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Abstract: In the Archaean basement rocks of the Assynt and Gruinard terranes of the 15 

mainland Lewisian Complex in NW Scotland, a regional suite of quartz-pyrite veins cross-cut 16 

regional Palaeoproterozoic (Badcallian, ca. 2700 Ma; Inverian, ca. 2480 Ma) fabrics and 17 

associated Scourie dykes. The quartz veins are overprinted by amphibolite-greenschist 18 

facies Laxfordian deformation fabrics (ca. 1760 Ma) and later brittle faults. The hydrothermal 19 

mineral veins comprise a multimodal system of tensile/hybrid hydraulic fractures which are 20 

inferred to have formed during a regional phase of NW-SE extension. The almost orthogonal 21 

orientation of the quartz veins (NE-SW) to the Scourie dykes (NW-SE) are incompatible and 22 

must result from distinct paleostress regimes suggesting they are related to different tectonic 23 

events. This hypothesis is supported by Rhenium-Osmium dating of pyrite that yields an age 24 

of 2249 ± 77 Ma, placing the vein-hosted mineralisation event after the oldest published 25 

dates for the Scourie Dykes (2420 Ma), but before the youngest ages (1990 Ma). Sulphur 26 

isotope analysis suggests that the sulphur associated with the pyrite is isotopically 27 

*Manuscript
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indistinguishable from primitive mantle. The presence of the ca. 2250 Ma quartz-pyrite veins 28 

in both the Assynt and Gruinard terranes confirms that these crustal units were 29 

amalgamated during or prior to Inverian deformation. The absence of the veins in the 30 

Rhiconich Terrane is consistent with the suggestion that it was not finally amalgamated to 31 

the Assynt Terrane until the Laxfordian.  32 

[End]  33 
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1. Introduction 34 

The Archaean gneisses of the Lewisian Complex in NW Scotland form a well exposed and 35 

relatively accessible area of Laurentian continental basement rocks that lie in the immediate 36 

foreland region of the Palaeozoic Caledonian Orogen (Fig. 1).  Like many regions of 37 

continental metamorphic basement, the Lewisian Complex preserves evidence for multiple 38 

episodes of igneous intrusion, ductile and brittle deformation together with associated 39 

phases of metamorphism and mineralisation (e.g. Sutton and Watson 1951; Park 1970; 40 

Beacom et al., 2001; Wheeler et al., 2010). Whilst cross-cutting and overprinting 41 

relationships observed in the field and thin section allow relative age relationships to be 42 

established on both regional and local scales, only radiometric ages are able to give 43 

information concerning the absolute timing of events. Despite the emergence of an 44 

increasing number of geochronometers for Earth Scientists, an enduring problem in many 45 

basement regions is a relative paucity of material suitable for reliable radiometric dating. This 46 

lack of absolute age determinations has become a particularly significant problem in the 47 

Lewisian Complex since Kinny et al. (2005) and Friend and Kinny (2001) proposed that the 48 

Lewisian may comprise a number of lithologically and geochronologically distinct tectonic 49 

units or terranes assembled progressively during a series of Precambrian amalgamation 50 

episodes perhaps spanning more than a billion years (see Park, 2005; Goodenough et al., 51 

2013 for discussions).    52 

This paper describes the lithology, field relationships and microstructures of a little 53 

described set of quartz-pyrite veins that are recognised throughout the Assynt Terrane and 54 

within the Gruinard Terrane. These mineralised hydrofractures display a consistent set of 55 

contact relationships relative to regionally recognised igneous, metamorphic and 56 

deformational events. Rhenium-osmium (Re-Os) geochronology on pyrites collected from 57 

these veins is used to obtain a consistent set of ages that better constrain the absolute 58 

timing of events in this important part of the Lewisian Complex in NW Scotland. It also 59 

illustrates the potential value of the Re-Os technique as a means of dating sulphide 60 

mineralisation events in geologically complex continental basement terrains worldwide. 61 
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 62 

2. Regional Setting  63 

The Precambrian rocks of the Lewisian Complex of NW Scotland form a fragment of the 64 

continental basement of Laurentia that lies to the west of the Caledonian Moine Thrust (Fig. 65 

1). The rocks are for the most part little affected by Caledonian deformation and have 66 

experienced a number of major crustal-scale geological events during the Archaean and 67 

Palaeoproterozoic. The Lewisian Complex is divided into a number of tectonic regions or 68 

terranes which are predominantly separated by steeply-dipping shear zones or faults (e.g. 69 

Park et al., 2002; Park, 2005). 70 

 The Assynt Terrane (Fig. 1) forms the central part of the Lewisian Complex in 71 

mainland NW Scotland. It comprises grey, banded, tonalite-trondjemite-granodioritic (TTG) 72 

gneisses which are locally highly heterogeneous lithologically, ranging from ultramafic to 73 

acidic compositions (e.g., Sheraton et al., 1973). The TTG gneisses are thought to be 74 

derived from igneous plutons intruded at 3030 to 2960 Ma (high precision U-Pb and Sm-Nd 75 

geochronology; Hamilton et al., 1979; Friend and Kinny, 1995; Kinny and Friend, 1997).  76 

These rocks then underwent deformation and granulite-facies metamorphism during the so-77 

called Badcallian event(s) which led to significant depletion of large-ion lithophile elements in 78 

the TTG gneisses that is more extensive in the Assynt Terrane compared to adjacent 79 

amphibolite-facies terranes (e.g. Rhiconich, Gruinard; Moorbath et al., 1969; Cameron, 80 

1994; Wheeler et al., 2010). The timing of Badcallian events are incompletely resolved with 81 

current age constraints suggesting either ca. 2760 Ma (e.g., Corfu et al.1994; Zhu et al., 82 

1997), and/or ca. 2490 - 2480 Ma (e.g., Friend and Kinny 1995; Kinny & Friend, 1997).   83 

The central part of the Assynt Terrane is cut by the major NW-SE-trending, steeply 84 

dipping dextral transpressional Canisp Shear Zone (CSZ) which has a maximum width of 85 

1.5km (Attfield, 1987; Fig. 1). There are also many other smaller steeply-dipping, NW-SE to 86 

WNW-ESE trending minor shear zones cutting the surrounding Badcallian gneisses (Park 87 

and Tarney, 1987). Some of these shear zones, including the CSZ, developed initially during 88 

Inverian deformation and amphibolites-facies retrogression which affected substantial parts 89 
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of the Assynt Terrane. The absolute age of this event is the subject of significant uncertainty 90 

and debate, with a majority of studies considering it to be ca. 2490 - 2480 Ma (e.g., Corfu et 91 

al. 1994; Love et al., 2004; Goodenough et al., 2013). Others (e.g., Friend and Kinny 1995; 92 

Kinny and Friend, 1997) suggest that the Inverian is a younger – as yet undated – event 93 

younger than ca. 2480 Ma while still pre-dating the oldest Scourie dykes. These mafic to 94 

ultramafic Scourie dykes are found throughout the Assynt Terrane, ranging in thickness from 95 

a few mm to several tens of m and were intruded ca. 1900 - 2400 Ma (Rb-Sr whole rock and 96 

U-Pb geochronology; Chapman 1979; Heaman & Tarney, 1989; Davies & Heaman 2014). 97 

The NW-SE-trending Scourie dykes cross-cut local Inverian fabrics and display evidence of 98 

having been emplaced under amphibolite facies pressures and temperatures, i.e. in the 99 

middle crust, possibly immediately following the Inverian event (O’Hara, 1961; Tarney, 1973; 100 

Wheeler et al., 2010). 101 

In the Assynt Terrane, the significantly later main phase Laxfordian event has 102 

traditionally been associated with the shearing of the Scourie dykes and widespread 103 

retrogression of the TTG gneisses under lower amphibolite to upper greenschist-facies 104 

metamorphic conditions (e.g., Sutton and Watson, 1951; Attfield, 1987; Beacom et al., 105 

2001). The Laxfordian is recognised throughout much of the Lewisian complex and appears 106 

to be a long lived series of events starting with a series of magmatic events ca. 1900-1870 107 

Ma – at least some of which are related to island arc development – followed by a protracted 108 

orogenic episode lasting from 1790 - 1660 Ma (see discussion in Goodenough et al., 2013). 109 

The effects of Laxfordian reworking in the Assynt Terrane are highly localised, being largely 110 

restricted to the central part (ca. 1km wide) of the CSZ and other shear zones, as well as 111 

along the margins of the Scourie dykes. This contrasts with the neighbouring Rhiconich and 112 

Gruinard Terranes where the Laxfordian event reached amphibolite facies and was 113 

associated with more pervasive ductile shearing and reworking (Droop et al., 1989). This has 114 

led to the suggestion that the Assynt Terrane represents a shallower depth crustal block 115 

during the Laxfordian (e.g., Dickinson and Watson, 1976; Coward and Park, 1987).  116 
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In the Assynt and Gruinard terranes, a younger set of ‘late Laxfordian’ sinistral low 117 

greenschist-facies mylonitic shear zones, brittle faults and localized folds is recognised 118 

developed sub-parallel to the pre-existing high-strain fabrics in Laxfordian and Inverian shear 119 

zones (see Beacom et al. 2001). These structures include the Loch Assynt Fault (Fig. 1). 120 

The precise age of the ‘late-Laxfordian’ faulting is poorly constrained, but these structures 121 

are unconformably overlain by the unmetamorphosed and little deformed ca. 1200 Ma 122 

Torridonian Stoer Group. This suggests that the presently exposed parts of the Lewisian 123 

Complex had been exhumed to the surface by ca. 1200 Ma. Regionally, both the Stoer 124 

Group and the Lewisian Complex are unconformably overlain by younger Torridonian 125 

sequences (Diabeg and Torridon groups) thought to have been deposited no earlier than 1.1 126 

Ga (Park et al. 1994). 127 

 128 

Lewisian host rocks 129 

The Badcallian amphibolite- to granulite-facies TTG gneisses of the Assynt Terrane show 130 

foliation development on all scales (e.g., Fig 2a), from millimetres to tens of metres (e.g. 131 

Sheraton et al., 1973). The foliation is best developed in intermediate composition gneisses, 132 

where it is defined by 0.5 to 5 cm thick layers of contrasting light (plagioclase and quartz) 133 

and dark (pyroxene, hornblende and biotite) layers, with individual layers rarely continuing 134 

for more than a few metres (Jensen, 1984). Representative samples from the Loch Assynt 135 

area typically contain 30% quartz, 20% plagioclase, 10% microcline, 10% orthopyroxene and 136 

30% heavily retrogressed clinopyroxene. Relict grains of the latter mineral are replaced by 137 

fine grained intergrown aggregates of chlorite, epidote, actinolite and hornblende.    138 

The Badcallian gneisses were reworked in dextral-reverse shear zones (e.g., the 139 

CSZ) during the Inverian, which imposed a NW-SE foliation in the rocks, mainly by 140 

reorientation and attenuation of the pre-existing gneissose foliation (e.g., Fig. 2b; Attfield, 141 

1987). Deformation within the Inverian shear zones is extremely heterogeneous, with lenses 142 

of lower-strain, more massive material enclosed by anastomosing bands of highly deformed, 143 

sheared gneiss (e.g., Attfield, 1987; Chattopadhyay et al., 2010). Representative samples of 144 
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reworked Inverian gneisses from within the CSZ contain 20% quartz, 40% feldspar 145 

(predominantly plagioclase with alteration bands), 5% pyroxene, 15% hornblende, 15% 146 

biotite and chlorite, and 5% other minerals such as epidote. The hornblende, epidote, biotite 147 

and chlorite are likely to be a product of the breakdown and hydration of pyroxenes during 148 

retrogression (Beach, 1976). The quartz crystals contain 0.25 - 1mm subgrains and form 149 

irregular, sub-parallel ribbons of crystals, which are smaller than in the undeformed 150 

Badcallian gneisses, possibly due to syn-tectonic recrystallisation (Jensen, 1984). 151 

The Laxfordian event reactivated the central part of the CSZ with a dextral shear 152 

sense, producing a new, finer foliation (e.g., Fig. 2d; Sheraton et al., 1973; Attfield, 1978). 153 

Commonly, the reworked rocks in both small and large shear zones have a mineralogy that 154 

differs significantly from that of the original gneiss and the extent of the changes that occur 155 

appears to be in proportion to the intensity of the deformation (e.g., see Beach, 1976). A 156 

typical sample of Laxfordian-deformed gneiss from the CSZ contains 75% quartz, 10% 157 

hornblende, 10% biotite and muscovite, and 5% feldspar porphyroblasts (typically ~1mm in 158 

size). The quartz is banded on a millimetre scale with alternating bands of small quartz 159 

grains (<100μm) and larger quartz grains (~500μm to 1mm) which form an anastomosing 160 

schistose foliation (Jensen, 1984). Quartz grain boundaries are often pinned by aligned 161 

micas and layers richer in mica therefore tend to show finer quartz grain sizes compared to 162 

mica-poor layers. The quartz crystals themselves are often elongate and contain poorly 163 

developed subgrains. Petrographic observations of Lewisian gneisses show that during 164 

regression, pyroxene is first replaced by hornblende which is then replaced by biotite in the 165 

most intensely deformed gneisses (Beach, 1976). The Laxfordian reworking occurred in 166 

intense zones which anastomose around relict lenses of Badcallian or Inverian gneiss 167 

(Sheraton et al., 1973). Tight intrafolial folds are common within the Laxfordian-deformed 168 

gneisses and, in places, Inverian folds have been refolded (e.g. on the coast at Port Alltan 169 

na Bradhan; see Attfield, 1987; Chattopadhyay et al., 2010). The Scourie dykes within and 170 

adjacent to the CSZ have also been pervasively affected by Laxfordian reworking with 171 
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shearing particularly concentrated along their margins (Sheraton et al., 1973). Most dykes in 172 

the CSZ are sheared into near concordance with the surrounding foliation in the gneisses. 173 

 174 

3. Field and Laboratory Methods 175 

3.1. Fieldwork 176 

Fieldwork was carried out visiting well-exposed examples of quartz-pyrite vein localities in 177 

the Assynt Terrane and in one area of the Gruinard Terrane (Fig. 1). The relative ages of 178 

country rock fabrics and veins were determined at 83 locations using cross-cutting 179 

relationships and the orientations of both veins and fabrics were measured. Representative 180 

(orientated) hand samples of both country rocks and veins were taken at a number of key 181 

localities in order to study deformation microstructures using an optical microscope and also 182 

to extract fresh samples of pyrite for Re-Os dating. Having separated appropriate material 183 

for dating, we used Re-Os geochronology to determine the age of sulphide (pyrite) 184 

mineralization present in several of the quartz veins. We additionally determined sulphur 185 

isotope compositions of the dated samples to yield evidence of the origin of the sulphur and 186 

by inference the hydrothermal fluids associated with the quartz-pyrite vein formation.   187 

 188 

3.2. Rhenium-Osmium Geochronology Analytical Methods 189 

Six pyrite samples co-genetic with quartz veining were analyzed for their rhenium (Re) and 190 

osmium (Os) abundances and isotopic compositions. The analyses were conducted at the 191 

TOTAL Laboratory for Source Rock Geochronology and Geochemistry at Durham 192 

University. The pyrite sample set was collected from five locations: four in the Assynt 193 

Terrane and one in the Gruinard Terrane (Fig. 1; Table 1).  194 

The pyrite samples were isolated from the vein host material by crushing, without 195 

metal contact, to a < 5 mm grain size. After this stage > 1 g of pyrite was separated from the 196 

crushed vein by hand picking under a microscope to obtain a clean mineral separate. The 197 

Re and Os analysis reported in this study followed the analytical protocols of Selby et al. 198 

(2009). In brief, this involved loading ~ 0.4 g of accurately weighed pyrite into a carius tube 199 
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with a known amount of a 185Re and 190Os tracer (spike) solution and 11 ml of inverse aqua 200 

regia (3 ml 11N HCl and 8 ml 15 N HNO3). The carius tubes were then sealed and placed in 201 

an oven at 220°C for 48 hrs. Osmium was isolated and purified from the acid medium using 202 

CHCl3 solvent extraction and micro-distillation, with Re separated by anion exchange column 203 

and single-bead chromatography. The Re and Os fractions were then loaded onto Ni and Pt 204 

filaments, respectively, and analyzed for their isotope compositions using negative-ion mass 205 

spectrometry on a Thermo Electron TRITON mass spectrometer. Rhenium isotopes were 206 

measured statically using Faraday Collectors, with the Os measured in peak hopping mode 207 

using the Secondary Electron Multiplier. Total procedural blanks for Re and Os are 2.7 ± 1.1 208 

pg and 0.4 ± 0.4 pg, respectively, with an average 187Os/188Os of 0.37 ± 0.17 (n = 2, 1 SD). 209 

The Re and Os uncertainties presented in Table 1 are determined by the full propagation of 210 

uncertainties from the mass spectrometer measurements, blank abundances and isotopic 211 

compositions, spike calibrations, and the results from analyses of Re and Os standards. The 212 

Re standard data together with the accepted 185Re/187Re ratio (0.59738; Gramlich et al., 213 

1973) are used to correct for mass fractionation. The Re and Os standard solution 214 

measurements performed during the two mass spectrometry runs were 0.5982 +/- 0.0012 215 

(Re std, n = 2) and 0.1608 +/- 0.0002 (DROsS, n = 2), respectively, which agree with the 216 

values reported by Finlay et al. (2011) and references therein.  217 

 218 

3.3. Sulphur Isotope Analytical Protocol 219 

Aliquants of pyrite samples for sulphur isotope analysis were taken from the quartz veins at 220 

the same five locations as those used for the Re-Os geochronology (Table 1). Approximately 221 

0.01g was used for the analysis, with the sulphur extracted as SO2 from the pyrite by fusing 222 

the sample under vacuum at 1076°C in a Cu2O (200mg) matrix (Wilkinson & Wyre, 2005). . 223 

The sample was then analysed on a VG SIRA II mass spectrometer to obtain values for 224 

δ66SO2 which were converted to δ34S. Standard correction factors were applied (Craig, 225 

1957). Results are given in conventional δ34S notation relative to the Vienna Canon Diablo 226 
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troilite standard (V-CDT). The reproducibility based on full replicate analyses of internal 227 

laboratory standards was ±0.2 per mil (1σ). 228 

 229 

4. Field relationships of the quartz-pyrite veins 230 

The occurrence of quartz veins is a widely recognised, but little described phenomenon in 231 

the rocks of the Assynt Terrane (e.g., the presence of quartz veins is noted in Sheraton et 232 

al., 1973). Some generally foliation-parallel veins are clearly relatively late features that are 233 

closely associated with shearing along Laxfordian shear zones and the development of 234 

schistose, phyllosilicate-rich high strain zones (e.g., Beach, 1976; Beacom, 1999). However, 235 

the present study has revealed that an earlier, much more widespread and distinctive group 236 

of quartz-pyrite veins are present throughout the Assynt Terrane and at least part of the 237 

Gruinard Terrane. The distribution of the quartz veins does not seem uniform – they typically 238 

occur in clusters cutting the gneisses in regions covering areas of tens to hundreds of 239 

square metres, with particularly well-defined groups recognised in the Loch Assynt and 240 

Clashnessie regions of the Assynt Terrane, and along the trace of the CSZ (Fig. 1). 241 

The quartz veins typically range in thickness from a few millimetres to several tens of 242 

centimetres (e.g., Fig. 2a-e, g), and are relatively straight and continuous features that can 243 

be traced for several metres or, less commonly, tens of metres along strike. They have 244 

sharply-defined margins, are occasionally anastomosing and sometimes contain inclusions 245 

of country-rock or clusters of pink K-feldspar. Pyrite is not found in all of the veins, but where 246 

it occurs it is typically either located along the margins as large crystals (>0.5 mm) or as 247 

large clusters (>1cm) of crystals distributed sparsely throughout the veins (e.g., Fig. 2h). In 248 

some cases pyrite clusters have been partially to completely oxidised to hematite or limonite, 249 

particularly where they have been exposed at the surface for an extended period; this often 250 

gives weathered veins a distinctive localised orange-red staining. Within the CSZ, pyrite 251 

crystals are also sometimes found in the sheared gneisses surrounding the vein. In isolated 252 

road cut exposures, the development of quartz-pyrite veins is additionally associated with a 253 
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localised yellow-brown sulphurous weathering of the gneisses, e.g., in roadcuts east of 254 

Lochinver (National grid reference NC 1012 2366; Samples BH2 and 5; Table 1).  255 

 256 

4.1. Cross-cutting relationships 257 

The quartz-pyrite veins display a consistent set of cross-cutting relationships with other 258 

features in the Lewisian Complex. They typically cross-cut the oldest, moderately to 259 

shallowly-dipping Badcallian foliations and folds (e.g., Fig. 2a), although in areas where the 260 

foliation is particularly intense and of variable orientation (e.g. Clashnessie), the veins may 261 

locally be concordant with the local foliation. The veins also consistently cross-cut the 262 

steeply-dipping Inverian shear fabrics of the CSZ (e.g., Fig. 2b) and other minor shear zones 263 

of this age within the terrane, as well as all observed Scourie dykes (e.g., Fig. 2c). Both 264 

veins and dykes are consistently overprinted and reworked by dextral shear fabrics related 265 

to the Laxfordian event, including the development of the central part of the CSZ (Attfield 266 

1987; e.g., Fig. 2d). The quartz veins are also post-dated by ‘late Laxfordian’, epidote-267 

bearing small-scale shear zones and fractures, which exhibit a predominantly sinistral sense 268 

of shear (e.g., Fig. 2e, f; see Beacom et al 2001). Many of the larger quartz vein clasts found 269 

in the immediately overlying basal units of the Torridonian sandstones are plausibly derived 270 

from the basement veins. The quartz-pyrite veins are everywhere cross-cut by gouge-271 

bearing Phanerozoic (post-Cambrian) normal faults (e.g., NC 1020 2360). 272 

Thus the field observations suggest that the quartz-pyrite veins post-date Badcallian 273 

structures, the NW-SE trending Inverian fabrics and Scourie dykes. They appear to pre-date 274 

all Laxfordian fabrics, ‘late Laxfordian’ faults, the deposition of the Torridonian sediments 275 

and all post-Torridonian deformation episodes (mainly faulting).  276 

 277 

4.2. Orientation and kinematics    278 

The orientations of 140 quartz-pyrite veins measured in the Assynt Terrane during the 279 

present study are shown in Figures 3a-c, and the sparse lineations found on the veins in 280 

Figure 3aii. A rose diagram plot (Fig. 3ai) suggests a predominance of NE-SW strikes with 281 
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subordinate NW-SE trends. The regional stereograms (Figs. 3biv-vi & c) better illustrate the 282 

rather wider range of vein orientations, with a reasonably strong concentration of planes 283 

striking NE-SW and, to a lesser extent NW-SE. Both sets display bimodal dip directions 284 

(e.g., NW or SE and NE or SW, respectively; Figs. 3biv-vi & c). These observations suggest 285 

a generally multimodal pattern of fracture orientations. 286 

In order to investigate the possible effects on vein orientation of local country rock 287 

fabrics and Laxfordian overprinting, the data have been plotted according to the age of the 288 

local fabrics they cross-cut or are reworked by (Fig. 3b). In the regions of gneiss dominated 289 

by the Badcallian event, both the foliations (Fig. 3bi) and the veins (Fig. 3biv) have large 290 

variations in their orientations. The foliation shows a poorly-defined N-S trend dipping 291 

shallowly W, whereas the veins show a reasonably strong NE-SW trend, with bimodal dips 292 

steeply to the NW and rather more shallowly to the SE. The Inverian foliation has a strong 293 

NW-SE trend with generally steep dips (Fig. 3bii), whereas the veins show a strong NE-SW 294 

trend with dips mainly being steep and to the NW (Fig. 3bv). Both the Laxfordian foliation 295 

and the veins within the Laxfordian fabrics show a strong NW-SE trend and steep dips (Figs. 296 

3biii and vi), reflecting the strong reworking and reorientation of veins into parallelism with 297 

those fabrics during overprinting deformation.  298 

The data have also been plotted according to the localities where well-defined 299 

clusters of veins are found (Figs. 3ci-vi). The stereoplots for localities such as Clashnessie 300 

and Achmelvich areas (Figs. 3ci-ii) show a wide range of orientations whilst the best defined, 301 

statistically significant trend is found in the Loch Assynt cluster (Fig. 3cv). Here there is a 302 

very well-defined trend striking NE-SW with the majority of veins dipping steeply NW.  It may 303 

be significant that the pre-vein Badcallian foliation in this area is much weaker compared to 304 

areas such as Clashnessie. 305 

The kinematics of the quartz veins are difficult to deduce with any precision. Most of 306 

the veins appear to be dilational (Mode 1 tensile) features based on observed offsets of 307 

markers in the adjacent wall rocks, i.e., the vein opening directions lie at high angles to the 308 

vein walls). A few large veins in the Loch Assynt and Lochinver regions display regular en 309 
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echelon off-shoots (e.g., Fig. 2g) consistent with some degree of vein-parallel shearing 310 

during emplacement (e.g. Peacock & Sanderson 1995). Of the seven veins found with such 311 

off-shoots, five indicated a sinistral and two a dextral sense of shear. There does not appear 312 

to be any obvious orientation control on the shearing directions, suggesting the shearing 313 

may be due to local strain heterogeneities.  A few veins (n = 7) unaffected by Laxfordian 314 

reworking display poorly developed mainly oblique mineral lineations on their outer contacts 315 

(Fig. 3aii). 316 

 317 

5. Rhenium-Osmium Geochronology 318 

The total Re and Os abundances of the pyrite samples range from 6.8 to 25.8 ppb (parts per 319 

billion) and 298.8 to 660.5 ppt (parts per trillion; Table 1), respectively. The majority of the 320 

Os within the samples is radiogenic 187Os (> 92 %). Four of the samples possess > 99 % 321 

radiogenic 187Os (Table 1). As a result, the 187Re/188Os values are high to very high (265.6 to 322 

17531), with the accompanying 187Os/188Os values being very radiogenic (11.04 to 675.2). 323 

The predominance of radiogenic 187Os (187Osr) in the pyrite samples defines them as Low 324 

Level Highly Radiogenic (LLHR; Stein et al., 2000; Morelli et al., 2005). To account for the 325 

high-correlated uncertainties between the 187Re/188Os and 187Os/188Os data we present the 326 

latter with the associated uncertainty correlation value, rho (Ludwig, 1980), and the 2 327 

calculated uncertainties for 187Re/188Os and 187Os/188Os (Table 1). The regression of all the 328 

Re-Os data using Isoplot V. 3.0 (Ludwig, 2003) and the 187Re decay constant () of 329 

1.666×10-11a-1 (Smoliar et al., 1996) yields a Model 3 Re-Os age of 2259 ± 61 (2.9 %) Ma, 330 

with an initial 187Os/188Os of 0.9 ± 9.0 (2, Mean Squared Weighted Deviates [MSWD] = 22; 331 

Fig. 5a). Although the calculated Re-Os age has only a 2.9 % uncertainty, the high MSWD 332 

value (22) suggests that the degree of scatter about the regression line is a function of pyrite 333 

Re-Os systematics (discussed below). The imprecision of the initial 187Os/188Os does not 334 

permit an accurate evaluation of the origin of the Os in the pyrite, however the initial 335 

187Os/188Os value, including the uncertainty, can be used to calculate the abundance of 336 
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187Osr from the total 187Os (common plus radiogenic) in the pyrite samples (187Osr1; Table 1). 337 

The 187Osr is a product of 187Re decay and model Re-Os dates for each sample can be 338 

directly calculated using t = ln (187Osr/187Re = 1) / . The model Re-Os dates, with the 339 

exception of sample 64.1, all agree - within uncertainty - with the traditional 187Re/188Os vs 340 

187Os/188Os isochron age (Table 1; Fig. 5a). One sample from a vein cutting Badcallian 341 

gneisses east of Lochinver (64.1; NC 1038, 2249) yields an imprecise model age of 1597 ± 342 

1371.2 Ma. Although this date is within uncertainty of the other model ages and the Re-Os 343 

isochron age, its nominal age is significantly younger (~800 Ma) than for the other five pyrite 344 

samples. As such, sample 64.1 may represent a separate, distinct quartz and pyrite 345 

mineralization event. If we consider this to be the case and regress the 187Re/188Os vs 346 

187Os/188Os data without sample 64.1, a 187Re/188Os vs 187Os/188Os age of 2249 ± 77 Ma, with 347 

an initial 187Os/188Os of 3 ± 13, is produced (2, MSWD = 15; Fig. 5a). This Re-Os isochron 348 

age is within uncertainty of that determined from all the Re-Os data, but the degree of scatter 349 

about the isochron is reduced (MSWD of 15 vs 22). 350 

 Isochron ages can also be determined by the regression of 187Re vs 187Osr plus their 351 

uncertainties. Excluding sample 64.1 for the reasons noted above, the 187Re data together 352 

with the 187Osr values (187Osr2; Table 2) calculated using the initial 187Os/188Os value (3 ± 13) 353 

determined from the 187Re/188Os vs 187Os/188Os isochron without sample 64.1 (Fig. 5), a 354 

187Re vs 187Osr isochron date of 2170 ± 180 Ma is obtained (Fig. 5b, initial 187Os = 15 ± 31 355 

ppt, MSWD = 0.6). We note that with the exception of sample 28 (Lochan Sgeireach) Re-Os 356 

model ages calculated using 187Osr based on the initial 187Os/188Os value of 3 ± 13 are 357 

extremely similar (Table 1). However, sample 28 yields a Model age ~450 Ma younger than 358 

an age calculated using the initial of 0.9. Both calculated Model ages have very large 359 

uncertainties. This sample possesses the least amount of 187Osr (~92 ppt – 73%), with its 360 

abundance dramatically affected by the initial 187Os/188Os value (0.9 vs 3; Table 1).   361 

A weighted average of the model Re-Os ages (not including sample 64.1; calculated 362 

using a 187Osr based on the initial 187Os/188Os value of 3 ± 13) is 2248 ± 38 (MSWD = 0.6; 363 
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Fig. 5c). In summary, the ages determined from both the Re-Os isochron methods and the 364 

weighted average of the Re-Os model ages are all within uncertainty. We favour using the 365 

187Re/188Os vs 187Os/188Os isochron age (without sample 64-1). From this study we consider 366 

the majority of the pyrite mineralization and by inference the precipitation the quartz pyrite 367 

veins and fracture formation occurred at 2249 ± 77 Ma. 368 

 369 

6. Sulphur Isotope Analysis  370 

All the samples from the sulphur isotope analysis yielded high amounts of sulphur (82 to, 371 

97% yield). The 34S from the sulphides ranges from +3.0 to –2.2 per mil. All the samples 372 

are slightly enriched in 34S relative to 0 per mil, with the exception of sample 64.1, which has 373 

a slightly depleted value of -2.2. This may suggest a slightly different source of the sulphur 374 

for sample 64.1, and coupled with the Re-Os data may support a distinct quartz and pyrite 375 

mineralization event from the other five samples. The range in the 34S values (+3.0 and -376 

2.2) encompasses that of the primitive mantle (Rollinson, 1993). The results therefore 377 

suggest that the sulphur in the pyrite is most likely derived from a source not isotopically 378 

fractionated from the primitive mantle value. 379 

 380 

7. Microstructural textures and inferred deformation mechanisms 381 

7.1. Microstructural textures within quartz-pyrite veins 382 

The quartz-pyrite veins display an array of deformation textures suggesting that they have 383 

experienced a complex history of deformation at different temperatures and pressures. A 384 

number of overprinting relationships are seen which can be related to the relative chronology 385 

of events seen in the field. The deformation textures are described below with reference to 386 

the age of the country rock fabric which the veins either cross-cut or are overprinted by. 387 

 388 

7.1.1Veins crosscutting Badcallian structures 389 
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Despite modest amounts of grain-scale deformation, the veins cross-cutting Badcallian 390 

gneisses (e.g., Fig. 2a, e) preserve a diverse range of deformation microstructures. The 391 

most deformed examples contain large quartz crystals (> 1mm, but typically 3 – 7mm) that 392 

show sweeping undulose extinction and have highly lobate grain boundaries as a result of 393 

grain boundary migration processes during recrystallisation (Stipp et al., 2002). Chessboard 394 

subgrains (e.g. Fig. 4a) within quartz crystals are also common and form in response to the 395 

migration of dislocations within the crystal lattice into subgrain walls during recrystallisation 396 

(e.g. Passchier and Trouw, 2005).  397 

 The least plastically deformed veins cutting Badcallian foliation are found on the 398 

shores of Loch Assynt (e.g., Figs. 2e, g). The quartz crystals within these veins display 399 

undulose extinction, whilst some larger grains contain deformation lamellae, which are zones 400 

of differently orientated crystal lattice separated by dislocations. Grain boundaries have 401 

undergone small-scale bulging during recrystallisation and small grains (<100μm) have 402 

developed within the bulges and along the deformation lamellae (e.g., Fig. 4b).  403 

 Overall, the range of deformation microstructures observed in the quartz veins cutting 404 

Badcallian gneisses suggests that they experienced small amounts of crystal plastic 405 

deformation under moderate temperature (400 - 500°C) conditions. The veins on the shore 406 

of Loch Assynt locally preserve rather lower temperatures textures (perhaps as low as 407 

300°C) and/or higher strain rate conditions. This may be the result of ‘late Laxfordian’ 408 

deformation associated with slip on the Loch Assynt Fault (e.g., like the structures shown in 409 

Figs. 2e, f), to which they are proximal. 410 

   411 

7.1.2  Veins cross-cutting Inverian structures 412 

Veins emplaced into Lewisian gneisses reworked by Inverian deformation (e.g., Fig. 2b) also 413 

show little obvious deformation at outcrop scale. A range of deformation microstructures are 414 

preserved, including undulose extinction, deformation lamellae, new grain growth along 415 

crystal boundaries, subgrain development and the development of lobate grain boundaries. 416 

These are indicative of recrystallisation under low to moderate temperatures (350 - 500°C) 417 
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and high to moderate strain rates. Some veins contain large (>2mm) quartz crystals with 418 

lobate boundaries, formed by grain boundary migration under moderate temperatures and 419 

strain rates, which show grain boundary bulging and the development of new, small grains 420 

(<250μm) within the bulges, particularly at triple-point grain boundaries (Fig. 4c). These 421 

structures are typical of recrystallisation under somewhat lower temperatures (300 - 400°C), 422 

and may indicate a lower temperature event. There is little evidence for this event within the 423 

veins emplaced into Badcallian gneisses, and it may be that it is related to localised later 424 

deformation and/or fluid flow restricted to the Inverian shear zones immediately following 425 

vein emplacement. Alternatively, it may be a weak manifestation of Laxfordian deformation 426 

given the regionally observed coincidence of Inverian and Laxfordian reworking (e.g. Attfield 427 

1987). 428 

 429 

7.1.3 Veins overprinted by Laxfordian structures 430 

The veins emplaced within the Laxfordian part of the CSZ (e.g., Fig. 2d) have been heavily 431 

reworked at outcrop scale. Many of the grain-scale textures resulting from the 432 

recrystallisation of quartz are similar to those seen in the veins which were emplaced into 433 

gneisses with Badcallian and Inverian foliations, but the finite strains are much higher. In 434 

most veins, larger quartz crystals (>2mm) show sweeping undulose extinction, deformation 435 

lamellae, subgrain development and lobate grain boundaries. These microstructures indicate 436 

deformation under moderate temperatures (350 - 500°C) and strain rates. Relict S-C’ 437 

mylonite fabrics (e.g. Berthé et al. 1979; Snoke et al. 1998) are preserved in the most highly 438 

deformed veins (e.g., Fig. 4d). Sub-parallel fine-grained (<100 μm) bands of feldspar, 439 

muscovite and chlorite define the C-surfaces which are enclosed by polygonal quartz 440 

aggregate (with grains sizes 0.5 – 3 mm). Quartz grain boundaries are often pinned by 441 

aligned micas and some fine aligned grains are completely enclosed by much larger, 442 

undeformed quartz grains (Fig. 4d). These fabrics are typical indicators of significant 443 

secondary grain growth under elevated temperature conditions (e.g., Vernon 1976; 444 

Passchier and Trouw, 2005). 445 
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 446 

7.1.4 Pyrite microstructural relationships 447 

Pyrite occurs in a variety of forms in the veins of the Assynt Terrane. Some samples contain 448 

large clusters of pyrite crystals up to 1.5cm in across (e.g., Fig. 2h) which are intimately 449 

intergrown with quartz (e.g., Figs 4e, f). SEM images reveal the partial alteration of pyrite 450 

grains to iron oxides along grain margins and fractures within some large pyrite clusters 451 

(e.g., Fig. 4g, h). Small (<1mm) pyrite clusters are also associated with the mylonitized 452 

quartz veins within the CSZ. There is little evidence for significant deformation of the pyrite 453 

grains during recrystallization of the surrounding quartz aggregates even in cases where the 454 

intensity of finite plastic strain is high. 455 

 456 

7.1.5 Summary  457 

The microstructural evidence from the veins suggests that most of the pyrite initially 458 

crystallised at the same time as the quartz and that it is therefore a primary mineral phase. 459 

The veins then experienced very modest amounts of deformation and recrystallisation during 460 

a moderate temperature (350 - 500˚C) and low strain rate strain rate event felt throughout 461 

most of the Assynt Terrane. Given the similarity in quartz microstructures and interpreted 462 

palaeotemperatures with the more highly deformed veins in the CSZ, it seems most likely 463 

that the bulk of the modest deformations recorded here are also Laxfordian to ‘late 464 

Laxfordian’ in age (ca. 1780-1400). Laxfordian deformation, especially within the CSZ, 465 

resulted in the formation of mylonitic fabrics within the veins under mostly moderate 466 

temperatures (350 - 500˚C). There may also have been some limited remobilisation and re-467 

precipitation of pyrite related to fluid flow both within the veins and the adjacent sheared 468 

gneisses. 469 

 470 

8. Discussion: 471 

The Re-Os isochron age obtained from the majority of the quartz-pyrite veins (2249 ± 77 Ma) 472 

is consistent with our current understanding of the broad ages of regional 473 
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tectonometamorphic episodes in the Lewisian Complex (Fig. 6). Specifically, they cross cut 474 

older Badcallian (ca. 2760 or 2480 Ma) and Inverian (ca. 2400-2480 Ma) fabrics and are 475 

overprinted/reworked by younger Laxfordian (1790-1660 Ma) structures. The latter suggests 476 

that the Re-Os systematics were not appreciably disturbed by structural reworking and the 477 

upper greenschist conditions associated with the Laxfordian event.  478 

The most recent U-Pb geochronology shows that intrusion of the Scourie dykes 479 

predominantly occurred at 2391 – 2404 Ma, with moderately younger ages (2367 – 2372 480 

Ma) at the SW edge of the Assynt Terrane (Davies and Heaman, 2014).  The ca. 2250 Ma 481 

age for the quartz-pyrite veins falls within the range of ages obtained from the NW-SE 482 

trending Scourie dyke swarm across the entire Lewisian Complex (Fig. 6; 2418 Ma to 1991 483 

Ma; Chapman 1979; Heaman and Tarney, 1989; Cohen et al., 1988; Waters et al., 1990; 484 

Davies and Heaman, 2014). These studies suggest two main episodes of dyke intrusion at 485 

ca. 2418 Ma and 1992 Ma (Fig. 6; Davies and Heaman, 2014), with distinct mantle sources 486 

exploited during each event (Cartwright and Valley, 1991). The idea that there are multiple 487 

episodes of ‘Scourie dyke’ intrusion is consistent with some geological field relationships. It 488 

is known, for example, in the southern region of the Lewisian Complex that some ‘Scourie 489 

dykes’ cut the Loch Maree Group metasediments and metavolcanics, which were thought to 490 

have formed in oceanic basins and accreted to the continental crust through subduction 491 

between 2000 and 1900 Ma (Park et al., 2001).  492 

 All the quartz-pyrite veins observed during the present study seen in the Assynt 493 

Terrane cross-cut Scourie dykes, although this does not preclude the possibility that 494 

regionally there may be some dykes that are younger. However, the Re-Os pyrite dating of 495 

the veins at ca. 2250 Ma suggests a complex polyphase early Palaeoproterozoic tectonic 496 

history of the Lewisian complex (Fig. 6). Veins form by the precipitation of minerals in dilating 497 

hydrofractures and their regional development in clusters and swarms are indicative of 498 

significant phase of fluid flow in the crust (e.g., Sibson, 1996 and references therein). The 499 

simplest types of vein are Mode 1 fractures which open in the direction of the minimum 500 

principle stress and have strike orientations perpendicular to it (e.g., Peacock & Mann, 501 
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2005). Most of the veins in the Assynt Terrane appear on the basis of their field relationships 502 

to be Mode I features (e.g. Fig. 2a). If so, the prevalence of NE-SW strikes (e.g., Figs. 1, 3ai) 503 

implies a NW-SE opening direction, although the veins show a wide range of other 504 

orientations (Figs. 3b,c) which are attributed to a number of factors: the presence of highly 505 

variable foliation in strongly banded gneisses; the presence of pre-existing fractures, or to 506 

the reworking of veins by Laxfordian fabrics.  507 

The pre-Laxfordian NE-SW orientation and inferred NW-SE opening directions of the 508 

quartz-pyrite veins lie almost orthogonal to the regional NW-SE orientation – and inferred 509 

NE-SW extension direction - of the Scourie dykes. If there are multiple episodes of Scourie 510 

dykes on a regional scale, with some pre-dating and some post-dating the quartz-pyrite 511 

veins, this implies that there were significant changes in the orientation of regional stress 512 

vectors in the 500 Ma period between 2400 and 1900 Ma (Fig. 6). Note, however, that in 513 

common with the Scourie dykes, the sulphur isotopic analysis of the quartz-pyrite veins is 514 

suggestive of a source not isotopically fractionated from the primitive mantle derivation value 515 

(Rollinson, 1993). 516 

 Although the Re-Os data for sample 64.1 provide a highly imprecise model age 517 

(1597 ± 1356 Ma) its nominal age is considerably younger than the model ages for the other 518 

samples (2198.5 – 2328.7 Ma), and, in addition, has the lowest Os abundance of (242.8 ± 519 

33.9 ppb) of all the samples. Furthermore, sample 64.1 is also the only sample with a 520 

depleted δ34S value (-2.2). Although this value could indicate that the sulphur source is not 521 

isotpically fractionated from the primitive mantle value, like the other samples, it may be that 522 

the sulphur within the pyrite has a slightly different origin to that found within other veins, or 523 

that it may have been disturbed following emplacement, perhaps related to a later phase of 524 

‘late Laxfordian’ brittle fracture fractures and fluid ingress. Further work and dating is 525 

required to verify the age obtained and better constrain the geological and geochronological 526 

significance of this younger age. 527 

 528 

8.1. Implications for terrane models 529 
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Dating of the TTG protoliths suggests that the gneisses of the Gruinard Terrane are at least 530 

100 Ma younger than those of the Assynt Terrane and underwent granulite metamorphism at 531 

2730 Ma (Love et al., 2004; Park, 2005). Thus they are thought to belong to different and 532 

separate Archaean terrane which amalgamated along the Strathan Line, south of Lochinver, 533 

during Inverian folding and retrogression (Fig. 1, Love et al., 2004). The presence of post-534 

Inverian quartz-pyrite veins within both the Assynt and Gruinard Terranes is consistent with 535 

this proposal. 536 

 The amphibolite-facies gneisses of the Rhiconich Terrane to the north have yielded 537 

protolith ages of 2840-2800 Ma and a record magmatism at 2680 Ma (Kinny and Friend, 538 

1997), but there is no apparent evidence of metamorphism at ca. 2780 Ma.  This led Friend 539 

and Kinny (2001) to suggest that the Assynt and Rhiconich Terranes were separate 540 

Archaean crustal blocks of differing age and early history that were only finally juxtaposed by 541 

a major episode of shearing during the along the Laxfordian Shear Zone at ca. 1750 Ma 542 

(Fig. 1). This seems consistent with the apparent absence of ca. 2250 Ma quartz-pyrite veins 543 

in the Rhiconich Terrane. However, recent fieldwork and dating by Goodenough et al. (2010; 544 

2013) has found evidence that the Laxford Shear Zone initially formed as an Inverian 545 

structure, pre-dating the intrusion of a regional suite of arc-related granitic sheets ca. 1880 546 

Ma into both the Assynt and Rhiconich Terranes. These granites are then overprinted by the 547 

main Laxfordian deformation and associated amphibolite-facies metamorphism, which 548 

ranges from 1790-1670 Ma (Corfu et al., 1994; Kinny and Friend, 1997; Love et al., 2010). In 549 

this case the absence of the quartz-pyrite veins to the north of the Laxford Shear Zone is 550 

perhaps consistent with significant Laxfordian-age reactivation leading to final juxtaposition 551 

of the two terranes. 552 

 553 

9. Conclusions 554 

A hitherto unrecognised set of quartz-pyrite veins have been identified in the Assynt and 555 

Gruinard terranes of the Lewisian complex. The veins consistently cross-cut Badcallian and 556 

Inverian structures in the gneisses, as well as (at least) the majority of Scourie dykes. They 557 
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are reworked during Laxfordian shearing events and are also cross cut by a range of later 558 

brittle faulting events. The dominant strike direction of the quartz-pyrite veins suggests 559 

emplacement during a regional NW-SE extension of the crust, whilst sulphur isotope 560 

analyses of the pyrites are consistent with a primitive mantle origin for the fluids.  561 

 The Re-Os date of 2249 ± 77 Ma for the pyrite within the veins is consistent with the 562 

field relationships and other known geochronological constraints in the Lewisian Complex. 563 

Both the Scourie dykes and quartz-pyrite veins are most likely developed as Mode I tensile 564 

fractures, but their almost orthogonal present day orientations suggests that whilst the dykes 565 

were emplaced during two or more periods of NE-SW crustal extension and associated 566 

mafic magmatism ca. 1900-2400 Ma, the quartz-pyrite mineralization ca. 2250 Ma occurred 567 

during an intervening phase of NW-SE extension. 568 

The presence of the quartz-pyrite veins in both the Assynt and Gruinard terranes 569 

confirms their amalgamation prior to ca. 2250 Ma, most likely during the Inverian. The 570 

apparent absence of the veins in the Rhiconich Terrane suggests it may not have been 571 

finally amalgamated with the Assynt and Gruinard terranes until the Laxfordian. More 572 

generally, this study demonstrates the potential value of the Re-Os technique as a means of 573 

dating sulphide mineralisation events in continental basement terrains worldwide. 574 
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Figure 1) Highly simplified geological map showing the location and orientations of the 807 

quartz vein clusters (i-vi) studied within the Assynt Terrane of the Lewisian Complex. Note 808 

that this is not an exhaustive assessment of all quartz veins present in the Assynt Terrane, 809 

i.e. there may be many more clusters than are shown here. Inset map shows general 810 

location in Scotland and main Lewisian Complex terranes discussed in this paper. 811 

 812 

Figure 2) Field relationships of quartz-pyrite veins. a) NE-SW vein cross-cutting shallowly-813 

NW-dipping Badcallian foliation near Clashnessie (NC 0855 3102). Note offset of layers 814 

across vein indicating Mode I tensile opening (arrows); b) NE-SW vein (below hammer) 815 

cross-cutting steep NW-SE Inverian foliation in Canisp Shear Zone (NC 0521 2593); c) NE-816 

SW vein cross-cutting Scourie dyke on the shore of Loch Assynt (NC 2135 2510); d) NW-SE 817 

vein folded and reworked by Laxfordian fabrics, Canisp Shear Zone (NC 0515 2620); e) NE-818 

SW vein cut and offset 10cm by NW-SE sinistral brittle fault in Badcallian gneisses close to 819 

the trace of the Loch Assynt Fault (NC 2110 2517); f) En echelon tensile fractures filled with 820 

epidote indicating sinistral shear in Badcallian gneisses close to the trace of the Loch Assynt 821 

Fault (NC 2110 2517); g) ENE-WSW vein with en-echelon off-shoots, indicating a small 822 

component of sinistral shear parallel to the vein margins (NC 2135 2510); h) Large pyrite 823 

cluster within a quartz vein (NC1038 2249). Note fracturing of pyrite and characteristic iron 824 

oxide staining.  825 

Figure 3) Orientation data for the regional quartz-pyrite vein suite. a) i) Rose diagram of vein 826 

trends for the entire Assynt Terrane (for locality-based versions, see Fig. 1), ii) lower 827 

hemisphere equal-area stereoplot of veins with lineated margins; b) Equal area stereoplots 828 

of gneiss foliations (i-iii) and of associated veins from each locality (iv-vi) grouped according 829 

to the inferred age of the wall rock fabric; c) Equal area stereoplots of quartz vein clusters 830 

measured in the six localities (i-vi) shown in Fig 1. 831 

Figure 4) Representative microstructures of quartz-pyrite veins viewed using optical 832 

microscope and FESEM. a) Chess-board extinction in large quartz crystals from vein cutting 833 
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Badcallian gneisses at Kylesku; b) New grains forming along grain boundaries and 834 

deformation lamellae, reflecting slightly lower temperature overprint in vein located close to 835 

the trace of the Loch Assynt Fault; c) Development of new grains at triple junction grain 836 

boundaries overprinting higher temperature deformation features in vein cutting Inverian 837 

fabrics near Lochinver; d) Recrystalised S-C fabric in highly sheared veing from the 838 

Laxfordian central part of the Canisp Shear Zone, e) Quartz intergrown with within blocky 839 

pyrite cluster; f) Intricate intergrowths of pyrite and quartz from vein cutting Scourie dyke at 840 

Loch Assynt; g) BSEM image of smooth pyrite (light grey) intergrown with quartz (dark grey) 841 

from the same sample as f). The radial fibrous material is iron oxide replacing pyrite; h) 842 

Alteration of pyrite (bright grey) along fractures to iron oxides (darker mottled greys), Sample 843 

64.1 (see text for details). Note that all the optical micrographs are cross-polar views. 844 

 845 

Figure 5) Re-Os data for the pyrite from the quartz-pyrite veins. A) 187Re/188Os and 846 

187Os/188Os plot for all samples and all samples minus sample 64.1; B) 187Re vs 187Osr plot, 847 

with the 187Osr data calculated using an initial of 3 ± 13; C) Weighted average of Re-Os 848 

model ages, with the model ages calculated using an initial of 3 ± 13. See text for 849 

discussion. 850 

 851 

Figure 6) The chronology of events during the Archaean to Proterozoic in the Assynt 852 

Terrane, showing the range of possible Scourie dyke episodes and the vein emplacement 853 

period ascertained during the present study. 854 

 855 

Table Caption 856 

Table 1) Re-Os and S isotope data for pyrite from quartz veins in the Lewisian Complex, NW 857 

Scotland. All uncertainites are reported at the 2s level, 187Os/188Os uncertainties reported at 858 

2SE; all data are blank corrected, blanks for Re and Os were 2.7 ± 1.1 and 0.40 ± 0.42 pg, 859 

respectively, with an average 187Os/188Os value of 0.37 ± 0.17 (1SD, n = 2). All uncertainities 860 
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are determined through the full propagation of uncertainties of the Re and Os mass 861 

spectrometer measurements, blank abundances and isotopic compositions, spike 862 

calibrations, and reproducibility of standard Re and Os isotopic values. 187Osr presented are 863 

calculated using initial 187Os/188Os, plus its uncertainty, from regression of data using 864 

187Re/188Os vs. 187Os/188Os isochron plot; rho is the error correlation. 865 

1= 187Osr determined from an initial 187Os/188Os of 0.9 ± 9.0 (Fig. 5A). 866 

2= 187Osr determined from an initial 187Os/188Os of 3 ± 13 (Fig. 5A). With the exception of 867 

sample RO297-3/28, the calculated %187Osr is very similar using either initial 187Os/188Os 868 

values of 0.9 ± 9.0 or 3 ± 13. For sample RO297-3/28 the %187Osr decreases to ~72.8% 869 

using an initial 187Os/188Os value of 3 ± 13. A model age can be directly calculated using 870 

187Osr/187Re = elt-1 871 

3 = Model age determined using an initial 187Os/188Os value of 0.9 ± 9.0 (Fig. 5A). 872 

4 = Model age determined using an initial 187Os/188Os value of 3 ± 13 (Fig. 5A). 873 

5 = The reproducibility based on full replicate analyses of internal laboratory standards was 874 

±0.2 per mil (1σ). 875 

 876 
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 14 

Abstract: In the Archaean basement rocks of the Assynt and Gruinard terranes of the 15 

mainland Lewisian Complex in NW Scotland, a regional suite of quartz-pyrite veins cross-cut 16 

regional Palaeoproterozoic (Badcallian, caca.. 2700 Ma; Inverian, caca.. 2480 Ma) fabrics 17 

and associated Scourie dykes. The quartz veins are overprinted by amphibolite-greenschist 18 

facies Laxfordian deformation fabrics (caca.. 1760 Ma) and later brittle faults. The 19 

hydrothermal mineral veins comprise a multimodal system of tensile/hybrid hydraulic 20 

fractures which are inferred to have formed during a regional phase of NW-SE extension. 21 

The almost orthogonal orientation of the quartz veins (NE-SW) to the Scourie dykes (NW-22 

SE) are incompatible and must result from distinct paleostress regimes suggesting they are 23 

related to different tectonic events. This hypothesis is supported by Rhenium-Osmium dating 24 

of pyrite that yields an age of 2249 ± 77 Ma, placing the vein-hosted mineralisation event 25 

after the oldest published dates for the Scourie Dykes (2420 Ma), but before the youngest 26 

ages (1990 Ma). Sulphur isotope analysis suggests that the sulphur associated with the 27 

*Marked Manuscript
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pyrite is isotopically indistinguishable fromof primitive mantle origin. The presence of the 28 

caca. 2250 Ma quartz-pyrite veins in both the Assynt and Gruinard terranes confirms that 29 

these crustal units were amalgamated during or prior to Inverian deformation. The absence 30 

of the veins in the Rhiconich Terrane is consistent with the suggestion that it was not finally 31 

amalgamated to the Assynt Terrane until the Laxfordian.  32 

[End]  33 
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1. Introduction 34 

The Archaean gneisses of the Lewisian Complex in NW Scotland form a well exposed and 35 

relatively accessible area of Laurentian continental basement rocks that lie in the immediate 36 

foreland region of the Palaeozoic Caledonian Orogen (Fig. 1).  Like many regions of 37 

continental metamorphic basement, the Lewisian Complex preserves evidence for multiple 38 

episodes of igneous intrusion, ductile and brittle deformation together with associated 39 

phases of metamorphism and mineralisation (e.g. Sutton and Watson 1951; Park 1970; 40 

Beacom et al., 2001; Wheeler et al., 2010). Whilst cross-cutting and overprinting 41 

relationships observed in the field and thin section allow relative age relationships to be 42 

established on both regional and local scales, only radiometric ages are able to give 43 

information concerning the absolute timing of events. Despite the emergence of an 44 

increasing number of geochronometers for Earth Scientists, an enduring problem in many 45 

basement regions is a relative paucity of material suitable for reliable radiometric dating. This 46 

lack of absolute age determinations has become a particularly significant problem in the 47 

Lewisian Complex since Kinny et al. (2005) and Friend and Kinny (2001) proposed that the 48 

Lewisian may comprise a number of lithologically and geochronologically distinct tectonic 49 

units or terranes assembled progressively during a series of Precambrian amalgamation 50 

episodes perhaps spanning more than a billion years (see Park, 2005; Goodenough et al., 51 

2013 for discussions).    52 

This paper describes the lithology, field relationships and microstructures of a little 53 

described set of quartz-pyrite veins that are recognised throughout the Assynt Terrane and 54 

within the Gruinard Terrane. These mineralised hydrofractures display a consistent set of 55 

contact relationships relative to regionally recognised igneous, metamorphic and 56 

deformational events. Rhenium-osmium (Re-Os) geochronology on pyrites collected from 57 

these veins is used to obtain a consistent set of ages that better constrain the absolute 58 

timing of events in this important part of the Lewisian Complex in NW Scotland. It also 59 

illustrates the potential value of the Re-Os technique as a means of dating sulphide 60 

mineralisation events in geologically complex continental basement terrains worldwide. 61 
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 62 

2. Regional Setting  63 

The Precambrian rocks of the Lewisian Complex of NW Scotland form a fragment of the 64 

continental basement of Laurentia that lies to the west of the Caledonian Moine Thrust (Fig. 65 

1). The rocks are for the most part little affected by Caledonian deformation and have 66 

experienced a number of major crustal-scale geological events during the Archaean and 67 

Palaeoproterozoic. The Lewisian Complex is divided into a number of tectonic regions or 68 

terranes which are predominantly separated by steeply-dipping shear zones or faults (e.g. 69 

Park et al., 2002; Park, 2005). 70 

 The Assynt Terrane (Fig. 1) forms the central part of the Lewisian Complex in 71 

mainland NW Scotland. It comprises grey, banded, tonalite-trondjemite-granodioritic (TTG) 72 

gneisses which are locally highly heterogeneous lithologically, ranging from ultramafic to 73 

acidic compositions (e.g., Sheraton et al., 1973). The TTG gneisses are thought to be 74 

derived from igneous plutons intruded at 3030 to 2960 Ma (high precision U-Pb and Sm-Nd 75 

geochronology; Hamilton et al., 1979; Friend and Kinny, 1995; Kinny and Friend, 1997).  76 

These rocks then underwent deformation and granulite-facies metamorphism during the so-77 

called Badcallian event(s) which led to significant depletion of large-ion lithophile elements in 78 

the TTG gneisses that is more extensive in the Assynt Terrane compared to adjacent 79 

amphibolite-facies terranes (e.g. Rhiconich, Gruinard; Moorbath et al., 1969; Cameron, 80 

1994; Wheeler et al., 2010). The timing of Badcallian events are incompletely resolved with 81 

current age constraints suggesting either caca.. 2760 Ma (e.g., Corfu et al.1994; Zhu et al., 82 

1997), and/or caca.. 2490 - 2480 Ma (e.g., Friend and Kinny 1995; Kinny & Friend, 1997).   83 

The central part of the Assynt Terrane is cut by the major NW-SE-trending, steeply 84 

dipping dextral transpressional Canisp Shear Zone (CSZ) which has a maximum width of 85 

1.5km (Attfield, 1987; Fig. 12). There are also many other smaller steeply-dipping, NW-SE to 86 

WNW-ESE trending minor shear zones cutting the surrounding Badcallian gneisses (Park 87 

and Tarney, 1987). Some of these shear zones, including the CSZ, developed initially during 88 

Inverian deformation and amphibolites-facies retrogression which affected substantial parts 89 
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of the Assynt Terrane. The absolute age of this event is the subject of significant uncertainty 90 

and debate, with a majority of studies considering it to be caca.. 2490 - 2480 Ma (e.g., Corfu 91 

et al. 1994; Love et al., 2004; Goodenough et al., 2013). Others (e.g., Friend and Kinny 92 

1995; Kinny and Friend, 1997) suggest that the Inverian is a younger – as yet undated – 93 

event younger than caca. 2480 Ma while still pre-dating the oldest Scourie dykes. These 94 

mafic to ultramafic Scourie dykes are found throughout the Assynt Terrane, ranging in 95 

thickness from a few mm to several tens of m and were intruded caca.. 1900 - 2400 Ma (Rb-96 

Sr whole rock and U-Pb geochronology; Chapman 1979; Heaman & Tarney, 1989; Davies & 97 

Heaman 20143). The NW-SE-trending Scourie dykes cross-cut local Inverian fabrics and 98 

display evidence of having been emplaced under amphibolite facies pressures and 99 

temperatures, i.e. in the middle crust, possibly immediately following the Inverian event 100 

(O’Hara, 1961; Tarney, 1973; Wheeler et al., 2010). 101 

In the Assynt Terrane, the significantly later main phase Laxfordian event has 102 

traditionally been associated with the shearing of the Scourie dykes and widespread 103 

retrogression of the TTG gneisses under lower amphibolite to upper greenschist-facies 104 

metamorphic conditions (e.g., Sutton and Watson, 1951; Attfield, 1987; Beacom et al., 105 

2001). The Laxfordian is recognised throughout much of the Lewisian complex and appears 106 

to be a long lived series of events starting with a series of magmatic events caca. 1900-1870 107 

Ma – at least some of which are related to island arc development – followed by a protracted 108 

orogenic episode lasting from 1790 - 1660 Ma (see discussion in Goodenough et al., 2013). 109 

The effects of Laxfordian reworking in the Assynt Terrane are highly localised, being largely 110 

restricted to the central part (caca.. 1km wide) of the CSZ and other shear zones, as well as 111 

along the margins of the Scourie dykes. This contrasts with the neighbouring Rhiconich and 112 

Gruinard Terranes where the Laxfordian event reached amphibolite facies and was 113 

associated with more pervasive ductile shearing and reworking (Droop et al., 1989). This has 114 

led to the suggestion that the Assynt Terrane represents a shallower depth crustal block 115 

during the Laxfordian (e.g., Dickinson and Watson, 1976; Coward and Park, 1987).  116 
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In the Assynt and Gruinard terranes, a younger set of ‘late Laxfordian’ sinistral low 117 

greenschist-facies mylonitic shear zones, brittle faults and localized folds is recognised 118 

developed sub-parallel to the pre-existing high-strain fabrics in Laxfordian and Inverian shear 119 

zones (see Beacom et al. 2001). These structures include the Loch Assynt Fault (Fig. 1). 120 

The precise age of the ‘late-Laxfordian’ faulting is poorly constrained, but these structures 121 

are unconformably overlain by the unmetamorphosed and little deformed caca. 1200 Ma 122 

Torridonian Stoer Group. This suggests that the presently exposed parts of the Lewisian 123 

Complex had been exhumed to the surface by caca. 1200 Ma. Regionally, both the Stoer 124 

Group and the Lewisian Complex are unconformably overlain by younger Torridonian 125 

sequences (Diabeg and Torridon groups) thought to have been deposited no earlier than 1.1 126 

Ga (Park et al. 1994). 127 

 128 

Lewisian host rocks 129 

The Badcallian amphibolite- to granulite-facies TTG gneisses of the Assynt Terrane show 130 

foliation development on all scales (e.g., Fig 2a), from millimetres to tens of metres (e.g. 131 

Sheraton et al., 1973). The foliation is best developed in intermediate composition gneisses, 132 

where it is defined by 0.5 to 5 cm thick layers of contrasting light (plagioclase and quartz) 133 

and dark (pyroxene, hornblende and biotite) layers, with individual layers rarely continuing 134 

for more than a few metres (Jensen, 1984). Representative samples from the Loch Assynt 135 

area typically contain 30% quartz, 20% plagioclase, 10% microcline, 10% orthopyroxene and 136 

30% heavily retrogressed clinopyroxene. Relict grains of the latter mineral are replaced by 137 

fine grained intergrown aggregates of chlorite, epidote, actinolite and hornblende.    138 

The Badcallian gneisses were reworked in dextral-reverse shear zones (e.g., the 139 

CSZ) during the Inverian, which imposed a NW-SE foliation in the rocks, mainly by 140 

reorientation and attenuation of the pre-existing gneissose foliation (e.g., Fig. 2b; Attfield, 141 

1987). Deformation within the Inverian shear zones isare extremely heterogeneous, with 142 

lenses of lower-strain, more massive material enclosed by anastomosing bands of highly 143 

deformed, sheared gneiss (e.g., Attfield, 1987; Chattopadhyay et al., 2010). Representative 144 
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samples of reworked Inverian gneisses from within the CSZ contain 20% quartz, 40% 145 

feldspar (predominantly plagioclase with alteration bands), 5% pyroxene, 15% hornblende, 146 

15% biotite and chlorite, and 5% other minerals such as epidote. The hornblende, epidote, 147 

biotite and chlorite are likely to be a product of the breakdown and hydration of pyroxenes 148 

during retrogression (Beach, 1976). The quartz crystals contain 0.25 - 1mm subgrains and 149 

form irregular, sub-parallel ribbons of crystals, which are smaller than in the undeformed 150 

Badcallian gneisses, possibly due to syn-tectonic recrystallisation (Jensen, 1984). 151 

The Laxfordian event reactivated the central part of the CSZ with a dextral shear 152 

sense, producing a new, finer foliation (e.g., Fig. 2d; Sheraton et al., 1973; Attfield, 1978). 153 

Commonly, the reworked rocks in both small and large shear zones have a mineralogy that 154 

differs significantly from that of the original gneiss and the extent of the changes that occur 155 

appears to be in proportion to the intensity of the deformation (e.g., see Beach, 1976). A 156 

typical sample of Laxfordian-deformed gneiss from the CSZ contains 75% quartz, 10% 157 

hornblende, 10% biotite and muscovite, and 5% feldspar porphyroblasts (typically ~1mm in 158 

size). The quartz is banded on a millimetre scale with alternating bands of small quartz 159 

grains (<100μm) and larger quartz grains (~500μm to 1mm) which form an anastomosing 160 

schistose foliation (Jensen, 1984). Quartz grain boundaries are often pinned by aligned 161 

micas and layers richer in mica therefore tend to show finer quartz grain sizes compared to 162 

mica-poor layers. The quartz crystals themselves are often elongate and contain poorly 163 

developed subgrains. Petrographic observations of Lewisian gneisses show that during 164 

regression, pyroxene is first replaced by hornblende which is then replaced by biotite in the 165 

most intensely deformed gneisses (Beach, 1976). The Laxfordian reworking occurred in 166 

intense zones which anastomose around relict lenses of Badcallian or Inverian gneiss 167 

(Sheraton et al., 1973). Tight intrafolial folds are common within the Laxfordian-deformed 168 

gneisses and, in places, Inverian folds have been refolded (e.g. on the coast at Port Alltan 169 

na Bradhan; see Attfield, 1987; Chattopadhyay et al., 2010). The Scourie dykes within and 170 

adjacent to the CSZ have also been pervasively affected by Laxfordian reworking with 171 
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shearing particularly concentrated along their margins (Sheraton et al., 1973). Most dykes in 172 

the CSZ are sheared into near concordance with the surrounding foliation in the gneisses. 173 

 174 

3. Field and Laboratory Methods 175 

3.1. Fieldwork 176 

Fieldwork was carried out visiting well-exposed examples of quartz-pyrite vein localities in 177 

the Assynt Terrane and in one area of the Gruinard Terrane (Fig. 1). The relative ages of 178 

country rock fabrics and veins were determined at 83 locations using cross-cutting 179 

relationships and the orientations of both veins and fabrics were measured. Representative 180 

(orientated) hand samples of both country rocks and veins were taken at a number of key 181 

localities in order to study deformation microstructures using an optical microscope and also 182 

to extract fresh samples of pyrite for Re-Os dating. Having separated appropriate material 183 

for dating, we used Re-Os geochronology to determine the age of sulphide (pyrite) 184 

mineralization present in several of the quartz veins. We additionally determined sulphur 185 

isotope compositions of the dated samples to yield evidence of the origin of the sulphur and 186 

by inference the hydrothermal fluids associated with the quartz-pyrite vein formation.   187 

 188 

3.2. Rhenium-Osmium Geochronology Analytical Methods 189 

Six pyrite samples co-genetic with quartz veining were analyzed for their rhenium (Re) and 190 

osmium (Os) abundances and isotopic compositions. The analyses were conducted at the 191 

TOTAL Laboratory for Source Rock Geochronology and Geochemistry at Durham 192 

University. The pyrite sample set was collected from five locations: four in the Assynt 193 

Terrane and one in the Gruinard Terrane (Fig. 1; Table 1).  194 

The pyrite samples were isolated from the vein host material by crushing, without 195 

metal contact, to a < 5 mm grain size. After this stage > 1 g of pyrite was separated from the 196 

crushed vein by hand picking under a microscope to obtain a clean mineral separate. The 197 

Re and Os analysis reported in this study followed the analytical protocols of Selby et al. 198 

(2009). In brief, this involved loading ~ 0.4 g of accurately weighed pyrite into a carius tube 199 
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with a known amount of a 185Re and 190Os tracer (spike) solution and 11 ml of inverse aqua 200 

regia (3 ml 11N HCl and 8 ml 15 N HNO3). The carius tubes were then sealed and placed in 201 

an oven at 220°C for 48 hrs. Osmium was isolated and purified from the acid medium using 202 

CHCl3 solvent extraction and micro-distillation, with Re separated by anion exchange column 203 

and single-bead chromatography. The Re and Os fractions were then loaded onto Ni and Pt 204 

filaments, respectively, and analyzed for their isotope compositions using negative-ion mass 205 

spectrometry on a Thermo Electron TRITON mass spectrometer. Rhenium isotopes were 206 

measured statically using Faraday Collectors, with the Os measured in peak hopping mode 207 

using the Secondary Electron Multiplier. Total procedural blanks for Re and Os are 2.7 ± 1.1 208 

pg and 0.4 ± 0.4 pg, respectively, with an average 187Os/188Os of 0.37 ± 0.17 (n = 2, 1 SD). 209 

The Re and Os uncertainties presented in Table 1 are determined by the full propagation of 210 

uncertainties from the mass spectrometer measurements, blank abundances and isotopic 211 

compositions, spike calibrations, and the results from analyses of Re and Os standards. The 212 

Re standard data together with the accepted 185Re/187Re ratio (0.59738; Gramlich et al., 213 

1973) are used to correct for mass fractionation. The Re and Os standard solution 214 

measurements performed during the two mass spectrometry runs were 0.5982 +/- 0.0012 215 

(Re std, n = 2) and 0.1608 +/- 0.0002 (DROsS, n = 2), respectively, which agree with the 216 

values reported by Finlay et al. (2011) and references therein.  217 

 218 

3.3. Sulphur Isotope Analytical Protocol 219 

Aliquants of pyrite samples for sulphur isotope analysis were taken from the quartz veins at 220 

the same five locations as those used for the Re-Os geochronology (Table 1). Approximately 221 

0.01g was used for the analysis, with the sulphur extracted as SO2 from the pyrite by fusing 222 

the sample under vacuum at 1076°C in a Cu2O (200mg) matrix (Wilkinson & Wyreet al., 223 

2005). The method of Coleman & Moore (1973) was followed for extracting sulphur from 224 

SO2 from sulphates and. The sample was then analysed on a VG SIRA II mass 225 

spectrometer to obtain values for δ66SO2 which were converted to δ34S. Standard correction 226 

factors were applied (Craig, 1957). Results are given in conventional δ34S notation relative to 227 
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the Vienna Canon Diablo troilite standard (V-CDT). The reproducibility based on full replicate 228 

analyses of internal laboratory standards was ±0.2 per mil (1σ). 229 

 230 

4. Field relationships of the quartz-pyrite veins 231 

The occurrence of quartz veins is a widely recognised, but little described phenomenona in 232 

the rocks of the Assynt Terrane (e.g., the presence of quartz veins is noted in Sheraton et 233 

al., 1973). Some generally foliation-parallel veins are clearly relatively late features that are 234 

closely associated with shearing along Laxfordian shear zones and the development of 235 

schistose, phyllosilicate-rich high strain zones (e.g., Beach, 1976; Beacom, 1999). However, 236 

the present study has revealed that an earlier, much more widespread and distinctive group 237 

of quartz-pyrite veins are present throughout the Assynt Terrane and at least part of the 238 

Gruinard Terrane. The distribution of the quartz veins does not seem uniform – they typically 239 

occur in clusters cutting the gneisses in regions covering areas of tens to hundreds of 240 

square metres, with particularly well-defined groups recognised in the Loch Assynt and 241 

Clashnessie regions of the Assynt Terrane, and along the trace of the CSZ (Fig. 1). 242 

The quartz veins typically range in thickness from a few millimetres to several tens of 243 

centimetres (e.g., Fig. 2a-e, g), and are relatively straight and continuous features that can 244 

be traced for several metres or, less commonly, tens of metres along strike. They have 245 

sharply-defined margins, are occasionally anastomosing and sometimes contain inclusions 246 

of country-rock or clusters of pink K-feldspar. Pyrite is not found in all of the veins, but where 247 

it occurs it is typically either located along the margins as large crystals (>0.5 mm) or as 248 

large clusters (>1cm) of crystals distributed sparsely throughout the veins (e.g., Fig. 2h). In 249 

some cases pyrite clusters have been partially to completely oxidised to hematite or limonite, 250 

particularly where they have been exposed at the surface for an extended period; this often 251 

gives weathered veins a distinctive localised orange-red staining. Within the CSZ, pyrite 252 

crystals are also sometimes found in the sheared gneisses surrounding the vein. In isolated 253 

road cut exposures, the development of quartz-pyrite veins is additionally associated with a 254 
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localised yellow-brown sulphurous weathering of the gneisses, e.g., in roadcuts east of 255 

Lochinver (National grid reference NC 1012 2366; Samples BH2 and 5; Table 1).  256 

 257 

4.1. Cross-cutting relationships 258 

The quartz-pyrite veins display a consistent set of cross-cutting relationships with other 259 

features in the Lewisian Complex. They typically cross-cut the oldest, moderately to 260 

shallowly-dipping Badcallian foliations and folds (e.g., Fig. 2a), although in areas where the 261 

foliation is particularly intense and of variable orientation (e.g. Clashnessie), the veins may 262 

locally be concordant with the local foliation. The veins also consistently cross-cut the 263 

steeply-dipping Inverian shear fabrics of the CSZ (e.g., Fig. 2b) and other minor shear zones 264 

of this age within the terrane, as well as all observed Scourie dykes (e.g., Fig. 2c). Both 265 

veins and dykes are consistently overprinted and reworked by dextral shear fabrics related 266 

to the Laxfordian event, including the development of the central part of the CSZ (Attfield 267 

1987; e.g., Fig. 2d). The quartz veins are also post-dated by ‘late Laxfordian’, epidote-268 

bearing small-scale shear zones and fractures, which exhibit a predominantly sinistral sense 269 

of shear (e.g., Fig. 2e, f; see Beacom et al 2001). Many of the larger quartz vein clasts found 270 

in the immediately overlying basal units of the Torridonian sandstones are plausibly derived 271 

from the basement veins. The quartz-pyrite veins are everywhere cross-cut by gouge-272 

bearing Phanerozoic (post-Cambrian) normal faults (e.g., NC 1020 2360). 273 

Thus the field observations suggest that the quartz-pyrite veins post-date Badcallian 274 

structures, the NW-SE trending Inverian fabrics and Scourie dykes. They appear to pre-date 275 

all Laxfordian fabrics, ‘late Laxfordian’ faults, the deposition of the Torridonian sediments 276 

and all post-Torridonian deformation episodes (mainly faulting).  277 

 278 

4.2. Orientation and kinematics    279 

The orientations of 140 quartz-pyrite veins measured in the Assynt Terrane during the 280 

present study are shown in Figures 3a-c, and the sparse lineations found on the veins in 281 

Figure 3aii. A rose diagram plot (Fig. 3ai) suggests a predominance of NE-SW strikes with 282 
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subordinate NW-SE trends. The regional stereograms (Figs. 3biv-vi & c) better illustrate the 283 

rather wider range of vein orientations, with a reasonably strong concentration of planes 284 

striking NE-SW and, to a lesser extent NW-SE. Both sets display bimodal dip directions 285 

(e.g., NW or SE and NE or SW, respectively; Figs. 3biv-vi & c). These observations suggest 286 

a generally multimodal pattern of fracture orientations. 287 

In order to investigate the possible effects on vein orientation of local country rock 288 

fabrics and Laxfordian overprinting, the data have been plotted according to the age of the 289 

local fabrics they cross-cut or are reworked by (Fig. 3b). In the regions of gneiss dominated 290 

by the Badcallian event, both the foliations (Fig. 3bi) and the veins (Fig. 3biv) have large 291 

variations in their orientations. The foliation shows a poorly-defined N-S trend dipping 292 

shallowly W, whereas the veins show a reasonably strong NE-SW trend, with bimodal dips 293 

steeply to the NW and rather more shallowly to the SE. The Inverian foliation has a strong 294 

NW-SE trend with generally steep dips (Fig. 3bii), whereas the veins show a strong NE-SW 295 

trend with dips mainly being steep and to the NW (Fig. 3bv). Both the Laxfordian foliation 296 

and the veins within the Laxfordian fabrics show a strong NW-SE trend and steep dips (Figs. 297 

3biii and vi), reflecting the strong reworking and reorientation of veins into parallelism with 298 

those fabrics during overprinting deformation.  299 

The data have also been plotted according to the localities where well-defined 300 

clusters of veins are found (Figs. 3ci-vi). The stereoplots for localities such as Clashnessie 301 

and Achmelvich areas (Figs. 3ci-ii) show a wide range of orientations whilst the best defined, 302 

statistically significant trend is found in the Loch Assynt cluster (Fig. 3cv). Here there is a 303 

very well-defined trend striking NE-SW with the majority of veins dipping steeply NW.  It may 304 

be significant that the pre-vein Badcallian foliation in this area is much weaker compared to 305 

areas such as Clashnessie. 306 

The kinematics of the quartz veins are difficult to deduce with any precision. Most of 307 

the veins appear to be dilational (Mode 1 tensile) features based on observed offsets of 308 

markers in the adjacent wall rocks, i.e., the vein opening directions lie at high angles to the 309 

vein walls). A few large veins in the Loch Assynt and Lochinver regions display regular en 310 
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echelon off-shoots (e.g., Fig. 2g) consistent with some degree of vein-parallel shearing 311 

during emplacement (e.g. Peacock & Sanderson 1995). Of the seven veins found with such 312 

off-shoots, five indicated a sinistral and two a dextral sense of shear. There does not appear 313 

to be any obvious orientation control on the shearing directions, suggesting the shearing 314 

may be due to local strain heterogeneities.  A few veins (n = 7) unaffected by Laxfordian 315 

reworking display poorly developed mainly oblique mineral lineations on their outer contacts 316 

(Fig. 3aii). 317 

 318 

56. Rhenium-Osmium Geochronology 319 

The total Re and Os abundances of the pyrite samples range from 6.8 to 25.8 ppb (parts per 320 

billion) and 298.8 to 660.5 ppt (parts per trillion; Table 1), respectively. The majority of the 321 

Os within the samples is radiogenic 187Os (> 92 %). Four of the samples possess > 99 % 322 

radiogenic 187Os (Table 1). As a result, the 187Re/188Os values are high to very high (265.6 to 323 

17531), with the accompanying 187Os/188Os values being very radiogenic (11.04 to 675.2). 324 

The predominance of radiogenic 187Os (187Osr) in the pyrite samples defines them as Low 325 

Level Highly Radiogenic (LLHR; Stein et al., 2000; Morelli et al., 2005). To account for the 326 

high-correlated uncertainties between the 187Re/188Os and 187Os/188Os data we present the 327 

latter with the associated uncertainty correlation value, rho (Ludwig, 1980), and the 2 328 

calculated uncertainties for 187Re/188Os and 187Os/188Os (Table 1). The regression of all the 329 

Re-Os data using Isoplot V. 3.0 (Ludwig, 2003) and the 187Re decay constant () of 330 

1.666×10-11a-1 (Smoliar et al., 1996) yields a Model 3 Re-Os age of 2259 ± 61 (2.9 %) Ma, 331 

with an initial 187Os/188Os of 0.9 ± 9.0 (2, Mean Squared Weighted Deviates [MSWD] = 22; 332 

Fig. 5a). Although the calculated Re-Os age has only a 2.9 % uncertainty, the high MSWD 333 

value (22) suggests that the degree of scatter about the regression line is a function of pyrite 334 

Re-Os systematics (discussed below). The imprecision of the initial 187Os/188Os does not 335 

permit an accurate evaluation of the origin of the Os in the pyrite, however the initial 336 

187Os/188Os value, including the uncertainty, can be used to calculate the abundance of 337 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

14 

 

187Osr from the total 187Os (common plus radiogenic) in the pyrite samples (187Osr1; Table 1). 338 

The 187Osr is a product of 187Re decay and model Re-Os dates for each sample can be 339 

directly calculated using t = ln (187Osr/187Re = 1) / . The model Re-Os dates, with the 340 

exception of sample 64.1, all agree - within uncertainty - with the traditional 187Re/188Os vs 341 

187Os/188Os isochron age (Table 1; Fig. 5a). One sample from a vein cutting Badcallian 342 

gneisses east of Lochinver (64.1; NC 1038, 2249) yields an imprecise model age of 1597.6 ± 343 

1371.2 Ma. Although this date is within uncertainty of the other model ages and the Re-Os 344 

isochron age, its nominal age is significantly younger (~800 Ma) than for the other five pyrite 345 

samples. As such, sample 64.1 may represent a separate, distinct quartz and pyrite 346 

mineralization event. If we consider this to be the case and regress the 187Re/188Os vs 347 

187Os/188Os data without sample 64.1, a 187Re/188Os vs 187Os/188Os age of 2249 ± 77 Ma, with 348 

an initial 187Os/188Os of 3 ± 13, is produced (2, MSWD = 15; Fig. 5a). This Re-Os isochron 349 

age is within uncertainty of that determined from all the Re-Os data, but the degree of scatter 350 

about the isochron is reduced (MSWD of 15 vs 22). 351 

 Isochron ages can also be determined by the regression of 187Re vs 187Osr plus their 352 

uncertainties. Excluding sample 64.1 for the reasons noted above, the 187Re data together 353 

with the 187Osr values (187Osr2; Table 2) calculated using the initial 187Os/188Os value (3 ± 13) 354 

determined from the 187Re/188Os vs 187Os/188Os isochron without sample 64.1 (Fig. 5), a 355 

187Re vs 187Osr isochron date of 2170 ± 180 Ma is obtained (Fig. 5b, initial 187Os = 15 ± 31 356 

ppt, MSWD = 0.6). We note that with the exception of sample 28 (Lochan Sgeireach) Re-Os 357 

model ages calculated using 187Osr based on the initial 187Os/188Os value of 3 ± 13 are 358 

extremely similar (Table 1). However, sample 28 yields a Model age ~450 Ma younger than 359 

an age calculated using the initial of 0.9. Both calculated Model ages have very large 360 

uncertainties. This sample possesses the least amount of 187Osr (~92 ppt – 73%), with its 361 

abundance dramatically affected by the initial 187Os/188Os value (0.9 vs 3; Table 1).   362 

A weighted average of the model Re-Os ages (not including sample 64.1;) calculated 363 

using a 187Osr based on the initial 187Os/188Os value of 3 ± 13) is 2248 ± 38 (MSWD = 0.6; 364 
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Fig. 5c). In summary, the ages determined from both the Re-Os isochron methods and the 365 

weighted average of the Re-Os model ages are all within uncertainty. We favour using the 366 

187Re/188Os vs 187Os/188Os isochron age (without sample 64-1).. From this study we consider 367 

the majority of the pyrite mineralization and by inference the precipitation the quartz pyrite 368 

veins and fracture formation occurred at 2249 ± 77 Ma. 369 

 370 

67. Sulphur Isotope Analysis  371 

All the samples from the sulphur isotope analysis yielded high amounts of sulphur (82 to, 372 

97% yield). The 34S from the sulphides ranges from +3.0 to –2.2 per mil. All the samples 373 

are slightly enriched in 34S relative to 0 per mil, with the exception of sample 64.1, which has 374 

a slightly depleted value of -2.2. This may suggest a slightly different source of the sulphur 375 

for sample 64.1, and coupled with the Re-Os data may support a distinct quartz and pyrite 376 

mineralization event from the other five samples. The range in the 34S values (+3.0 and -377 

2.2) encompasses that of the primitive mantle (Rollinson, 1993). The results therefore 378 

suggest that the sulphur in the pyrite is most likely derived from a source not isotopically 379 

fractionated from the primitive mantle valuesource. 380 

 381 

75. Microstructural textures and inferred deformation mechanisms 382 

75.1. Microstructural textures within quartz-pyrite veins 383 

The quartz-pyrite veins display an array of deformation textures suggesting that they have 384 

experienced a complex history of deformation at different temperatures and pressures. A 385 

number of overprinting relationships are seen which can be related to the relative chronology 386 

of events seen in the field. The deformation textures are described below with reference to 387 

the age of the country rock fabric which the veins either cross-cut or are overprinted by. 388 

 389 

75.1.1Veins crosscutting Badcallian structures 390 
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Despite modest amounts of grain-scale deformation, the veins cross-cutting Badcallian 391 

gneisses (e.g., Fig. 2a, e) preserve a diverse range of deformation microstructures. The 392 

most deformed examples contain large quartz crystals (> 1mm, but typically 3 – 7mm) that 393 

show sweeping undulose extinction and have highly lobate grain boundaries as a result of 394 

grain boundary migration processes during recrystallisation (Stipp et al., 2002). Chessboard 395 

subgrains (e.g. Fig. 4a) within quartz crystals are also common and form in response to the 396 

migration of dislocations within the crystal lattice into subgrain walls during recrystallisation 397 

(e.g. Passchier and Trouw, 2005).  398 

 The least plastically deformed veins cutting Badcallian foliation are found on the 399 

shores of Loch Assynt (e.g., Figs. 2e, g). The quartz crystals within these veins display 400 

undulose extinction, whilst some larger grains contain deformation lamellae, which are zones 401 

of differently orientated crystal lattice separated by dislocations. Grain boundaries have 402 

undergone small-scale bulging during recrystallisation and small grains (<100μm) have 403 

developed within the bulges and along the deformation lamellae (e.g., Fig. 4b).  404 

 Overall, the range of deformation microstructures observed in the quartz veins cutting 405 

Badcallian gneisses suggests that they experienced small amounts of crystal plastic 406 

deformation under moderate temperature (400 - 500°C) conditions. The veins on the shore 407 

of Loch Assynt locally preserve rather lower temperatures textures (perhaps as low as 408 

300°C) and/or higher strain rate conditions. This may be the result of ‘late Laxfordian’ 409 

deformation associated with slip on the Loch Assynt Fault (e.g., like the structures shown in 410 

Figs. 2e, f), to which they are proximal. 411 

   412 

75.1.2  Veins cross-cutting Inverian structures 413 

Veins emplaced into Lewisian gneisses reworked by Inverian deformation (e.g., Fig. 2b) also 414 

show little obvious deformation at outcrop scale. A range of deformation microstructures are 415 

preserved, including undulose extinction, deformation lamellae, new grain growth along 416 

crystal boundaries, subgrain development and the development of lobate grain boundaries. 417 

These are indicative of recrystallisation under low to moderate temperatures (350 - 500°C) 418 
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and high to moderate strain rates. Some veins contain large (>2mm) quartz crystals with 419 

lobate boundaries, formed by grain boundary migration under moderate temperatures and 420 

strain rates, which show grain boundary bulging and the development of new, small grains 421 

(<250μm) within the bulges, particularly at triple-point grain boundaries (Fig. 4c). These 422 

structures are typical of recrystallisation under somewhat lower temperatures (300 - 400°C), 423 

and may indicate a lower temperature event. There is little evidence for this event within the 424 

veins emplaced into Badcallian gneisses, and it may be that it is related to localised later 425 

deformation and/or fluid flow restricted to the Inverian shear zones immediately following 426 

vein emplacement. Alternatively, it may be a weak manifestation of Laxfordian deformation 427 

given the regionally observed coincidence of Inverian and Laxfordian reworking (e.g. Attfield 428 

1987).. 429 

 430 

75.1.3 Veins overprinted by Laxfordian structures 431 

The veins emplaced within the Laxfordian part of the CSZ (e.g., Fig. 2d) have been heavily 432 

reworked at outcrop scale. Many of the grain-scale textures resulting from the 433 

recrystallisation of quartz are similar to those seen in the veins which were emplaced into 434 

gneisses with Badcallian and Inverian foliations, but the finite strains are much higher. In 435 

most veins, larger quartz crystals (>2mm) show sweeping undulose extinction, deformation 436 

lamellae, subgrain development and lobate grain boundaries. These microstructures indicate 437 

deformation under moderate temperatures (350 - 500°C) and strain rates. Relict S-C’ 438 

mylonite fabrics (e.g. Berthé et al. 1979; Snoke et al. 1998) are preserved in the most highly 439 

deformed veins (e.g., Fig. 4d). Sub-parallel fine-grained (<100 μm) bands of feldspar, 440 

muscovite and chlorite define the C-surfaces which are enclosed by polygonal quartz 441 

aggregate (with grains sizes 0.5 – 3 mm). Quartz grain boundaries are often pinned by 442 

aligned micas and some fine aligned grains are completely enclosed by much larger, 443 

undeformed quartz grains (Fig. 4d). These fabrics are typical indicators of significant 444 

secondary grain growth under elevated temperature conditions (e.g., Vernon 1976; 445 

Passchier and Trouw, 2005). 446 
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 447 

75.1.4 Pyrite microstructural relationships 448 

Pyrite occurs in a variety of forms in the veins of the Assynt Terrane. Some samples contain 449 

large clusters of pyrite crystals up to 1.5cm in across (e.g., Fig. 2h) which are intimately 450 

intergrown with quartz (e.g., Figs 4e, f). SEM images reveal the partial alteration of pyrite 451 

grains to iron oxides along grain margins and fractures within some large pyrite clusters 452 

(e.g., Fig. 4g, h). Small (<1mm) pyrite clusters are also associated with the mylonitized 453 

quartz veins within the CSZ. There is little evidence for significant deformation of the pyrite 454 

grains during recrystallization of the surrounding quartz aggregates even in cases where the 455 

intensity of finite plastic strain is high. 456 

 457 

75.1.5 Summary  458 

The microstructural evidence from the veins suggests that most of the pyrite initially 459 

crystallised at the same time as the quartz and that it is therefore a primary mineral phase. 460 

The veins then experienced very modest amounts of deformation and recrystallisation during 461 

a moderate temperature (350 - 500˚C) and low strain rate strain rate event felt throughout 462 

most of the Assynt Terrane. Given the similarity in quartz microstructures and interpreted 463 

palaeotemperatures with the more highly deformed veins in the CSZ, it seems most likely 464 

that the bulk of the modest deformations recorded here are also Laxfordian to ‘late 465 

Laxfordian’ in age (ca. 1780-1400). Laxfordian deformation, especially within the CSZ, 466 

resulted in the formation of mylonitic fabrics within the veins under mostly moderate 467 

temperatures (350 - 500˚C). There may also have been some limited remobilisation and re-468 

precipitation of pyrite related to fluid flow both within the veins and the adjacent sheared 469 

gneisses. 470 

 471 

8. Discussion: 472 

The Re-Os isochron age obtained from the majority of the quartz-pyrite veins (2249 ± 77 Ma) 473 

is consistent with our current understanding of the broad ages of regional 474 
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tectonometamorphic episodes in the Lewisian Complex (Fig. 6). Specifically, they cross cut 475 

older Badcallian (ca. 2760 or 2480 Ma) and Inverian (ca. 2400-2480 Ma) fabrics and are 476 

overprinted/reworked by younger Laxfordian (1790-1660 Ma) structures. The latter suggests 477 

that the Re-Os systematics were not appreciably disturbed by structural reworking and the 478 

upper greenschist conditions associated with the Laxfordian event.  479 

The most recent U-Pb geochronology shows that intrusion of the Scourie dykes 480 

predominantly occurred at 2391 – 2404 Ma, with moderately younger ages (2367 – 2372 481 

Ma) at the SW edge of the Assynt Terrane (Davies and Heaman, 20143).  The ca. 2250 Ma 482 

age for the quartz-pyrite veins falls within the range of ages obtained from the NW-SE 483 

trending Scourie dyke swarm across the entire Lewisian Complex (Fig. 6; 2418 Ma to 1991 484 

Ma; Chapman 1979; Heaman and Tarney, 1989; Cohen et al., 1988; Waters et al., 1990; 485 

Davies and Heaman, 20143). These studies suggest two main episodes of dyke intrusion at 486 

ca. 2418 Ma and 1992 Ma (Fig. 6; Davies and Heaman, 20143), with distinct mantle sources 487 

exploited during each event (Cartwright and Valley, 1991). The idea that there are multiple 488 

episodes of ‘Scourie dyke’s intrusion is consistent with some geological field relationships. It 489 

is known, for example, in the southern region of the Lewisian Complex that some ‘Scourie 490 

dykes’ cut the Loch Maree Group metasediments and metavolcanics, which were thought to 491 

have formed in oceanic basins and accreted to the continental crust through subduction 492 

between 2000 and 1900 Ma (Park et al., 2001).  493 

 All the quartz-pyrite veins observed during the present study seen in the Assynt 494 

Terrane cross-cut Scourie dykes, although this does not preclude the possibility that 495 

regionally there may be some dykes that are younger. However, the Re-Os pyrite dating of 496 

the veins at ca. 2250 Ma suggests a complex polyphase early Palaeoproterozoic tectonic 497 

history of the Lewisian complex (Fig. 6). Veins form by the precipitation of minerals in dilating 498 

hydrofractures and their regional development in clusters and swarms are indicative of 499 

significant phase of crustal-scale fluid flow in the crust (e.g., Sibson, 1996 and references 500 

therein). The simplest types of vein are Mode 1 fractures which open in the direction of the 501 

minimum principle stress and have strike orientations perpendicular to it (e.g., Peacock & 502 
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Mann, 2005). Most of the veins in the Assynt Terrane appear on the basis of their field 503 

relationships to be Mode I features (e.g. Fig. 2a). If so, the prevalence of NE-SW strikes 504 

(e.g., Figs. 1, 3ai) implies a NW-SE opening direction, although the veins show a wide range 505 

of other orientations (Figs. 3b,c) which are attributed to a number of factors: the presence of 506 

highly variable foliation in strongly banded gneisses; the presence of pre-existing fractures, 507 

or to the reworking of veins by Laxfordian fabrics.  508 

The pre-Laxfordian NE-SW orientation and inferred NW-SE opening directions of the 509 

quartz-pyrite veins lie almost orthogonal to the regional NW-SE orientation – and inferred 510 

NE-SW extension direction - of the Scourie dykes. If there are multiple episodes of Scourie 511 

dykes on a regional scale, with some pre-dating and some post-dating the quartz-pyrite 512 

veins, this implies that there were significant changes in the orientation of regional stress 513 

vectors in the 500 Ma period between 2400 and 1900 Ma (Fig. 6). Note, however, that in 514 

common with the Scourie dykes, the sulphur isotopic analysis of the quartz-pyrite veins is 515 

suggestive of a source not isotopically fractionated from the primitive mantle derivation 516 

valueNote, however, that in common with the Scourie dykes, the sulphur isotopic analysis of 517 

the quartz-pyrite veins is suggestive of a primitive mantle derivation (Rollinson, 1993). 518 

 Although tThe Re-Os model agedata for of sample 64.1 provide a highly imprecise 519 

model age (1597.6 ± 1356 Ma) its nominal age is considerably younger than the model ages 520 

for the other samples (2198.5 – 2328.7 Ma), and, in addition, has a very large uncertainty as 521 

well as the lowest Os abundance of (242.8 ± 33.9 ppb) of all the samples; it. Furthermore, 522 

sample 64.1 is also the only sample with a depleted δ34S value (-2.2). Although this value 523 

could indicate that the sulphur source is not isotpically fractionated from the primitive mantle 524 

valueis derived from the primitive mantle, like the other samples, it may be that the 525 

sulphuride within the vein pyrite has a slightly different origin to that found within other veins, 526 

or that it may have been disturbed following emplacement, perhaps related to a later phase 527 

of ‘late Laxfordian’ brittle fracture fractures and fluid ingress. Further work and dating is 528 

required to verify the age obtained and better constrain the geological and geochronological 529 

significance of this younger age. 530 
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 531 

86.1. Implications for terrane models 532 

Dating of the TTG protoliths suggests that the gneisses of the Gruinard Terrane are at least 533 

100 Ma younger than those of the Assynt Terrane and underwent granulite metamorphism at 534 

2730 Ma (Love et al., 2004; Park, 2005). Thus they are thought to belong to different and 535 

separate Archaean terrane which amalgamated along the Strathan Line, south of Lochinver, 536 

during Inverian folding and retrogression (Fig. 1, Love et al., 2004). The presence of post-537 

Inverian quartz-pyrite veins within both the Assynt and Gruinard Terranes is consistent with 538 

this proposal. 539 

 The amphibolite-facies gneisses of the Rhiconich Terrane to the north have yielded 540 

protolith ages of 2840-2800 Ma and a record magmatism at 2680 Ma (Kinny and Friend, 541 

1997), but there is no apparent evidence of metamorphism at ca. 2780 Ma.  This led Friend 542 

and Kinny (2001) to suggest that the Assynt and Rhiconich Terranes were separate 543 

Archaean crustal blocks of differing age and early history that were only finally juxtaposed by 544 

a major episode of shearing during the along the Laxfordian Shear Zone at ca. 1750 Ma 545 

(Fig. 1). This seems consistent with the apparent absence of ca. 2250 Ma quartz-pyrite veins 546 

in the Rhiconich Terrane. However, recent fieldwork and dating by Goodenough et al. (2010; 547 

2013) has found evidence that the Laxford Shear Zone initially formed as an Inverian 548 

structure, pre-dating the intrusion of a regional suite of arc-related granitic sheets ca. 1880 549 

Ma into both the Assynt and Rhiconich Terranes. These granites are then overprinted by the 550 

main Laxfordian deformation and associated amphibolite-facies metamorphism, which 551 

ranges from 1790-1670 Ma (Corfu et al., 1994; Kinny and Friend, 1997; Love et al., 2010). In 552 

this case the absence of the quartz-pyrite veins to the north of the Laxford Shear Zone is 553 

perhaps consistent with significant Laxfordian-age reactivation leading to final juxtaposition 554 

of the two terranes. 555 

 556 

97. Conclusions 557 

Formatted: Font: Italic

Formatted: Font: Italic



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

22 

 

A hitherto unrecognised set of quartz-pyrite veins have been identified in the Assynt and 558 

Gruinard terranes of the Lewisian complex. The veins consistently cross-cut Badcallian and 559 

Inverian structures in the gneisses, as well as (at least) the majority of Scourie dykes. They 560 

are reworked during Laxfordian shearing events and are also cross cut by a range of later 561 

brittle faulting events. The dominant strike direction of the quartz-pyrite veins suggests 562 

emplacement during a regional NW-SE extension of the crust, whilst sulphur isotope 563 

analyses of the pyrites suggest are consistent with a primitive mantle origin for the fluids.  564 

 The Re-Os date of 2249 ± 77 Ma for the pyrite within the veins is consistent with the 565 

field relationships and other known geochronological constraints in the Lewisian Complex. 566 

Both the Scourie dykes and quartz-pyrite veins are most likely developed as Mode I tensile 567 

fractures, but their almost orthogonal present day orientations suggests that whilst the dykes 568 

were emplaced during two or more periods of NE-SW crustal extension and associated 569 

mafic magmatism ca. 1900-2400 Ma, the quartz-pyrite mineralization ca. 2250 Ma occurred 570 

during an intervening phase of NW-SE extension. 571 

The presence of the quartz-pyrite veins in both the Assynt and Gruinard terranes 572 

confirms their amalgamation prior to ca. 2250 Ma, most likely during the Inverian. The 573 

apparent absence of the veins in the Rhiconich Terrane suggests it may not have been 574 

finally amalgamated with the Assynt and Gruinard terranes until the Laxfordian. More 575 

generally, this study demonstrates the potential value of the Re-Os technique as a means of 576 

dating sulphide mineralisation events in continental basement terrains worldwide. 577 
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Figure Captions 822 

Figure 1) Highly simplified geological map showing the location and orientations of the 823 

quartz vein clusters (i-vi) studied within the Assynt Terrane of the Lewisian Complex. Note 824 

that this is not an exhaustive assessment of all quartz veins present in the Assynt Terrane, 825 

i.e. there may be many more clusters than are shown here. Inset map shows general 826 

location in Scotland and main Lewisian Complex terranes discussed in this paper. 827 

 828 

Figure 2) Field relationships of quartz-pyrite veins. a) NE-SW vein cross-cutting shallowly-829 

NW-dipping Badcallian foliation near Clashnessie (NC 0855 3102). Note offset of layers 830 

across vein indicating Mode I tensile opening (arrows); b) NE-SW vein (below hammer) 831 

cross-cutting steep NW-SE Inverian foliation in Canisp Shear Zone (NC 0521 2593); c) NE-832 

SW vein cross-cutting Scourie dyke on the shore of Loch Assynt (NC 2135 2510); d) NW-SE 833 

vein folded and reworked by Laxfordian fabrics, Canisp Shear Zone (NC 0515 2620); e) NE-834 

SW vein cut and offset 10cm by NW-SE sinistral brittle fault in Badcallian gneisses close to 835 

the trace of the Loch Assynt Fault (NC 2110 2517); f) En echelon tensile fractures filled with 836 

epidote indicating sinistral shear in Badcallian gneisses close to the trace of the Loch Assynt 837 

Fault (NC 2110 2517); g) ENE-WSW vein with en-echelon off-shoots, indicating a small 838 

component of sinistral shear parallel to the vein margins (NC 2135 2510); h) Large pyrite 839 

cluster within a quartz vein (NC1038 2249). Note fracturing of pyrite and characteristic iron 840 
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oxide staining.  841 

Figure 3) Orientation data for the regional quartz-pyrite vein suite. a) i) Rose diagram of vein 842 

trends for the entire Assynt Terrane (for locality-based versions, see Fig. 1), ii) lower 843 

hemisphere equal-area stereoplot of veins with lineated margins; b) Equal area stereoplots 844 

of gneiss foliations (i-iii) and of associated veins from each locality (iv-vi) grouped according 845 

to the inferred age of the wall rock fabric; c) Equal area stereoplots of quartz vein clusters 846 

measured in the six localities (i-vi) shown in Fig 1. 847 

Figure 4) Representative microstructures of quartz-pyrite veins viewed using optical 848 

microscope and FESEM. a) Chess-board extinction in large quartz crystals from vein cutting 849 

Badcallian gneisses at Kylesku; b) New grains forming along grain boundaries and 850 

deformation lamellae, reflecting slightly lower temperature overprint in vein located close to 851 

the trace of the Loch Assynt Fault; c) Development of new grains at triple junction grain 852 

boundaries overprinting higher temperature deformation features in vein cutting Inverian 853 

fabrics near Lochinver; d) Recrystalised S-C fabric in highly sheared veing from the 854 

Laxfordian central part of the Canisp Shear Zone, e) Quartz intergrown with within blocky 855 

pyrite cluster; f) Intricate intergrowths of pyrite and quartz from vein cutting Scourie dyke at 856 

Loch Assynt; g) BSEM image of smooth pyrite (light grey) intergrown with quartz (dark grey) 857 

from the same sample as f). The radial fibrous material is iron oxide replacing pyrite; h) 858 

Alteration of pyrite (bright grey) along fractures to iron oxides (darker mottled greys), Sample 859 

64.1 (see text for details). Note that all the optical micrographs are cross-polar views. 860 

 861 

Figure 5) Re-Os data for the pyrite from the quartz-pyrite veins. A) 187Re/188Os and 862 

187Os/188Os plot for all samples and all samples minus sample 64.1; B) 187Re vs 187Osr plot, 863 

with the 187Osr data calculated using an initial of 3 ± 13; C) Weighted average of Re-Os 864 

model ages, with the model ages calculated using an initial of 3 ± 13. See text for 865 

discussion. 866 

 867 
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Figure 6) The chronology of events during the Archaean to Proterozoic in the Assynt 868 

Terrane, showing the range of possible Scourie dyke episodes and the vein emplacement 869 

period ascertained during the present study. 870 

 871 

Table Caption 872 

Table 1) Re-Os and S isotope data for pyrite from quartz veins in the Lewisian Complex, NW 873 

Scotland. All uncertainites are reported at the 2s level, 187Os/188Os uncertainties reported at 874 

2SE; all data are blank corrected, blanks for Re and Os were 2.7 ± 1.1 and 0.40 ± 0.42 pg, 875 

respectively, with an average 187Os/188Os value of 0.37 ± 0.17 (1SD, n = 2). All uncertainities 876 

are determined through the full propagation of uncertainties of the Re and Os mass 877 

spectrometer measurements, blank abundances and isotopic compositions, spike 878 

calibrations, and reproducibility of standard Re and Os isotopic values. 187Osr presented are 879 

calculated using initial 187Os/188Os, plus its uncertainty, from regression of data using 880 

187Re/188Os vs. 187Os/188Os isochron plot; rho is the error correlation. 881 

1= 187Osr determined from an initial 187Os/188Os of 0.9 ± 9.0 (Fig. 5A). 882 

2= 187Osr determined from an initial 187Os/188Os of 3 ± 13 (Fig. 5A). With the exception of 883 

sample RO297-3/28, the calculated %187Osr is very similar using either initial 187Os/188Os 884 

values of 0.9 ± 9.0 or 3 ± 13. For sample RO297-3/28 the %187Osr decreases to ~72.8% 885 

using an initial 187Os/188Os value of 3 ± 13. A model age can be directly calculated using 886 

187Osr/187Re = elt-1 887 

3 = Model age determined using an initial 187Os/188Os value of 0.9 ± 9.0 (Fig. 5A). 888 

4 = Model age determined using an initial 187Os/188Os value of 3 ± 13 (Fig. 5A). 889 

5 = The reproducibility based on full replicate analyses of internal laboratory standards was 890 

±0.2 per mil (1σ). 891 

 892 
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Table 1: Re-Os and S isotope data for pyrite from quartz veins in the Lewisian Complex, NW Scotland.

Batch/Sample Location (Lat/Long) / OS Re (ppb) total ± Os (ppt) total ±
187

Re/
188

Os ±
187

Os/
188

Os ± rho
187

Re (ppb) ±
187

Os
r
 (ppt)

1
±

187
Os

r
 (ppt)

2
± %

187
Os

r
Model age

3
± Model age

4
± d

34
S (‰)

5

Gcinard Bay

RO297-2/G-Bay 57˚51.567’ N / 005˚ 27.121' W 25.2 0.1 602.1 45.1 12670.5 627.9 473.6 27.4 0.851 15.86 0.06 591.6 21.1 589.0 24.1 99.8 2198.5 78.9 2189.0 90.1 3.0

8310, 7817

Lochan Sgeireach

RO297-3/28 58°10.640' N / 005˚16.374'W 6.8 0.0 298.8 26.9 265.6 21.2 11.04 1.4 0.636 4.27 0.02 163.1 145.7 129.3 209.8 91.8 - 72.8 2249.4 2010.2 1790.5 2904.7 1.1

0755, 2560

Waterworks

RO297.5/64.1 58°09.049' N / 005°13.357' W 8.0 0.0 242.8 33.9 395.1 49.5 11.56 2.2 0.663 5.02 0.02 135.5 116.3 92.2 1597.6 1371.2 -2.2

1038, 2249

Lochniver

RO143-1/BH2 58°09.599' N / 005°13.530'W 25.8 0.1 660.5 23.3 4762.4 123.4 186.3 4.9 0.963 16.22 0.06 631.7 30.9 624.6 44.4 99.5 2293.0 112.5 2267.5 161.6 1.9

RO143-4/BH5 58°09.599' N / 005°13.530'W 23.8 0.1 623.8 20.0 4041.8 96.9 160.8 3.8 0.974 14.98 0.06 592.5 33.4 584.7 48.2 99.4 2328.7 131.7 2298.7 189.8 1.8

1012, 2366

Loch Assynt

RO194-2/LA2 58˚10.703' N / 005˚02.471' W 14.6 0.1 358.2 49.4 17531.0 1729.3 675.2 66.6 0.998 9.19 0.04 353.8 5.0 352.7 7.0 99.8 2265.5 32.9 2258.6 45.7 0.9

2050, 2540

Table
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