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Summary 16 

It is not yet clear how soils are responding to a warming climate. A major study using 17 

the National Soil Inventory (NSI) of England and Wales reported large declines in 18 

soil carbon concentration across 11 land uses between 1978 and 2003 and concluded 19 

there was a link to climate change. But a second, almost contemporary study, 20 

recorded no significant changes, raising the possibility that the reported declines were 21 

caused by changes in land use and management rather than climate change. We have 22 

used “space for time” substitution on the data from the initial NSI study, combined 23 

with changes in rainfall and temperature over the survey period, to determine the 24 

extent to which the declines in soil carbon observed in the second study could be 25 

predicted from changes in climate. For organo-mineral and mineral soils, little of the 26 
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observed decline in carbon concentration can be predicted from changes in climate; in 27 

contrast, 17- 40% of the change reported for organic soils in semi-natural habitats can. 28 

We found that carbon concentration in organic soils declines sharply as temperatures 29 

exceed ~7.5
o
C, mirroring independent observations for the decline in bog and dense 30 

shrub moor vegetation as temperatures rise above 7
o
C, and raising the possibility that 31 

climate change may influence soil carbon indirectly by changing vegetation cover and 32 

hence litter quality. Used with medium emission climate change projections, we 33 

estimate that soils in England and Wales could be losing an additional 0.77 – 2.18 Tg 34 

of carbon annually in response to climate change. 35 

 36 

 37 

Introduction 38 

Soils and vegetation store ~5% of global carbon but they contribute ~50% of the 39 

carbon dioxide flux to the atmosphere (IPCC, 1991; 2007). It is not yet clear how they 40 

are responding to a warming climate. The processes that determine soil carbon 41 

concentration – losses via soil respiration and gains through plant returns – are both 42 

expected to increase with temperature (Smith et al., 2008; Smith & Fang, 2010); and 43 

for respiration, recent evidence appears to confirm an increase over time that is related 44 

to air temperatures (Bond-Lamberty & Thomson, 2010)  What is less certain, but of 45 

crucial importance, is whether the balance between these opposing processes will 46 

change under a warming climate. If the loss of carbon through soil respiration 47 

increases more rapidly than carbon returns in plant debris, soils could provide a 48 

positive feedback to climate change (Cox et al., 2000). 49 

 50 
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Measurements of changes in soil carbon concentration over time could, in principle, 51 

provide unequivocal evidence on the balance between losses and gains, but they are 52 

problematic. Detecting small changes against a large and variable background is 53 

challenging; disentangling land use effects from those due to climate change even 54 

more so. A major study using the National Soil Inventory  of England and Wales 55 

(NSI) reported large declines in soil carbon between the periods 1978 – 83 and 1995 – 56 

2003, called here the first and second NSI surveys (Bellamy et al., 2005).  The fact 57 

that the changes were irrespective of land use led the authors to conclude that there 58 

was a link to climate change. But data from the Countryside Survey (CS), collected 59 

over a similar period, showed no significant change in soil carbon concentration, 60 

suggesting that the declines in the NSI study were unrelated to climate change 61 

(Emmet et al., 2010).  More recently, two studies focussing primarily on the mineral 62 

soils in the NSI study, concluded that at most, 10-20% of the observed changes could 63 

be attributable to climate change. Reductions in cattle stocking densities on grazed 64 

land and the movement to new equilibrium conditions in arable land, were cited as 65 

more plausible mechanisms  (Smith et al., 2007; Kirk & Bellamy, 2010). It should be 66 

noted that 80% of the loss reported in the NSI study was for organic soils, a soil type 67 

not normally used for intensive cattle production in the UK. Other studies have 68 

reported no significant change in soil carbon over time (Kirby et al., 2005; 69 

Tomlinson, 2005; Tomlinson & Milne, 2006); while studies in the Netherlands and 70 

Belgium concluded that the observed changes were explicable using changes in land 71 

use or management without the need to invoke climate change (Goidts & Van 72 

Wesemael, 2007; Reijneveld et al., 2009). Indeed Bell et al., (2012) have shown for 73 

the UK, that although an individual field under constant land use would have 74 

experienced declines in soil carbon concentration over the period, the pattern of land 75 
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use change across the whole UK would have resulted in an increase in soil carbon 76 

nationally. 77 

 78 

One alternative to studying soil carbon concentration over time is to use  “space-for-79 

time substitution” in which changes in carbon across climatic gradients at one time, 80 

are used to predict carbon under a future climate (Pickett, 1989; Fantappie et al., 81 

2011).   82 

We have used the technique of “space for time substitution” on the soil carbon 83 

concentration from the first NSI survey (1978-83) to derive regression models 84 

between carbon concentration and mean annual temperature and rainfall for each of 85 

the 11 land uses reported by Bellamy et al., (2005). The regression models were 86 

combined with the average temperatures and rainfall for organic or organo-87 

mineral/mineral sites for each land use at the first and second NSI surveys, to model 88 

the change in soil carbon at the second survey that could be predicted solely from 89 

changes in climate. We have also used agricultural census data between the 1980s and 90 

2000 to estimate the likely contribution to soil carbon declines from changes in 91 

animal stocking densities.  92 

 93 

There is some evidence that vegetation in semi-natural habitats such as bogs, responds 94 

to increases in temperature in three stages. Up to a threshold temperature around 7
o
C, 95 

little change is apparent; between 7 and 9 
o
C  the probability of bog and dense shrub 96 

moor declines sharply, stabilising at values close to zero above 9
o
C  (Hossell et al., 97 

2000). We have examined the possibility that climate-related changes in vegetation 98 

cover, and hence substrate quality, could influence soil carbon concentration in semi-99 
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natural habitats by using two-stage regression models, and a logistic model (in effect a 100 

three stage regression model) similar to that used by Hossell et al., (2000). 101 

 102 

In addition to predicting the changes in soil carbon between the first and second NSI 103 

surveys, we have combined the  regressions with climate projections from the UK 104 

Climate Impacts Programme (Jenkins et al., 2009) to estimate climate-related changes 105 

in soil carbon stocks up to 2030. 106 
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Materials and Methods 

Space for Time Substitution 

Space–for-time substitution involves determining regression relationships across 

gradients at one time to predict future behaviour under conditions when one or more 

of the covariates has changed (Pickett,1989). It is attractive in that it allows long-term 

dynamics to be explored without the need for costly long-term experiments. For soil 

carbon it can also be realistic in that variations in soil carbon that could be related to 

climate are studied alongside other causal factors (Berg et al., 1993; Gholz et al., 

2000; Meier & Leuschner, 2010;Fantappie et al., 2011). Fukami & Wardle concluded 

that space for time substitution using gradient studies are valuable “not necessarily 

because they represent typical ecosystems, but because there are few confounding 

factors that influence ecosystem processes, thus making it easier to infer causal 

relationships (Fukami & Wardle, 2012). 

 

But there are limitations. Analysing studies in which space-for-time approaches were 

used to reconstruct vegetation succession chrono-sequences, Pickett concluded that 

the approach failed where “unrecognised effects in the past of a system were of large 

magnitude” so that differences in vegetation which actually stemmed from different 

starting states, were mistakenly interpreted as reflecting different stages in the 

chronosequence (Pickett, 1989).  Because we are using observed data as the starting 

not the end point of our studies, this is not an issue here. Pickett also observed that the 

approach was compromised when the effects of other driving variables such as land 

use or cover, elevation and soil type were not minimised (Pickett, 1989). The NSI 

data are already stratified by land use; we have further stratified the data into those 
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sites on organic or organo-mineral/mineral soils to reduce the effect of soil type and, 

indirectly, the influence of elevation (see later).   

 

The reliability of space for time substitution to predict future behaviour depends on 

the stability of the regression relations over time. If the relation between the 

covariates disappears over time, the predictions will be unreliable. We have tested the 

robustness of the regressions based on the first NSI survey by comparing them with 

similar regressions based on the soil carbon and meteorological data for the second 

NSI survey, conducted approximately 20 years after the first.  

 

Soil Carbon Data 

The carbon concentration data from the first NSI survey (1978-1983), categorised into 

the same 11 land uses, were used in the regressions. We further stratified the data into 

those sites on organic soils and those on organo-mineral/mineral soils. This stabilised 

the variance of soil carbon in the regression analyses, and indirectly reduced the effect 

of soil type and elevation, one of the main problems in space for time substitutions 

(Picket, 1989). A carbon concentration of 150 g kg
-1

 was used to delineate organic 

from organo-mineral/mineral soils (Hodgson, 1997).  

 

The second NSI survey (1995-2003) re-sampled a subset of sites sampled in the first 

survey (1978-1983). These data were also further stratified into those sites on organic 

soils and those on organo-mineral/mineral soils. 

 

Changes in soil carbon between the first and second NSI surveys are as reported by 

Bellamy et al., (2005); we refer to them as the NSI changes. The intervals between the 
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first and second NSI surveys varied across and within the land uses. For this work, the 

initial survey was taken as centred on 1980. The resurveying of arable sites was 

centred on 1993; rotational grass sites on 1994; permanent grass on 1996 and for all 

other land uses on 2003. These intervals are important in estimating the changes in 

temperature and rainfall between the two surveys. 

 

 In addition to the NSI data, two other soil carbon data sets have accurate sample 

locations that allow space for time substitutions. These were used to check the 

regressions models derived using the NSI data.  The Representative Soil Sampling 

scheme (RSS) ran from 1969 to 2000, sampling arable, rotational and permanent grass 

sites. Most samples were taken between 1978 and 1990, a period when mean 

temperature and rainfall was approximately constant (data not shown). The Woodland 

survey of 1971 provides soil carbon data for deciduous woodland at 103 identifiable 

locations (Kirby et al., 2005).  

 

The NSI data from the first survey, and the initial soil carbon concentrations, are 

summarised in Table 1. 

 

 

Associating soil carbon concentration and meteorological data to develop regression 

models 

Temperatures in Central England have risen by ~1.0
o
C since the 1970s (Jenkins et al., 

2009). It is unlikely that changes in soil carbon concentration in response to annual 

changes in mean temperature and rainfall would be detectable, but the time lag over 

which a consistent change would be become detectable is not well defined. We 
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derived mean temperatures and rainfall for each sample location in the first NSI 

survey, averaged over either 10 (1971-80) or 30 years (1951-80) prior to the 

sampling, by mapping each location to 5 x 5 km climate data supplied by the UK 

Meteorological Office. We also derived mean temperature and rainfall for each 

sample location, averaged over the period 1961-90, using 1 x 1 km climate data 

supplied by the UK Meteorological Office. The 1961-90 period is the baseline for 

climate change scenarios predictions. Regression coefficients derived using the 10 

year average climate data were, with one exception, not significantly different from 

zero and are not reported here. The regression models using the 1951-80 and 1961-90 

climate data were not significantly different; for clarity only the 1961-90 models will 

be presented here. 

 

To estimate changes in soil carbon concentration between the first and second NSI 

surveys that could be attributed to climate, we combined the 1961-90 regression 

models with changes in the 30 year averaged rainfall and temperature between the 

first and second NSI surveys. This was done for each land use (and the subsets of 

organic or organo-mineral/mineral) in the first NSI survey. Average temperature and 

rainfall at the first and second NSI surveys are given in Table 1. 

 

TABLE 1 HERE 

 

We also combined the 1961-90 regression models with 25 x 25 km gridded climate 

predictions for 2010-2030 from UKCP09 (Jenkins et al., 2009) to estimate changes in 

soil carbon under a warming climate. UKCP09 presents predictions for low, medium 

and high emission scenarios at probability levels of 10%, 50% and 90%. The 10% 
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probability level is interpreted as indicating that future change is unlikely to be less 

than the modelled scenarios; the 90% level indicates that change is unlikely to be 

more than the modelled scenarios. We have used climate predictions for the medium 

emission scenario for the period 2010-2030; predictions beyond 2030 yield 

temperatures outside the data used to derive the predictive regressions. All spatial 

analyses were performed using the Spatial Analyst module of ArcMap 9.3®. 

 

We tested the stability of the regression models over time by deriving a second set of 

multiple regression models based on the soil carbon data from the second NSI survey 

combined with meteorological data averaged over the 30 years prior to the second 

sampling date. For arable, rotational and permanent grassland sites, meteorological 

data were averaged over the period 1965 – 1994; for other sites the averaging period 

was 1974 – 2003. These regression models based on data for the second NSI survey 

were then compared with the models derived from the first NSI survey. 

 

Regression analysis 

Preliminary analysis of the data sets indicated a small number of outlier data points 

(Studentised residual >2). These were removed for the main analyses.  

 

We fitted multiple regression models as in equation (1) to all the data sets 

 

RcTbaY **      (1) 

 

Where Y is soil carbon concentration (g kg
-1

), T and R are mean temperature (
o
C) and 

rainfall (mm) respectively, and a, b and c are regression coefficients. Parabolic 
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models (those including T
2
 and P

2
), or the inclusion of temperature-rainfall interaction 

provided no additional predictive power compared to a multiple regression on 

temperature and rainfall.  

 

The NSI survey data was based on a 5 x 5 km regular grid. Ordinary Least Squares 

(OLS)  to estimate regression coefficients is not appropriate for such sample designs 

as they assume the residuals are independent random variables and fail to account for 

any spatial correlation  between samples (Lark & Cullis, 2004). We fitted multiple 

regression models based on equation (1) to all the data sets from the NSI first survey 

using Residual Maximum Likelihood (REML). For each data set we compared 

models with spherical and exponential spatial covariance error structures with models 

with no spatial structure.  All REML analyses were carried out using the R package 

(Pinheiro & Bates, 2000). 

 

Two-stage regression models 

Equation (1) may not be the most appropriate model for organic soils where carbon 

concentrations are high. Carbon loss from high organic matter soils is not manifested 

by a reduction in carbon concentration because such soils have negligible mineral 

contents, and carbon loss results in a reduction in peat thickness rather than a decline 

in soil carbon concentration. There is no consensus on the carbon concentration above 

which dilution by a mineral fraction is negligible. Lucas (Lucas, 1982) quotes 520 g 

kg
-1

 as a typical carbon concentration for oligotrophic peats; Gorham (Gorham, 1991) 

uses a similar figure. Turunen (Turunen, 2008) estimated an average carbon 

concentration of 503 g kg
-1

 using data on 3670 Finnish peats. Lindsay  (Lindsay, 

2010) estimated an average carbon concentration for peats of 520 g kg
-1

.  
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Preliminary analyses indicated that soil carbon in organic soils was negatively 

correlated with temperature but not correlated with rainfall. Accordingly, for the 

organic soils in the NSI data, in addition to models based on equation (1), we also 

fitted two-stage regression models to reflect the observation that at high soil carbon 

concentrations (i.e. low temperatures), dependence on temperature may not be 

apparent; such dependence only becoming apparent at higher temperatures (i.e. lower 

carbon concentration). Two stage regressions based on equations 1(a) and 1(b) were 

fitted using maximum likelihood estimation in the segmented package in R (Muggeo, 

2003). 

 

;aY      T ≤ Tc                                                                               (1a) 

 

)(* cTTbaY         T > Tc                                   (1b) 

Equations (1a) and (1b) imply that at temperatures below Tc, soil carbon 

concentration is constant; above Tc, soil carbon is related to temperature. 

 

Logistic model 

To test the hypothesis that organic soils in semi-natural habitats show similar 

temperature dependence to that observed for vegetation in such habitats, we also fitted 

a four parameter logistic model similar to that used by Hossell et al., (2000).  

s

M

T

YY
YY














1

)( minmax

min     (2) 

Where M is the mid point of the slope defined by s, and Ymax and Ymin are the 

maximum and minimum asymptotic soil carbon densities. Equation (2) was fitted to 
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the pooled data for the four semi-natural land uses (rough grazing, upland grass, 

upland heath and bog) as these are likely to be the  land uses in the study by Hossell et 

al., (2000). 

 

As the data from the RSSS and the woodland survey were not based on a regular grid 

design,  the regression coefficients in equation (1) were estimated using OLS. 

 

Assessing model performance 

Regression coefficients were tested for significance against the null hypothesis that 

they were zero; P values greater than 0.05 are reported as not significant. 

The significance of spatial dependence in the NSI data sets was assessed by 

likelihood-ratio tests on models based on equation (1) with either spatial or 

exponential spatial error structures, compared to a null model with no spatial 

component (Pinheiro & Bates, 2000). Where spatial models were significantly 

different from the corresponding null model, model performance was assessed using 

Aikake information criterion (AIC) –the model with the lowest AIC considered the 

“best fit” – the range over which the spatial structure operated, and the proportion of 

the unexplained variation which was spatially structured. Adjusted r
2
 was calculated 

for each model to give an estimate of the variability explained. 

 

The performance of piecewise regression models, which were fitted using maximum 

likelihood, and the OLS regression models applied to the RSSS and woodland survey 

data were assessed using adjusted r
2
. 
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Quantifying  uncertainty 

Uncertainties in the regression coefficients were propagated into predictions of soil 

carbon concentration either directly from the regression equations or using Monte 

Carlo simulations with the initial and final temperature and rainfall. All Monte Carlo 

simulations were carried out in @Risk®. 

 

Estimates of Q10 

Applying Boltzmann’s distribution law to the temperature response of biological 

processes has led to the Q10 concept. A Q10 of 2 implies the rate of a biologically 

mediated reaction doubles for a 10
o
C rise in temperature. It is not possible to derive 

Q10 values directly from the change in soil carbon across a geographical climatic 

gradient. For this work, Q10 was estimated using the single pool model of soil carbon 

following the approach used by Kirk and Bellamy (2010). 

 

Equation 2 is the single-pool model of soil carbon dynamics most appropriate for the 

data in this study. 

 

)(. tCkI
dt

dCt       (2) 

 

Where Ct is soil carbon at time t, I is the annual rate of carbon input to the soil and k 

is the first order rate constant for soil carbon loss. The solution to equation (2) for  

constant input and first order rate constant is given in equation (3) where C0 is soil 

carbon at t=0. 

kIekICC kt

ot /)./(      (3) 
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Equation (3) indicates that as t increases, Ct tends to I/k, the equilibrium soil carbon 

for those conditions. Thus, for two sites at or near equilibrium (indicated by subscripts 

1 and 2), which started with the same carbon concentration but were subject to 

different average temperatures and hence different rates of input and decomposition: 

  
1

2

2

1

1

2 .
I

I

C

C

k

k
     (4) 

If I2 ≈ I1 

      
1

2

2

1

k

k

C

C
    (5) 

      

Q10 is calculated as: 

 

 T

k

k
Q













/10

1

2
10    (6) 

Where k2  and k1 are first order decomposition rates at two temperatures differing by 

Δt. Substituting equation 6 with equation (5) allows Q10 to be estimated directly from 

soil carbon concentration at two temperatures differing by ΔT as in equation (7).  

 

 T

C

C
Q













/10

2

1
10    (7) 

 

The assumption that input rates do not change will tend to underestimate Q10 for 

decomposition. If the soils are not at equilibrium with respect to carbon, this approach 

will overestimate Q10 for soils rising to a new equilibrium and underestimate Q10 for 

soils declining to a new equilibrium soil carbon. 
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Estimating the contribution of changes in stocking density 

Two papers analysing the original NSI results, speculated that much of the reported 

change in soil carbon concentration in grazed land on mineral soils might be 

attributable to changes in carbon returns resulting from changes in cattle stocking 

density (Smith et al., 2007; Kirk & Bellamy, 2010). Equation (2) provides a simple 

estimate of the effect of reduced carbon inputs on equilibrium soil carbon (=I/k). 

Assuming k is constant, a reduction in carbon returns, I, translates into a proportionate 

reduction in equilibrium soil carbon. Between 1985 and 1994 (approximately the 

sampling period for rotational and permanent grass) cattle numbers (dairy, beef and 

calves) in England fell by 19% while sheep numbers (sheep and lambs) rose by 22% 

(Defra, 2009). Combined with estimated annual carbon returns per animal of 560 kg 

C for dairy, 505 kg C for beef, 100 kg C for calves, 60 kg C for sheep and 26 kg C for 

lambs (ADAS, 2011) this implies an average reduction in carbon returns of ~ 7% for 

permanent and rotational grass.  For rough grazing, the calculation was performed for 

the period 1985 -2003 (the date of the second survey) and excluded dairy cattle which 

are unlikely to be present on rough grazing. This gave an estimated reduction in 

carbon returns of ~15%. 
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 Results 

Regression modelling 

Of the 14 data sets in the first NSI survey (8 organo-mineral and 6 organic) for which 

a significant multiple linear regression was obtained, 5 showed no significant 

difference between spatial and null models, and for the remainder, up to 3% of the 

unexplained variation was spatially structured.  Logistic models based on equation (2) 

including a spatial component were not significantly different from the corresponding 

null spatial model.  Following Bellamy et al., (2005), we conclude that the inclusion 

of a spatial component in the regression models is unjustified. 

 

Table 2 summarises the regression coefficients obtained for MLR applied to the 

organo-mineral/mineral soils in the NSI data, the 3 land uses in the RSS data set and 

the woodland survey 1971 data. Figures in brackets are the standard errors of the 

regression coefficients. Table 3 presents the regression coefficients for the two-stage 

regression models applied to the organic soils in the NSI data.  

 

TABLES 2 AND 3 HERE 

 

The regression coefficients derived from the RSS data for arable and permanent grass 

are within one standard error of those derived using the NSI data. The model for 

rotational grass using the RSS data differs from that based on the NSI data; the RSS 

model shows a significant negative correlation with temperature and explains 17% of 

the variability, while the NSI data shows no correlation with temperature and the 

model explains very little of the variability. Neither the NSI or the woodland survey  
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regression models for deciduous woodland are significant. Overall, the models agree 

with other work indicating that in general, soil carbon concentration decreases with 

increasing temperature and increases with rainfall (Burke et al., 1989; Miller et al., 

2004; Dai & Huang, 2006).  

 

There is a clear separation between sites on organo-mineral/mineral and organic soils. 

Carbon concentration in organo-mineral/mineral soils is mainly weakly positively 

correlated with rainfall but insensitive to temperature. Only those sites under 

permanent grass (and rotational grass using RSS data) show a small negative 

correlation with temperature. Uniquely, carbon concentration in lowland heath sites 

(all organo-mineral/mineral) is positively correlated with both temperature and 

rainfall.  

 

Little of the variation in soil carbon in organo-mineral/mineral soils under the 3 

agricultural land uses in the NSI survey is explained by climate (Table 2). The 

apparent insensitivity to climate is plausible; climate-related signals in soil carbon 

concentration in agricultural soils are more likely to be masked by management 

intervention and disturbance. The regression models for semi-natural land uses, on 

both organic and organo-mineral/mineral soils, explain 14-50% of the variation in soil 

carbon concentration, possibly reflecting lower management intervention and a 

stronger climate-related signal. 

 

Carbon concentration in all the sites on organic soils (Table 3) is strongly negatively 

correlated with temperature but not correlated with rainfall; and the regression 

coefficients for temperature are broadly similar across land uses. For the semi-natural 
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land uses on organic soils, the temperature above which soil carbon concentration is 

related to temperature (Tc) ranges from 6.1 – 7.1 
o
C.  Interestingly organic soils under 

permanent grass show no threshold temperature.  

 

Our finding that the relation between soil carbon and temperature under some semi-

natural habitats is best described by a two-stage regression with a threshold 

temperature ~ 6 - 7
0
C, is similar to the relation between the occurrence of bog and 

dense shrub moor vegetation and temperature (Hossell et al., 2000). Given the 

similarity in regression coefficients across land use, we pooled the data for carbon 

concentration from organic soils from the 4 semi-natural land uses most likely to be 

represented in Hossell’s data (rough grazing, upland heath, upland grass and bog) to 

explore the extent to which the logistic model used by Hossell et al., (2000) could 

also describe the response of soil carbon concentration to temperature. 

 

 FIGURES 1 AND 2 HERE 

 

Figure 1, redrawn from Hossell et al., (2000), shows a sharp decline in the occurrence 

of bog-type vegetation as mean annual temperatures rise above ~7
o
C. Figure 2 shows 

the pooled data set for organic soils fitted to a logistic model similar to that used by 

Hossell et al., (2000). The dotted lines show the 95%  confidence bands for the 

regression line. The logistic model explains 18% of the observed variation in soil 

carbon concentration, and suggests that average soil carbon concentration remains 

constant (~435 g kg
-1

) at temperatures below ~7
o
C, declines between 7 and 8.5

o
C, and 

then remains approximately constant at 253 g kg
-1

 at temperatures >8.5
o
C. This 

pattern is similar to that observed by Hossell et al., (2000).   
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Modelled climate-related changes in soil carbon over the NSI survey period 

Figure 3 shows the modelled change in soil carbon concentration for the 11 land uses 

over the NSI survey period that can be predicted from changes in climate (grey 

diamonds). The changes reported by Bellamy et al., (2005) are shown as circles. The 

modelled changes are calculated from the regression equations, combined with the 30 

year average temperature and rainfall at the beginning and end of the NSI survey 

period, either directly or from Monte Carlo simulations. For permanent grass, 

coniferous woodland and rough grazing, the modelled changes are derived from 

weighted averages for organic and organo-mineral/mineral sites. The error bars are 

95% confidence limits.  

 

FIGURE 3 HERE 

 

With the exception of lowland heath, for which the regression models predict an 

increase in soil carbon in agreement with the NSI result, the regression models predict 

very little climate-related change for land uses on predominately organo-

mineral/mineral soils. For arable soils, the regression models using NSI data, suggest 

that none of the NSI change can be predicted from changes in temperature and rainfall 

between the first and second NSI surveys. This agrees with an earlier study which, 

using a different approach to that here, concluded that the observed decline in carbon 

concentration is consistent with arable soils, originally under grass, moving to 
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equilibrium, implying that land-use history rather than changes in climate was the 

main causal factor (Kirk & Bellamy, 2010)  

 

For rotational grass, the regressions predict very small or no climate-related change in 

soil carbon between the first and second NSI surveys; for permanent grass, 7% of the 

change reported by Bellamy et al., (2005) can be predicted from changes in climate. 

The implication is that for agricultural grasslands, most of the change in soil carbon 

reported by Bellamy et al., (2005) results from factors other than changes in climate. 

Table 4 summarises estimates of the contribution of changes in cattle stocking density 

to declines in soil carbon (Defra, 2009). For agricultural grassland, 42- 55% of the 

changes reported by Bellamy et al., (2005) are consistent with changes in livestock 

numbers. This agrees with the conclusions reached by Smith et al., (2007) and (Kirk 

& Bellamy, 2010) using a different analysis.  

  

TABLE 4 HERE 

 

For organic soils under rough grazing, upland grass, upland heath and bog, between 

17-40% of the changes reported by Bellamy et al., (2005) can be predicted from 

changes in climate over the survey period. For rough grazing, reductions in cattle 

grazing could account for a further ~ 55% of the reported changes. This is likely to be 

upper estimates because we assume reductions in stocking density are uniform across 

organic and organo-mineral/mineral soils, whereas there is some evidence de-stocking 

was more marked in lowland areas where organo-mineral/mineral soils are more 

prevalent. 
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Estimates of Q10  

Table 5 summarises the range of Q10 estimates for organic soils in each of the 5 land 

uses where soil carbon changes were related to temperature. For mineral soils under 

permanent grass, the range of Q10  is similar to other reported values (Kirschbaum, 

1995). But the values for organic soils are considerably higher and suggest, either the 

regression analyses are over-estimating the extent of the soil carbon change 

attributable to temperature, or that the conventional interpretation of Q10 is not 

applicable. It should also be noted that estimates of Q10 involving temperatures 

changes less than 1
o
C are very sensitive to small differences in the estimated 

temperature change. 

 

TABLE 5 HERE 

Predictions of changes in soil carbon using climate change scenarios from UKCP09 

Table 6 presents estimates of soil carbon change derived by combining the 1961-90 

regressions with estimates of future temperature and rainfall developed for the 

medium emission scenario at probability levels of 10% (change  unlikely to be less 

than) to the  90% (change unlikely to be greater than) probability levels. The figures 

are calculated from the areas of each land use and soil bulk densities calculated using 

the pedotransfer function from the Countryside Survey 2007 (Emmet et al., 2010). 

For the semi-natural land uses of upland grass, upland heath and bog, the results refer 

to organic sites.  

 

The period over which these aggregated losses are calculated is 50 years (1980-2030) 

but there may be a time lag as soils move to new, lower carbon concentrations, 

effectively increasing the time over which the losses actually occur. We used the 
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kinetic parameters estimated by Kirk & Bellamy (2010) for these data (Table 2 in 

Kirk & Bellamy (2010)) in equation (1) to estimate the time over which the changes 

in soil carbon presented in Table 7 will occur. For arable, rotational and permanent 

grass, the changes are accomplished in ~2 years. For the organic soils with larger 

declines, the time required is ~8 years. Note these are not new equilibrium carbon 

concentrations – reaching these would take between 40 and 100 years. Long-term 

average temperatures and rainfall changed little over the first ten years of the NSI 

survey (1980-1990); accordingly we have used a time period of 50 years to average 

the aggregated carbon losses presented in Table 6. 

 

Table 7 presents estimates of the loss of soil carbon from the 0-15 cm soil layer at the 

UK scale, expressed as average annual loss in Tg C over the period 1980-2030. 

 

Stability of the regression models over time 

Table 8 compares the regression coefficients derived using soil carbon data from the 

first NSI survey and meteorological data averaged over 1961-90, with models derived 

using the soil carbon data from the second NSI survey and meteorological data 

averaged over the preceding 30 year period (either 1965-1994 or 1974-2003). Note 

the comparison uses MLR for both organo-mineral/mineral and organic soils as the 

low sample numbers for some land uses in the second NSI survey precludes two-stage 

regression models.  

 

For organo-mineral/mineral soils, the regression coefficients for rainfall and intercept 

determined using the two NSI surveys agree to within one standard error for 

permanent grass, rotational grass, coniferous woodland and rough grazing, though not 
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for arable. For organic soils, the regressions for upland heath, bog and coniferous 

woodland agree closely between the two surveys, although the regression model for 

bog based on the second NSI survey data explains less of the variability (17% 

compared to 33%).  The regression models for rough grazing and upland grass based 

on the second NSI survey do not agree with the models derived from the first NSI 

survey. It is not clear whether this reflects a real difference or whether differences in 

the distributions of soil carbon in the second NSI survey are responsible. For both 

these land uses, the second NSI survey recorded a lower proportion of sites with soil 

carbon densities > 40 g kg
-1

 compared to the first survey.   

 

Table 9 presents the logistic regressions based on the first and second NSI surveys 

using soil carbon data for organic soils under rough grazing, upland grass, upland 

heath and bog. The regression coefficients for Cmax, Cmin and the slope coefficient s 

agree to within one standard error, although the estimate of the slope using the second 

NSI data is associated with a high standard error. The estimated threshold 

temperatures, Tc, agree to within two standard errors.  

.  
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Discussion 

With the exception of lowland heath sites, only a small proportion of the changes 

reported in the NSI study for sites on organo-mineral/mineral soils can be predicted 

from changes in climate over the survey period. Changes in land use and stocking 

density are more plausible explanations for part or all of the observed changes. This 

agrees with earlier work which came to the same conclusion using different 

approaches to those used here (Smith et al., 2007; Kirk & Bellamy, 2010).  

 

The regression results for lowland heath stand alone in that a) soil carbon is strongly 

positively correlated with both rainfall and temperature; and b) they predict a 

significant increase in soil carbon over the NSI survey period, in agreement with the 

observed (though statistically not significant ) increase of 18.4 g kg
-1

. Lowland heath 

is defined as lying below 300 m and usually found on poor, acid, well-drained soils 

with plant cover comprising heathers and gorses, bracken and Scots Pine and Birch. It 

encompasses both humid and dry habitats although the sites in the NSI survey appear 

to be mainly dry lowland heaths. The evidence of the effects of climate change on dry 

lowland heaths is sparse and contradictory, and it is difficult to separate changes due 

to management or climate change (Alonso, 2009).  There is some evidence that from 

manipulation experiments that warming does increase productivity at temperature-

limited sites (Penuelas et al., 2004) – and it is plausible that increasing rainfall on 

well-drained sites could increase productivity - but it is less clear how plant species 

composition might be affected and this could have a marked influence on litter 

decomposition rates.  Increased management and grazing of lowland heaths promotes 

the  invasion of grass species at the expense of dwarf shrubs and mosses (Bonn et al., 
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2011);  but this would be expected to increase litter decomposition rates and thus 

reduce soil carbon concentration, in contrast to the results obtained in the NSI survey.  

Other work has suggested that increasing temperature alters the balance between 

bracken and heather in favour of bracken (Werkman & Callaghan, 2002).  Mixtures of 

bracken and heather litter break down more rapidly than either component 

individually (Anderson & Hetherington, 1999), again in contrast to the results 

observed here. Thus, while the agreement between the regression results and those in 

the NSI study is persuasive, it is difficult to identify a credible mechanism.  

  

The results for organic soils are very different. For all the land uses, carbon 

concentration is strongly negatively correlated with temperature, with broadly similar 

regression coefficients possibly indicating a common mechanism. Between 17 and 

40% of the changes reported by Bellamy et al.,  (2005) for land uses on 

predominately organic soils, are consistent with changes in climate over the NSI 

survey period, and for rough grazing, reductions in grazing intensity could explain  a 

further ~55%. However, even attributing only part of the observed declines in carbon 

concentration to climate change implies unrealistically high estimates of Q10. The 

concept of Q10 relates to the temperature response of a single reaction, or a cohort of 

closely related reactions. Q10 is problematic where a change in temperature results in 

the appearance of a cohort of new, unrelated processes that were absent at lower 

temperatures. In this case, there must be a plausible mechanism which does not 

involve a direct temperature effect on the decomposition rate of soil organic matter. 

We discuss two possible mechanisms below: the drying and oxidation of the upper 

layers of organic soils; and the influence of climate-related changes in vegetation and 

its effect on substrate quality. 
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The higher soil carbon densities in organic soils result, in part, from constraints on 

decomposition, such as anaerobic conditions and temperature, and in part from 

substrate quality. Anaerobic conditions constrain or suspend decomposition, rather 

than promoting the development of recalcitrant fractions of organic matter (Davidson 

& Janssens, 2006). Increasing temperatures could alleviate some of this constraint, 

particularly in the upper soil layers, exposing a new cohort of substrates for 

decomposition (Freeman et al., 2001; Evans et al., 2002). There is evidence that the 

export of dissolved organic carbon (DOC) has increased in recent years (Worrall et 

al., 2003). Much of the increase derives from recently fixed plant material and also 

from the upper soil layers (Worrall et al., 2003; Worrall et al., 2006; Evans et al., 

2007); although there is no consensus on the extent to which this reflects increasing 

organic matter decomposition or rising dissolved organic carbon release as acid 

deposition declines (Evans et al., 2006; Monteith et al., 2007). Loss of carbon from 

peat soils also results from increased moorland burning and associated erosion; one 

study on 4 upland catchments estimated that around 80% of the increase in DOC 

export was attributable to increases in moorland burning, with  changes in 

temperature and acid deposition accounting for 22-26% (Clutterbuck & Yallop, 

2010).  

 

A mechanism whereby plant debris becomes more available for decomposition, 

through the alleviation of anaerobic conditions at the soil surface, could result in 

apparent temperature sensitivities higher than the conventional Q10 approach suggests. 

However, the regression models for carbon concentration in organic soils indicate no 

response to rainfall, and it seems unlikely that the changes in surface moisture 

Comment [F1]: This mechanism only 
works if the DOM has a higher C 
content than the soil layer it left. DOM 
has increased and DOM and DOM 
does have a higher C/N than peat. 
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conditions following a rise in temperature of ~0.4
0
C would be sufficient to cause 

marked declines in carbon concentration. We conclude that the data in this study are 

not consistent with surface warming and drying of organic coils being a significant 

factor in carbon concentration decline.  

 

The similarity in response of soil carbon concentration to temperature and that 

observed for vegetation occurrence could suggest that temperature-related changes in 

vegetation cover, and hence substrate quality, are indirect drivers for soil carbon 

decline (Figures 1 and 2). Although temperature and rainfall for the organic sites are 

weakly correlated, there is no correlation between soil carbon and rainfall in organic 

sites of the 4 semi-natural habitats and we conclude that this is a temperature effect 

and that rainfall is not a confounding effect. 

 

 There is now evidence of long-term changes in the condition of mountain, moorland 

and heath habitats and, particularly relevant in this context, the expansion of grass 

species at the expense of moss and shrub-dominated communities (Bonn et al., 2011). 

There are a number of potential causes, including changes in nitrogen and acid 

deposition, grazing pressure and changes in moorland management; but rises in 

temperature are also implicated (Hossell et al., 2000). The similar temperature 

response of the two independent data sets – that for vegetation cover and that for soil 

carbon concentration – could suggest that soil carbon is responding indirectly to 

temperature through changes in vegetation cover and hence litter quality. This is a 

plausible (indirect) mechanism which could result in larger declines in soil carbon 

than a conventional Q10 approach, acting on the rate of organic matter decomposition 

would suggest. However, we cannot exclude the possibility that increased grazing 
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pressure, with a consequent increase in more decomposable grasses, could be 

occurring disproportionately on warmer sites.  

 

There is finally the issue of the extent to which the results for organic soils under 

semi-natural habitats in the NSI study are supported by the almost contemporaneous 

data from the Countryside Surveys (CS) of 1978 and 1998 (Emmet et al., 2010). That 

study concluded there was no significant change in soil carbon across semi-natural 

habitats 

Comparisons across all the semi-natural land uses, for which Bellamy et al., (2005) 

reported large declines in soil carbon, are problematic because of differences in land 

use classification. However, both surveys include bog as a land use, but while NSI 

reported large declines in carbon concentration (~111g kg
-1

), CS reported no 

significant change. The analysis here suggests that ~17% of the decline in soil carbon 

under bogs could be predicted from changes in climate, and it surprising that an effect 

of that magnitude is not discernible in the CS data, even though the Q10 analysis 

makes it unlikely this is a direct temperature effect on rates of organic matter 

decomposition. One aspect of the CS results is worth examining. The NSI survey, 

which dealt with England and Wales, recorded large declines where the initial soil 

carbon was 290 g kg
-1

 and above; CS data for England also recorded a decline in soil 

carbon between 1978 and 1998 of ~100 g kg
-1

 for soils with carbon contents of 300-

600 g kg
-1

, although the change was not statistically significant. There was a further 

(non-significant) decline of 24 g kg
-1

 between 1998 and 2007. This raises the 

possibility that some of the differences between the NSI and CS surveys are due to 

different land use/habitat classifications and differences in statistical power.   
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Future behaviour of soil carbon under a warming climate 

The estimates in Tables 6 and 7 suggest that climate-related loss of soil carbon from 

organic soils in England and Wales over the period 2010 – 2030/40 is between 1.02 

and 2.18 Tg yr
-1

. If the contribution from rough grazing and upland grass are 

excluded, reflecting the uncertainty in the stability over time of the regression models, 

the estimated loss of soil carbon is 0.77 – 1.57 Tg yr
-1

.  This compares to the UK’s 

commitment under the Climate Change Act of 2008 to reduce carbon emissions by 3 

Tg C annually (Ostle et al., 2009). These estimates should be viewed against others 

suggesting that land uses changes over the UK over the period 1925 – 2007 have 

increased soil carbon stocks by around 1.9 Tg C yr
-1

 annually (Bell et al., 2012).  

  

Conclusions 

The regression models based on space for time substitution allow the changes in soil 

carbon concentration reported by Bellamy et al., (2005) to be explicitly partitioned 

into that which could be predicted from climate change, and that which probably 

results from other factors. For those land uses predominately on organo-

mineral/mineral soils, we conclude that, with the exception of lowland heath, little of 

the change reported by Bellamy et al., (2005) is consistent with changes in climate 

over the survey period, and that for agricultural soils, the reported changes are more 

plausibly linked to changes in land use and reductions in carbon returns from grazing 

animals. For organic soils under semi-natural habitats, we estimate that at most, 

between 17 and 40% of the reported change could be attributable to changes in 

climate, although the high estimates of Q10 indicate that, to be plausible, some indirect 

temperature-related mechanism must be involved. Our findings do not support the 

hypothesis that temperature-related drying of the upper layers of peat is a significant 
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factor in increased carbon loss, but the similarity between the response to temperature 

of soil carbon concentration in organic soils and that of vegetation cover suggests that 

temperature-related changes in plant cover and hence the quality of litter returned to 

the soil are a more plausible indirect mechanism, although we cannot exclude the 

possibility that increased grazing pressure and the invasion of more decomposable 

grass species has been more prevalent at warmer sites. 

  

We conclude that, based on the data used in this study, organo-mineral/mineral and 

organic soils under temperate conditions could show very different responses to 

changes in climate, with carbon concentration in mineral soils weakly positively 

correlated with rainfall, but insensitive to temperature, while carbon in organic soils is 

strongly negatively correlated with temperature. The sensitivity of organic soils to 

temperature, and the logistic analysis suggest that future monitoring should 

concentrate on those soils with soil carbon densities between 250 and 435 g kg
-1

. 

 

Combined with climate projections for the period 2010-2030, we predict an additional 

climate-related loss of soil carbon over England and Wales of between 1.02 and 2.18 

Tg C annually over the period 1980-2030, or 0.77 – 1.57 Tg yr
-1

 if the contributions 

from rough grazing and upland grass are excluded.  The lack of agreement between 

the NSI study and that of the Countryside Survey, together with the high Q10 values 

estimated for soils under some land uses, suggest caution. The clearest implication 

from this work is that future surveys of soil carbon should concentrate on the organic 

upland soils that, in this study, exhibited the highest sensitivity to changes in 

temperature, and that in the Countryside Survey study showed large but statistically 

non-significant declines in soil carbon.  
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Tables 

 

Table 1. Details of the land uses in the NSRI survey 

 

Table 2. Regression coefficients for organo-mineral and mineral soils  in the initial 

NSI survey and for data from the RSS and woodland surveys. Figures in 

brackets are standard errors. 

 Coefficients significant at p<0.05 or better unless indicated (ns).  

 

Table 3. Regression coefficients for organic soils in the initial NSI survey. Figures in 

brackets are standard errors. 

 Coefficients significant at p<0.05 or better unless indicated (ns).  

 

 

Table 4. Changes in soil carbon for grazed land uses attributable to climate or 

reductions in stocking rate. Figures are expressed as a percentage of those 

reported by Bellamy et al., (2005). 

 

Table 5. Estimates of Q10 for 5 land uses. 

 

Table 6. Estimated decline in soil carbon in g kg
-1

 under the medium emission 

scenario of UKCP09. 

 

Table 7. Estimated annual loss of soil carbon in Tg between 1980-2030. Figures are 

for England and Wales. 
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Table 8. Regression coefficients for multiple linear regression, based on equation (1), 

using data from the 1
st
 and 2

nd
 NSI surveys. Figures in brackets are estimated 

standard errors. Coefficients are significant at P<0.05  unless non-significant 

(ns). Coefficients estimated using REML. 

 

Table 9. Regression coefficients for logistic equation (2) using data from the 1
st
 and 

2
nd

 NSI surveys. Data are pooled semi-natural land uses (rough grazing, 

upland grass, upland heath, bog). Figures in brackets are estimated standard 

errors. Coefficients estimated using REML.
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Land use n Soil carbon at 

initial NSI survey 

/g kg
-1

  

Average temperature 

T /
o
C and rainfall R 

/mm 

Average temperature 

T /
o
C and rainfall R 

/mm 

   30 year average 

(1951-80) 

30 year average at 

second NSI survey 

   T R T R 
Arable 

o-mineral/mineral 

 

1844 

 

27.7 

 

9.18 

 

693 

 

9.36 

 

700 

Rotational grass 

o-mineral/mineral 

 

663 

 

35.9 

 

9.14 

 

903 

 

9.28 

 

917 

Permanent grass 

organic 

o-mineral/mineral 

 

32 

1516 

 

245 

46.2 

 

8.77 

8.96 

 

1068 

928 

 

8.95 

9.14 

 

1087 

943 

Deciduous woodland 

organic 

o-mineral/mineral 

 

17 

252 

 

233 

48.8 

 

9.07 

9.14 

 

833 

889 

 

9.5 

9.57 

 

849 

908 

Scrub 

organic 

o-mineral/mineral 

 

5 

75 

 

310 

48.6 

 

9.70 

9.04 

 

961 

896 

 

10.1 

9.45 

 

992 

907 

Lowland heath       

o-mineral/mineral 18 69.2 9.67 934 10.1 944 

Coniferous woodland 

organic 

o-mineral/mineral 

 

34 

171 

 

339 

52.9 

 

7.59 

8.62 

 

1447 

1008 

 

7.97 

9.03 

 

1511 

1037 

Rough grazing 

organic 

o-mineral/mineral 

 

61 

219 

 

320 

59.4 

 

7.67 

8.42 

 

1480 

1124 

 

8.03 

8.81 

 

1520 

1151 

Upland grass 

organic 

o-mineral/mineral 

 

136 

93 

 

358 

85.7 

 

7.07 

7.27 

 

1656 

1553 

 

7.44 

7.63 

 

1730 

1611 

Upland heath 

organic 

o-mineral/mineral 

 

79 

34 

 

340 

90.7 

 

7.33 

7.54 

 

1317 

1218 

 

7.71 

7.93 

 

1358 

1244 

Bog 

organic 

 

44 

 

401 

 

7.66 

 

1502 

 

8.03 

 

1569 

 
 

Table 1 Details of the land uses in the NSI survey. Soil carbon is in g kg
-1

. Soil 

carbon at the initial NSI survey calculated from original data. 
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Land use n Intercept 

 /g kg
-1

 

T R Adj r
2
 

 

arable 

 

RSS 

 

1844 

 

2965 

 

26.5 (9.2) 

 

21.5 (6.5) 

 

ns 

 

ns 

 

+0.008 (0.003) 

 

0.011 (0.002) 

 

0.003 

 

0.009 

 

rotational grass 

 

RSS 

 

663 

 

2475 

 

36.9 (10) 

 

19.1 (3.4) 

 

ns 

 

-1.04 (0.4) 

 

+0.013 (0.003) 

 

+0.022 (0.0009) 

 

0.04 

 

0.17 

 

permanent grass 

 

RSS 

 

1516 

 

4441 

 

53.7 (7.5) 

 

45.6 (3.6) 

 

-2.03 (0.74) 

 

-1.93 (0.36) 

 

0.012 (0.002) 

 

0.017 (0.0009) 

 

0.03 

 

0.09 

 

deciduous 

woodland 

woodland survey 

1971 

 

252 

 

91 

 

ns 

 

ns 

 

ns 

 

ns 

 

0.01 (0.006) 

 

0.026 (0.0006) 

 

- 

 

- 

scrub 75 ns ns ns n/a 

lowland heath 18 -289 (123) +31.2 (11.2) 0.06 (0.02) 0.35 

coniferous 

woodland 
171 ns ns 0.026 (0.006) 0.15 

 

rough grazing 

 

219 

 

53.8 (19.2) 

 

ns 

 

0.022 (0.005) 

 

0.14 

 

upland grass 

 

 

93 

 

 

ns 

 

ns 

 

ns 

 

- 

 

upland heath 

 

34 

 

164 (62) 

 

ns 

 

ns 

 

- 

 

 
Table 2 Regression coefficients for organo-mineral/ mineral sites from the NSI initial 

survey and data from RSS and the Woodland Survey. Figures in brackets are standard 

error of coefficients. Regression coefficients significant at P<0.05 unless non -

significant (ns).Regression coefficients for the NSI data fitted by REML; RSSS and 

woodland survey data fitted by OLS. See text for details. 



 

 44 

 

 
 

Land use n Tc 

/
o
C 

Intercept 

/g kg
-1

 

T R Adj r
2
 

Permanent grass 32 n/a 896 (162) -74 (15) ns 0.50 

Coniferous woodland 34 6.1 (1.8) 410 (75) -48 (23) ns 0.12 

Rough grazing 61 7.1 (0.4) 416 (20.6) -76 (14) ns 0.41 

Upland grass 136 6.6 (0.7) 434 (15) -81 (19) ns 0.18 

Upland heath 79 6.8 (0.3) 432 (21) -88 (25) ns 0.16 

Bog 44 6.6 (0.4) 507 (15) -50 (11) ns 0.35 

 

Table 3 Regression coefficients for organic sites from the initial NSI survey. Figures 

in brackets are standard error of coefficients. Regression coefficients significant at 

P<0.05 unless non-significant (ns). Coefficients fitted by ML. Tc is the inflection 

temperature; for details see text. 
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 Change in soil carbon attributable to 

Land use Climate Stocking density Total 

Rotational grass 0 55 55 

Permanent grass 7 42 49 

Rough grazing 18 55 73 

Upland grass 27 - 27 

Upland heath 40 - 40 

Bog 17 - 17 

    

 
Table 4 Changes in soil carbon concentration predicted from changes in climate and 

stocking density. Figures expressed as %age of change reported by Bellamy et al., 

(2005)



 

 46 

Land use  Q10 estimated from 

modelled changes 

   
Permanent grass 

 

organic 

organo-mineral/mineral 

29 - 1300 

1.4 – 2.7 

Rough grazing 

 

organic 5.8 – 58 

Upland heath 

 

organic 5 –42 

Upland grass 

 

organic 7 – 82 

Bog 

 

organic 4 – 26 

 

Table 5 Q10 estimated from changes in soil carbon attributable to temperature using 

equation 7. 

 

  

 



 

 47 

Land use Change in soil carbon in g kg
-1

 at probabilities of: 

 10% 50% 90% 

Arable -0.25 (0.20) +0.016 (0.012) +0.296 (0.20) 

Rotational grass -0.55 (0.24) +0.026 (0.012) +0.64 (0.29) 

*Permanent grass -4.03 (1.4) -6.1 (2.5) -8.5 (3.8) 

Deciduous woodland no significant change 

Scrub no significant change 

Lowland heath +47 (22) +88 (38) +135 (60) 

*Coniferous woodland -8.8 (7.2) -13.8 (12.5) -19.8 (19.3) 

*Rough grazing -16.3 (5.5) -27.0 (9.7) -39.8 (14.7) 

Upland grass -46 (22) -81 (38) -121 (56) 

Upland heath -57 (32) -101 (56) -153 (85) 

Bog -38 (17) -75 (32) -117 (52) 

 
Table 6 Changes in soil carbon in g kg

-1
 over the period 1980 to 2030, estimated from 

regression analysis and the 10, 50 and 90% probability cases from the medium 

emission climate change scenarios from UKCP09. Figures in brackets are 95% 

confidence limits either calculated from regression equations or derived from Monte 

Carlo simulation. *indicates weighted average of organic and organo-mineral/mineral 

soils. 
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Land use 

Area 

(E&W) 

(‘000 ha) 

Estimated annual change in soil carbon in Tg under 

UKCP09 medium emission scenarios for 2010-2030 at 

probability levels of: 

  10% 50% 90% 

Arable 4609 -0.038 (0.027) +0.0024 (0.0018) +0.0452 (0.031) 

Rotational grass 637 -0.009 (0.004) +0.0004 (0.0002) +0.011 (0.004) 

Permanent grass 4999 -0.53 (0.19) -0.79 (0.33) -1.11 (0.50) 

Rough grazing 2210 -0.21 (0.07) -0.34 (0.12) -0.50 (0.19) 

Coniferous woodland 380 -0.05 (0.04) -0.09 (0.09) -0.12 (0.11) 

Upland grass 177 -0.04 (0.02) -0.07 (0.03) -0.11 (0.05) 

Upland heath 418 -0.12 (0.06) -0.22 (0.12) -0.33 (0.18) 

Bog 100 -0.016 (0.007) -0.03 (0.013) -0.048 (0.02) 

Total estimated annual loss 1980-

2030 
-1.02 (0.31) 1.55 (0.53) 2.18 (0.82) 

     

 

Table 7 Annual loss of soil carbon over the period 1980-2030 estimated from regression 

models, UKCP09 medium scenarios and land use data for England and Wales. Figures in 

brackets are 95% confidence limits derived from Monte Carlo simulations. 
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Land use  n Intercept Temperature Rainfall 

   /g kg
-1

   

      
Organic soils      

      
Rough grazing 1

st
  survey 61 72.3 (8.7) -4.83 (0.87) ns 

 2
nd

  survey 23 24.0 (9.4) ns ns 

      

Upland grass 1
st
  survey 136 76.8 (7.9) -5.32 (0.93) ns 

 2
nd

  survey 54 49.1 (11.5) -2.64 (1.45) ns 

      

Upland heath 1
st
  survey 79 69.7 (12.2) -5.64 (1.51) ns 

 2
nd

  survey 39 66.8 (11.8) -4.19 (1.45) ns 

      

Bog 1
st
  survey 44 74.4 (7.3) -3.84 (0.82) ns 

 2
nd

  survey 18 75.4 (18.7) -4.91 (2.21) ns 

      

Coniferous woodland 1
st
  survey 34 70.7 (17.8) -4.71 (2.03) ns 

 2
nd

  survey 16 50.1 (16.8) -2.98 (2.16) ns 

      

      
Mineral soils      

      

Arable 1
st
  survey 1844 26.5 (9.2) ns 0.008 (0.0003) 

 2
nd

  survey 587 7.24 (15.2) ns 0.001 (0.0005) 

      

Permanent grass 1
st
  survey 1516 53.7 (7.5) -2.03 (0.74) 0.012 (0.002) 

 2
nd

  survey 534 47.7 (8.9) -2.49 (0.80) 0.016 (0.002) 

      

Rotational grass 1
st
  survey 663 36.9 (10) ns 0.013 (0.003) 

 2
nd

 survey 196 22.5 (15.8) ns 0.016 (0.004) 

      

Coniferous woodland 1
st
 survey 171 46.6 (28.0) ns 0.026 (0.006) 

 2
nd

 survey 92 22.6 (30.0) ns 0.028 (0.007) 

      

Rough grazing 1
st
 survey 219 53.8 (19.2) ns 0.022 (0.005) 

 2
nd

 survey 91 80.8 (29.8) ns 0.024 (0.009) 

 
Table 8 Regression coefficients for multiple linear regression (equation (1) determined 

from the 1st and 2nd NSI surveys by REML. Figures in brackets are estimated standard 
errors. Coefficients significant at p<0.05 unless non significant (ns). 
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 n Cmax Cmin M s 

1
st
 survey 339 435 (13) 253 (35) 7.9 (0.3) -15.9 (6.6) 

2
nd

 survey 134 408 (46) 262 (26) 6.9 (0.4) -13.8 (11.1) 

 

Table 9 Regression coefficients for logistic equation (equation 2) determined from the 1st 
and 2nd NSI surveys by REML. Coefficients are as in equation (2). Data are pooled semi-
natural land uses (rough grazing, upland grass, upland heat and bog). Figures in 
brackets are estimated standard errors. 
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Figures 

 

Figure 1. Probability of occurrence of bog and dense shrub moor vegetation as a function 

of mean annual temperature. Redrawn from Hossell et al., (2000). 

 

Figure 2. Pooled soil carbon concentration data for organic soils under rough grazing, 

upland grass, upland heath and bog, as a function of  mean annual temperature 

1961-1990. Regression line is the logistic equation  (2) with Cmax=435 g kg
-1

, 

Cmin=253 g kg
-1

, M=7,9 
0
C, s=-15.9; adjusted r

2
=0.18; P<0.0001. Dotted lines are 

the 95% confidence limits for the regression. 

 

Figure 3. Changes in soil carbon calculated from 30 year regression models (diamonds) 

compared to those reported by Bellamy et al., (2005) (circles).  Error bars are 

95% confidence limits
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Figure 1. 
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Figure 2. 

Average temperature 1961-1990 / 
o
C
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Figure 3. 
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