a Langevin factor describing thermal excitations (it is
discussed below), and the second one describes the energy
dissipation due to viscous friction where � is the friction
coefficient.

As a result, in these dimensionless units, the dy-
namical equations for such a system at nonzero tem-
perature in the external electric field take the following
form:

i
d
n,1

dt
=

[
−1 + D

2
+ E(t)(n − n0)

]

n,1 + 1

2
(1 + d)
n,2 + 1

2
(1 − d)
n−1,2

+G[(1 + x)(un,1 − un,2) − (1 − x)(un,1 − un−1,2)]
n,1,

i
d
n,2

dt
=

[
−1 − D

2
+ E

(
n − n0 + b

a

)]

n,2 + 1

2
(1 + d)
n,1 + 1

2
(1 − d)
n+1,1

+G[(1 + x)(un,1 − un,2) − (1 − x)(un+1,1 − un,2)]
n,2,
(11)

d2un,1

dt2
= − C

1 − m
[(1 + w)(un,1 − un,2) + (1 − w)(un,1 − un−1,2)]

+ G

1 − m
[2x|
n,1|2 − (1 − x)|
n−1,2|2 + (1 + x)|
n,2|2] + Fn,1(t) − �

dun,1

dt
,

d2un,2

dt2
= C

1 + m
[(1 + w)(un,1 − un,2) + (1 − w)(un+1,1 − un,2)]

+ G

1 + m
[−2x|
n,2|2 + (1 − x)|
n+1,1|2 − (1 + x)|
n,1|2] + Fn,2(t) − �

dun,2

dt
.

Here the intensity of the electric field E(t) is measured in units
ea/J and we have further defined

G = Xl

2J
, C = �

2W

MJ 2
, D = E2 − E1

J
, k = kB

J
, (12)

where kB is the Boltzmann structure constant (so that kT

denotes thermal energy in units of J ).

The thermal noise F (t) can be taken as a Gaussian white
noise of zero mean value and variance given by

〈Fn,i(t1)Fm,j (t2)〉 = 2�kT δ(t1 − t2)δn,mδi,j , (13)

i.e., we describe it by a random function with a normal
distribution satisfying the constraint (13). In our numerical
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simulations F (s) is constant during the time step interval dt

and δ(t2 − t1) = 1/dt .

III. RATCHET PHENOMENON IN ASYMMETRIC CHAINS

First of all, let us recall that the existence of the polaron
ratchet behavior is due to the Peierls-Nabarro barrier experi-
enced by the polaron propagating on a discrete lattice [31–34]
as this barrier, for asymmetric diatomic lattices, is spatially
asymmetric [9], and so this periodic asymmetric potential
plays the role of the ratchet potential.

We have verified this by performing several sets of numeri-
cal simulations for various values of the anisotropy parameters.
From our previous studies [6] we know that the dynamics of
the polaron is very complex even at zero temperature. Hence,
in our new studies we have, to begin with, taken as nonzero
only one anisotropy parameter with the others being set equal
to zero. After analyzing the obtained results, we performed
simulations with two or all of them being nonzero. The results
of these simulations are discussed below.

To study the dynamics of an electron in a chain subjected
to thermal fluctuations, we started by computing numerically
a stationary solution of Eqs. (11), at zero temperature, in the
absence of an external field, i.e., by setting E(t) = 0, kT = 0.
Then we used this obtained solution as the initial condition for
a numerical integration of Eqs. (11) when the electric field E(t)
was not zero. All our numerical simulations were performed
for a chain of 200 nodes.

In this paper we first present the results obtained for the
parameter values G = 0.4, C = 0.22, D = 0.1, � = 0.2, and
m = 0. This choice of values was dictated by wanting to
be close to the realistic parameter values for the α-helical
proteins and they correspond to the values at which the polaron
is neither too narrow, nor too broad. For these parameters
values, the stationary solutions are self-trapped within a few
lattice sites. When the temperature is nonzero, the same
simulation produces a different drift for each run because of the
built-in stochasticity of the temperature effects. All the results
presented in this paper were obtained by performing 100
simulations, except for kT = 0 for which we only performed
one, for each set of parameters and then computing the average
values of the resultant drifts. As in Ref. [6] the drifts were
measured as the average drift per period or, in other words, the
total polaron displacement during a time interval t divided by
the number of periods t/Te.

In Ref. [6] we showed that the asymmetry parameters m

and D do not induce a ratchet effect, so in our studies we
have only varied the values of the anisotropy parameters x, d,
and w. As we showed in Refs. [6,8] that in anisotropic chains
the ratchet effect can be induced even by a harmonic, i.e.,
time-symmetric ac field, we have chosen the electric field to
be of the form E(t) = E0 sin(2πt/Te).

We have also shown in Refs. [6,8] that for the ratchet
effect to take place the intensity of the field and its period
have to exceed some critical values, E0 > Ecr , Te > Te,cr .
If the period of the external force is below this value the
frequency of the polaron oscillations within the potential well
of the Peierls-Nabarro barrier is high and the amplitude of the
polaron oscillations that are caused by the oscillating external
field is small. Thus, A ∝ E0T

2
e � a and the polaron cannot

overcome the intersite distance and remains pinned, i.e., under
such conditions the polaron cannot drift.

To determine the polaron drift as a function of the
intensity of the field, we have chosen a period of the field
sufficiently large so that the lattice deformation could follow
the oscillations of the electron, caused by the periodic force.
Thus, we have chosen Te = 1000.

A. Polaron drift

We have started our investigations by studying the tempera-
ture dependence of the ratchet effect when the electron-phonon
coupling is not symmetric, i.e., when x is nonzero.

In Fig. 1(a) we present the amplitude of the polaron drift, as
a function of the intensity of the field, for the chain at x = 0.1,
d = w = 0.0 and for several values of the temperature. The
amplitude of the drift denotes here the number of lattice sites,
at which the center of the polaron shifts within one period of
the ac force, i.e., the drift of the polaron per period of the field.

To discuss our results we note, first of all, that they clearly
demonstrate that the ratchet behavior of polarons takes place
also at nonzero temperatures. As could be expected, there is
a critical value of the intensity of the field below which the
polaron cannot drift. We have run simulations for several other
temperatures and in Table I we present the lowest value of E0

for which the average drift per period is equal to 0.5, i.e., a
displacement of one atom, and 1, i.e., a displacement of two
atoms, for various temperatures.

At zero temperature, and for the period of the field
mentioned above, the critical value of the field is E0,cr =
0.092. When the intensity of the field increases, the amplitude
of the drift increases too. However, when the field is too strong,
the polaron begins to move so fast that it radiates sound waves
very intensively. This leads to the increase of the effective mass
of the polaron and these two effects make the drift less regular
and weaker; i.e., the amplitude of the drift begins to decrease.
Above some upper critical value of the field, E0 > Ecr,2, the
polaron is destroyed—the electron undergoes a transition from
the self-trapped state into a delocalized one. In this paper we
have considered a single value of the dissipation parameter
�. In stronger fields the energy dissipation increases as well,
and as a result the polaron drift occurs up to larger values of
the electric field. Moreover, at large enough polaron velocities
the harmonic approximation in the lattice description ceases
to be valid and one has to take into account also the lattice
anharmonicity.

When T �= 0 we see straight-away that the first critical value
(E0,cr ) of the field is lower; the polaron drift arises at smaller
values of the field intensity and the larger the temperature,
the smaller the value of Ecr . Thus, Ecr (kT = 0) ≈ 0.09,
Ecr (kT = 0.001) ≈ 0.06, and Ecr (kT = 0.002) ≈ 0.03. So at
kT = 0.002, Ecr is only a third of its value at T = 0.

When T = 0, the maximum average drift per period
obtained is four unit cells (eight atoms), and this occurs when
E0 ≈ 0.113. For this value of E0, the average drift at nonzero
temperatures is smaller (about 2 for kT = 0.001 and 1.5
for kT = 0.002). Nevertheless, below this field intensity the
polaron drift at nonzero temperatures is larger than at T = 0.

From Fig. 1(a) we see the nonmonotonic dependence of
the polaron drift amplitude on the field intensity. At first,
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FIG. 1. (Color online) Amplitude of the average polaron drift per period, for several values of the temperature, as a function of the
intensity of the electric field with period Te = 1000. Parameter values: (a) x = 0.1, d = w = 0, C = 0.22, b = 0.5, D = 0.1, G = 0.4,

� = 0.2; (b) d = 0.1, x = w = 0, C = 0.22, b = 0.5, D = 0.1, G = 0.4; (c) w = −0.1, x = d = 0, C = 0.22, b = 0.5, D = 0.1, G = 0.4;
(d) x = d = −w = 0.03, C = 0.22, b = 0.5, D = 0.1, G = 0.4.

the drift increases with the increase of the field, until it
reaches its maximum value at a certain “optimal” intensity
of the field. At larger values of the field it decreases due
to the stronger radiation of sound waves by the polaron
up to the field values at which the corresponding polaron
velocity becomes so small that the polaron again begins to
increase its drift velocity. At even stronger fields the polaron
becomes unstable and decays into a delocalized state. Such

nonmonotonic behavior of the polaron drift results from the
interplay of the polaron oscillations due to the Peierls-Nabarro
potential barrier and those due to the external periodic force.
This process depends also on the thermal vibrations of the
lattice. When these vibrations become sufficiently strong the
deformation potential well gets “wiped out” and, from a
certain value of the temperature, the polaron drift smoothly
increases with the increase of the field intensity. In the

TABLE I. Smallest electric field intensity, E0,min, for which the average drift per period is 0.5 lattice site (i.e., one atom, top row) or
one lattice site (i.e., two atoms, bottom row), for various temperatures. Parameter values: x = 0.1, d = w = 0, C = 0.22, b = 0.5, D = 0.1,
G = 0.4, � = 0.2 for an electric field with period Te = 1000.

kT 0 0.0001 0.0002 0.0005 0.0008 0.001 0.0012 0.0015 0.002

E0,min(drift = 0.5) 0.092 0.09 0.088 0.085 0.078 0.074 0.07 0.063 0.055
E0,min(drift = 1) 0.092 0.094 0.092 0.088 0.082 0.079 0.076 0.074 0.072
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case considered above this takes place around kT = 0.002
(see Fig. 1).

At the same time, with the increase of the temperature,
the upper critical value of the field decreases. This is due to
the fact that with the increase of the polaron velocity and the
increase of the thermal fluctuations of the lattice the effective
mass of the polaron becomes so large that the bound state of
the electron and of the lattice deformation becomes unstable.

It is important to add here that the nonmonotonic de-
pendence of the polaron drift on the intensity of the field
changes qualitatively with the increase of the temperature: at
low fields the higher the temperature, the stronger the drift.
At stronger fields this dependence is reversed: the lower the
temperature the stronger the drift, and at even stronger fields
this dependence is altered again with the stronger drift resulting
from higher temperatures. Similar nonmonotonic dependence
of the drift on the field intensity and temperature has also been
observed for other cases of the anisotropy parameters, as is
discussed below.

We have also observed that when the temperature is
too high, the polaron is unstable and the electron becomes
delocalized before starting to drift.1

Next we have considered the effect of an anisotropy of the
exchange interaction energy, i.e., d �= 0. In Fig. 1(b) we present
the plots of the amplitude of the polaron drift per period as a
function of the intensity of the field for several temperatures
when d = 0.1 and x = w = 0. We see that this anisotropy
leads to the appearance of a polaron drift above the critical
value of the field Ecr (T = 0) = 0.062 and that this critical
value also decreases with the increase of the temperature:
Ecr (kT = 0.001) ≈ 0.045, and Ecr (kT = 0.002) ≈ 0.03. On
the other hand, the maximum drift obtained in this class of
cases was found to be 3.7 and this was achieved for T = 0
at E0 ≈ 0.088. Again, the average drift decreases with the
increase of kT for that field; i.e., it is 1.6 for kT = 0.001 and
1.2 for kT = 0.002. From Fig. 1(b) we see also that there
is an interval of the temperature values at which, for certain
intensities of the field, the drift is stronger than at T = 0. We
also observe that the amplitude of the electric field at which
the electron becomes delocalized decreases with the increase
of the temperature.

Finally, we have also observed a ratchet effect when the
elasticity coefficient was asymmetric, i.e., at w �= 0. This time,
with our definition of w, when w > 0 the polaron drifts in
the opposite direction. For this reason, we report here the
results for the value w = −0.1 so that we can more easily
compare the figures for the different cases. This is shown in
Fig. 1(c) and we notice that Ecr (T = 0) = 0.058, Ecr (kT =
0.001) ≈ 0.04, and Ecr (kT = 0.002) ≈ 0.02. Again, we see
that in the relatively weak fields the maximum drift is stronger,
at not-too-high nonzero temperatures, than at T = 0. For the
value of E = 0.078 the drift at kT = 0.001 is stronger than
at kT = 0. We also notice that the electric field amplitude
at which the electron becomes delocalized decreases as the
temperature increases.

1The thermal stability of the polaron in our and other, more physical,
systems will be analyzed in more detail and discussed in a future
publication.

We have also studied the case of all three anisotropies x, d,
and w being nonzero simultaneously and we have considered
the case of x = d = −w = 0.03. We have taken this smaller
value because the anisotropies tend to increase the depth of
the well in which the polaron is trapped and so make the drift
harder to take place. The results are presented in Fig. 1(d).
We note that the results qualitatively are similar to those of
the previous cases; this time we have Ecr (T = 0) = 0.066,
Ecr (kT = 0.001) ≈ 0.045, and Ecr (kT = 0.002) ≈ 0.03.

B. Polaron trajectories

We have also analyzed in detail the trajectories followed
by individual polarons. When the electric field is too low,
E < Ecr , the polaron is pinned by the lattice and wobbles
inside the lattice’s cell, as shown in Fig. 2(a); see the curve for
kT = 0. When the electric field is just above its critical value,
the polaron moves in steps, as shown in Fig. 2(b). When the
electric field becomes larger, the polaron starts to drift: it moves
forward by several lattice sites and then moves backward by
a smaller amount, hence moving effectively by one or more
lattice sites during each period (see [6] for a detailed analysis).

When the temperature is nonzero, the behavior remains
essentially the same, except that the trajectory exhibits also
some randomness due to the thermal noise. We have also
noticed that, as the temperature increases, the amplitude of
the polaron oscillations increases. This is clear from Fig. 2(b),
which shows that an increase of temperature, up to a certain
value, results in the increase of the polaron drift (compare
the curves for kT = 0 and kT = 0.001). With a further
increase of the temperature, oscillations of the polaron become
stronger, its effective mass becomes larger, and the polaron
drift decreases and becomes smaller than at T = 0. In Fig. 2(c)
we show the position of the polaron over 800 full periods of
the electric field for kT = 0, kT = 0.0005, and kT = 0.001.
One clearly sees that the polaron oscillates as it jumps between
lattice sites but that it also exhibits a random motion over long
distances when the temperature is nonzero.

IV. STOCHASTIC RESONANCE OF THE POLARON DRIFT

In this section we analyze the effects of the temperature on
the dependence of the polaron drift as one varies the period
of oscillations of the electric field. It is worth recalling that at
zero temperature there is a critical value of the period of the
oscillating field below which there is no drift of polarons. This
is because, in a lattice, the periodic Peierls-Nabarro barrier
plays the role of the ratchet potential. This barrier itself, even
in the absence of the external periodic force, results in the
oscillating character of the polaron velocity. In the presence of
the oscillating external force these oscillations add up to the
force induced oscillations with the frequency of the external
field. At low frequencies an electron and self-induced lattice
deformation oscillate together in a bound polaron state. If
the frequency of the field is very high, the local deformation
of the chain cannot follow fast oscillations of the electron, and
so the electron does not feel the Peierls-Nabarro potential.
Therefore, at high frequencies of the field the necessary
conditions for the existence of the ratchet phenomenon become
violated.
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FIG. 2. (Color online) Position of the polaron as a function of
time for (a) E = 0.08, Te = 1000; (b) E = 0.1, Te = 1000; and
(c) E = 0.1, Te = 300 at different temperature. Parameter values:
x = 0.1, d = w = 0, C = 0.22, b = 0.5, D = 0.1, G = 0.4, and
� = 0.2.

At nonzero temperature thermal vibrations of the lattice
lead to the deterministic self-consistent displacements of
atoms, creating a periodic potential and, as a result, the critical
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FIG. 3. (Color online) Amplitude of the polaron drift per period
as a function of the period of oscillations of the electrical field of the
intensity E0 = 0.11 at different temperatures. Parameter values: x =
0.1, d = w = 0, C = 0.22, b = 0.5, D = 0.1, G = 0.4, and � = 0.2.

value of the period of the field decreases, and can even
disappear, as can be deduced from looking at Fig. 3. From this
figure we can also conclude that the amplitude of the drift has
a nonmonotonic dependence on the period of the field within
a certain interval of temperatures. This indirectly indicates the
possibility of the existence of a stochastic resonance in the
polaron drift.

To study this in detail, we performed two sets of numerical
simulations for two different values of the intensity of the field
for various periods of the field below the corresponding critical
value at zero temperature. These results are presented in Fig. 4,
which show the nonmonotonic dependence of the amplitude of
polaron drift on the temperature with a sharp maximum for an
intermediate (finite) value of temperature; i.e., this dependence
exhibits a characteristic � resonance shape. Namely, for a
given set of parameters of the system there exists an optimal
temperature at which the drift of a polaron is the largest. The
bigger the period of the field, the stronger the drift, and the
larger the maximum value of the drift, the lower the optimal
temperature. Moreover, at the lower value of the intensity
of the field the polaron drift is largest [compare Figs. 4(a)
and 4(b)]. We also see in Fig. 4(b) a second maximum of the
amplitude of the drift for larger values of the temperature.

We have also investigated the dependence of the drift
and the stochastic resonance on the value of the dissipation
parameter �. For polarons, the range of values of � for which
the ratchet effect takes place, while maintaining all the other
parameters fixed, is restricted by the stability properties of the
polaron. For small values of �, the polaron is rapidly destroyed
by the electric field before any drift can be initiated. When �

is too large, on the other hand, the polaron can only move for
large amplitude of the electric field, so large that the polaron
is destroyed too. In Fig. 4(c) we present the average drift per
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FIG. 4. (Color online) (a),(b) Amplitude of the polaron drift as a
function of temperature for different values of the period of the field
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� = 0.2. (a) E = 0.1; (b) E = 0.11, Te = 1000. (c) Polaron drift as
a function of the dissipation parameter � for different temperatures.
Parameter values: x = 0.1, d = w = 0, C = 0.22, b = 0.5, D = 0.1,
and G = 0.4.

period of a polaron as a function of �. First of all we see
that the drift varies with � and that the stochastic resonance
occurs for all dissipation values at which the polaron ratchet
can be induced. It is worth comparing these results with those
of [35,36], where a stochastic resonance was observed for
particles trapped in an asymmetric periodic potential. Because
particles are intrinsically stable, any value of � was allowed,
unlike the polaron which can decay rapidly when subjected to
large excitations. In the parameter domain where the polaron
is stable, our results agree with what was observed in the
above-mentioned two papers.

It was also observed [35,36] that for some frequencies and
for some values of �, the direction of the drift was sometimes
reversed. We did not observe this phenomenon in any of our
simulations. While this was sometimes seen for individual
thermal simulations, when computing the average drift over
100 simulations, at the same temperature, the average drift
was always positive or zero.

All these results can be partially understood using the
following arguments based on the collective coordinates
approximation to the description of the polaron. The stationary
polaron solution can be found from the system of Eqs. (11).
Let us consider first a diatomic molecular chain with the only
nonzero anisotropy parameter, x �= 0, d = w = 0, and a = 2b,
as considered in the numerical simulations described in this
section. From the equations for the lattice displacements,
Eqs. (11), we find that

un,1 − un,2 = (1 + x)
G

C
(|
n,1|2 + |
n,2|2),

(14)

un−1,2 − un,1 = (1 − x)
G

C
(|
n−1,2|2 + |
n,1|2).

Substituting these expressions into the equations for the elec-
tron wave functions in Eqs. (11), we obtain discrete nonlinear
Schrödinger equations for 
n,1 and 
n,2, whose solution, in the
continuum limit, 
n,1 = 
(ζ ), 
n,2 ≈ 
(ζ ) + b d


dζ
+ b2

2
d2

dζ 2 ,

is given by


(ζ ) =
√

κ

2

exp(−iEs t)

cosh[κ(ζ − R)]
, (15)

where R and Es are the center-of-mass coordinate and
the eigenenergy of the polaron, respectively, measured in
nondimensional units. The inverse width of the polaron is
given by the expression

κ = (1 + x2)
4G2

C
. (16)

According to [34], in a lattice, a polaron propagates in a
periodical Peierls-Nabarro potential. For a diatomic chain this
potential can be written in the form

UPN = U0

[
cos

(
πR

b
+ φ0

)
+ cos

(
2πR

b
− φ0

)]
. (17)

Here the phase shift φ0 ≈ 2x describes the asymmetry of the
electron-lattice interaction in a diatomic chain, resulting in the
relation (14). The amplitude of the Peierls-Nabarro potential,
U0, measured in units of energy J , is determined by the inverse
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FIG. 5. (Color online) Peierls-Nabarro potential (17) in units of
U0 for x = 0.1. R is in units of b/π .

width of the polaron, κ:

U0 = 2(π2 + 4)

κ
e− π2

2κ . (18)

Note that the Peierls-Nabarro potential has the form of an
asymmetric double-well potential with two minima at

R− ≈ π + φ0

2
, R+ ≈ 3π + φ0

2
(19)

and a local maximum at R0 ≈ b, as one can see from Fig. 5.
In the presence of an external oscillating electrical field E(t)

and taking into account the energy dissipation, the equation of
motion for the center of mass of the soliton R takes the form

Ms

d2R

dt2
= −dUPN

dR
+ E0 sin

(
2πt

T

)
− �

dR

dt
+ F (t), (20)

where F (t) is a random “force” describing the thermal vibra-
tions of atoms in the lattice, whose properties are described in
more detail at the end of Sec. II.

According to the theory of stochastic processes, the dynam-
ics of the system, described by Eq. (20), in the absence of a
periodic electrical field can be described by small oscillations
of the polaron center of mass between the positions R+ and R−
with occasional noise-driven abrupt transitions from R− to R+
and vice versa, across the unstable state R0, which constitutes
a potential barrier for such transitions:

�U± = U (R0) − U (R±). (21)

The kinetics of these transitions depends on the potential
barrier (21) and the noise strength q2 = 2�kT .

In the limit of small temperatures, i.e., for small values of
q2 as compared to the local potential barrier �U±, the mean
value of the transition between the two minima is given by the
Kramers formula [37,38],

τ−1
± = Ms

2π

√
ω0ω± exp

(
−�U±

�kT

)
, (22)

where

ω± = 1

Ms

d2U

dR2

∣∣∣∣
R=R±

, ω0 = − 1

Ms

d2U

dR2

∣∣∣∣
R=R0

.

In the presence of the periodic electrical field E(t) the
corresponding barrier becomes a function of time: V± =
�U± + E(t). As a result, there will be time moments when
the states R± will be found at the bottom of the corresponding
potential wells, which are successively less and more shallow
than in the absence of the field. This can facilitate the system
transitions between the two stable states, i.e., the temperature
enhancement of the polaron drift. It has been known (see,
e.g., [37]) that the equations of the type of Eq. (20) even for
a symmetric quartic double-well ratchet potential lead to the
stochastic resonance; this is even more true in the case of
the asymmetric Peierls-Nabarro potential (17). And indeed,
the numerical simulations of our discrete sets of equations
demonstrate the existence of the stochastic resonance of a
polaron drift in the oscillating electrical field subjected to
thermal noise, as it is demonstrated in Fig. 4.

Before we conclude this paper, we would like to make a
few general comments about our numerical results. One may
wonder how much the results we have obtained are artifacts
of our numerical procedures. In our simulations, the lattice
always needed some time before is was fully thermalized and
this thermalization took about 100 units of time. Most of our
simulations were performed for 25 000 units of time and so the
relaxation time was always small compared to the length of
our simulations and had only a small impact on the measured
drift. We are confident that the transient effects seen in Figs. 1
and 4 are not by-products of the lattice relaxation. On the
other hand, when E is large, i.e., about E > 0.2, the polaron
becomes unstable and decays after a few periods. In that case,
the combined effect of the displacement and of the spreading
of the polaron makes the evaluation of the drift difficult and
unreliable.

V. CONCLUSIONS

In this paper we have studied the temperature dependence
of the ratchet effect for large polarons in diatomic one-
dimensional molecular chains. We had already shown in
Ref. [6] that a polaron ratchet effect can be induced by a
time periodic symmetric electric field in an asymmetric chain
and in this paper we have studied the temperature dependence
of this effect. As expected, the first effect of thermal noise is
to introduce some randomness to the trajectory of the polaron.
We have also observed that the thermal fluctuations facilitated
the ratchet effect by lowering the critical value above which the
polaron starts drifting. We have shown that there is a range of
temperature values for which the drift at nonzero temperatures
is stronger than at T = 0. For still higher temperatures thermal
oscillations of the lattice sites become so strong that they
compete with the polaron drift and decrease it. At high enough
temperatures the polaron becomes unstable due to strong
radiation of the linear waves and decays into a delocalized
unbound state.

Temperature fluctuations lead to the lowering of the lower
critical value of the field and this can be understood as follows:
when the amplitude of the electric field is small, the polaron
does not acquire enough energy to go over the energy barrier
separating it from the next lattice site. With the thermal
excitations present the polaron can get some extra energy from
the thermal bath, which then helps it to overcome that energy
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barrier and so leads to its drift at smaller values of the electric
field. The thermal energy allows the polaron to move more
easily between lattice sites and, as a consequence, the resulting
effect is a somewhat larger displacement of the polaron within
each period of the field and a stronger drift, up to a certain
value of the electric field amplitude. In even stronger fields the
polaron average drift decreases and at nonzero temperature
becomes smaller than at T = 0.

Our results have a clear physical interpretation. At nonzero
temperature the solution for the lattice displacements can be
represented in the form of a sum of two terms u = u

(s-c)
n,j + u

(r)
n,j ,

where u
(s-c)
n,j are self-consistent displacements due to the

electron-lattice interaction, and u
(r)
n,j are random displacements

due to the nonzero temperature. This leads to the appearance
of a random force in the dynamical equations for the polaron
center-of-mass coordinate. On the other hand, the presence
of random displacements un,j (r) can also modify the polaron
properties, because the Peierls-Nabarro potential now includes
a random term as well. This extra term diminishes slightly the
height of the lattice barrier and also “modifies” the asymmetry
of the barrier. The effect depends on the amplitude of
thermal vibrations, An,j = √〈un,jun,j 〉 ∝ √

T . At sufficiently
high temperatures this amplitude becomes comparable to the
amplitude of self-consistent lattice displacements u

(s-c)
n,j . In

consequence, the self-consistent lattice potential well becomes
negligibly small and the polaron decays.

We have shown above that temperature has a significant
effect on the dependence of the polaron drift on the period of
the field. In particular, thermal vibrations of the lattice result
in the decrease of the value of the lowest critical period of
the field, at which the drift takes place. And we have also

demonstrated that there is a stochastic resonance in the polaron
ratchet phenomenon: there is an optimal temperature at which
the polaron drift is largest. The values of the amplitude of
the drift, of the stochastic resonance temperature, and of the
critical values of the field intensity and its period depend on
various parameters of the system and, in particular, on the
anisotropy of the chain parameters. This temperature induced
decrease of the critical value of the field intensity and its period,
as well as the resonance itself, may be important for practical
applications of the ratchet phenomenon in systems involving
conducting polymers and other low-dimensional materials. It
may also be important in some biological macromolecules
where the ratchet phenomenon could take place in biomotors
and energy and/or charge transport. Our results show that
temperature effects on the dynamics of a polaron, in a lattice
subjected to an unbiased external periodic force, are much
more varied than in some other ratchet systems, such as kinks
in an array of Josephson junctions. In the latter system the
effect of the noise on the phenomenon is minimal, according
to [39], in the sense that the dynamics of the kink gets dressed
by the noise, but the average mean velocity of the kinks is
almost the same as at zero temperature.
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