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ABSTRACT 27 

Global sea level during the Last Interglacial (LIG, Marine Isotope Sub-stage 5e) peaked 28 

between c. 5.5 and 9 m above present, implying significant melt from Greenland and Antarctica.  29 

Relative sea level (RSL) observations from several far- and intermediate-field sites suggest abrupt 30 

fluctuations or jumps in RSL during the LIG highstand that require one or more episodes of ice-sheet 31 

collapse and regrowth.  Such events should be manifest as unique sea-level fingerprints, recorded in 32 

far-, intermediate- and near-field sites depending on the source(s) of ice-mass change involved.  To 33 

date, though, no coherent evidence of such fluctuations has been reported from near-field RSL 34 
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studies in northwest Europe.  This is an important problem because RSL fluctuations during the LIG 35 

are portrayed as warning signs for how polar ice sheets may behave in a future, warmer than 36 

present, world.  Here we review the evidence for RSL change during the LIG using stratigraphic data 37 

from the best resolved highstand records that exist in the near-field of northwest Europe, from a 38 

range of settings that include lagoonal, shallow marine, tidal flat, salt marsh and brackish-water 39 

fluviatile environments.  Consideration of previously published stratigraphic records from two sites 40 

in the Eemian coastal-marine embayment that existed in the central Netherlands, yields no clear 41 

indications for abrupt RSL change during the attainment of the near-field highstand.  Nor do we find 42 

any such indications in other records from countries bordering the North Sea, the Baltic Sea and the 43 

White Sea.  Two modelling experiments that explore the global signal of hypothetical sea-level 44 

oscillations caused by partial collapse and regrowth of either the Greenland or Antarctic LIG ice-45 

sheet, show that the North Sea region is relatively insensitive to mass changes sourced from 46 

Greenland but should clearly register events with an Antarctic origin, especially those that occur late 47 

in the LIG.  The lack of evidence for abrupt sea-level fluctuations at this time in northwest Europe 48 

concurs with a lack of clear near-field evidence for ice sheet collapse.   49 

 50 
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1. Introduction 53 

Several studies, mainly from low latitude sites suggest that polar ice-sheet collapse late in 54 

the Last Interglacial caused an already high sea level to jump abruptly by a further 2 to 6 m (e.g. 55 

Chappell, 1974; Bloom et al., 1974; Stein et al., 1993; Stirling et al., 1998; Thompson and Goldstein, 56 

2005; Hearty et al., 2007; Rohling et al., 2008; Blanchon et al., 2009; O’Leary et al., 2013; Dabrio et 57 

al., 2013).  Although not all studies document such variability (e.g. Muhs et al., 2002; Muhs et al., 58 

2011), reports of multi-meter scale sea-level jumps raise concern regarding the potential instability 59 

of polar ice sheets in what remains of the current interglacial.  Such a collapse would have generated 60 

a distinctive geometry, or fingerprint, of global sea-level rise that palaeo sea-level studies can aim to 61 

detect (e.g. Mitrovica et al., 2001; Hay et al., 2014). However, no conclusive evidence for such a 62 

jump has been reported in relative sea-level (RSL) or ice-sheet records from higher latitude settings 63 

(e.g. Zagwijn, 1983; Funder et al., 2002; Lambeck et al., 2006) and, as a result, the global fingerprint 64 

of this event is not known.  This has led to uncertainty as to whether the jump is indeed global in 65 

nature – i.e. triggered by polar ice-sheet collapse - or simply the product of regional (e.g. climate) or 66 

local (e.g. tectonic) processes.   67 

The aim of this paper is to review the European near-field evidence for abrupt relative sea-68 

level (RSL) change during the LIG highstand (as defined and dated in the far-field) by scrutinising 69 

previously published records from northwest Europe, where the LIG is known as the ‘Eemian’.  We 70 

start by reviewing RSL evidence from sites located distant to the MIS 6 ice sheets, to identify key 71 

features that characterise many of these studies.  Next, we consider how such abrupt oscillations 72 

might be preserved in the near-field stratigraphic record, drawing in part on sedimentary principles 73 

that have been established from working on equivalent Holocene sequences (e.g. Vis et al., 2015).  74 

We focus on evidence from the coastal deposits preserved in the Amsterdam and Amersfoort glacial 75 

basins (central Netherlands), which have a superbly preserved depositional record of the LIG 76 

transgression and RSL highstand.  The region is the bio- and chronostratigraphical type region of the 77 

‘Eemian’ (Harting, 1874; 1875, Zagwijn, 1961; Turner, 2002) and data from here, as well as from 78 

other sites in the Netherlands, are critical for constraining the LIG RSL highstand in northwest Europe 79 

(e.g. Zagwijn, 1983; 1996; Streif, 1990).   80 

We find no compelling signs of abrupt RSL oscillations during the near-field highstand in the 81 

coastal deposits of the Netherlands, or from elsewhere in northwest Europe. We note, however, 82 

that due to solid earth deformation and equatorial syphoning the attainment of this highstand may 83 

be several thousand years later to that observed in far- and intermediate-field sites, meaning that if 84 

fluctuations occurred early in the interglacial, these could have happened before the near-field 85 

highstand was attained.  The lack of evidence for abrupt sea-level fluctuations during the latter part 86 



of the LIG in northwest Europe concurs with a lack of clear near-field evidence for ice sheet collapse 87 

at this time.    88 

 89 

2. Sea-level changes during the Last Interglacial 90 

Evidence for higher-than-present sea level during the LIG is recorded in emergent landforms 91 

and sediments that include coral reef tracts, bioerosional notches as well as nearshore deposits (e.g. 92 

Szabo et al., 1994; Stirling et al., 1998; Muhs et al., 2002; Bruggermann et al., 2004; Hearty et al., 93 

2007; Rohling et al., 2008; Thompson et al., 2011; O’Leary et al., 2013; Dutton et al., 2015).  94 

Consideration of four RSL records selected from different parts of the world exemplify elements of 95 

LIG sea-level behaviour that are common to many far- and intermediate-field RSL records that 96 

record sea-level oscillations within the LIG highstand (Figure 1). 97 

From the Seychelles, Dutton et al. (2015) report evidence from raised coral deposits of an 98 

early “rapid collapse” of a polar ice sheet, likely part of Antarctica, by 128.6 ± 0.8 k yr ago that 99 

pushed sea level to at least +5.9 ± 1.7 m above present (Figure 1A).  This was followed by a slower 100 

rise of a further c. 2 m, at a rate of c. 0.22 ± 0.04 m/k yr that is attributed to partial melt of the 101 

Greenland Ice Sheet, thermal expansion and the loss of mountain glaciers.  Peak eustatic sea level of 102 

c. 7.6 ± 1.7 m was reached at c. 125 k yr ago, after which sea level fell and the Seychelles RSL record 103 

ends.  104 

Our second example is based on the calibration to sea level of a stable oxygen isotope 105 

record of sea surface temperatures obtained from planktonic foraminifera extracted from core KL11, 106 

located in the central part of the Red Sea (Rohling et al., 2008) (Figure 1B).  The record contains two 107 

main and one subsidiary sea-level fluctuation of 4 to 10 m.  Sedimentological observations from 108 

adjacent Red Sea coastlines are cited by Rohling et al. (2008) as supporting evidence of a fluctuating 109 

RSL during the LIG highstand (e.g. Orszag-Sperber et al., 2001; Bruggermann et al., 2004).   110 

The next two examples document sea-level changes from the middle and towards the end of 111 

the LIG.  From the Yucatán Peninsula (Mexico), an intermediate field location relative to the former 112 

Laurentide Ice Sheet, Blanchon et al. (2009) identify a 2 to 3 m RSL jump that they attribute to a 113 

short-lived (c. 1500 yr) interval of ice sheet instability that is ‘tentatively’ dated to c. 121 k yr ago 114 

(Figure 1C).  The evidence for this sea-level jump is the sudden demise of an outer lower reef 115 

(developed to a sea-level at +3 m) that coincided with backstepping and accretion of an inner patch-116 

reef (to a c. 3 meter elevation; see also Blanchon, 2010). Finally, in far-field western Australia, 117 

O’Leary et al. (2013; see also O’Leary et al., 2008) use stratigraphic and geomorphic mapping with U-118 

series dating of fossil coral reefs to identify two architecturally distinct LIG highstand units that are 119 

separated by an unconformity contact and a palaeosol.  These coral reef units are interpreted as 120 



indicating two phases to the LIG highstand; the former forming over the period 127 to 119 k yr ago 121 

under slow 3 m RSL fall from an initial highstand and the second unit deposited late in the 122 

interglacial, dated to 118.1 ± 1.4 k yr ago. The two units are observed at c. 2.5 m and c. 5-6 m above 123 

present MSL. O’Leary et al. (2013) include a glacial isostatic adjustment (GIA) modelling analysis as 124 

part of their study and propose a broadly stable “eustatic” sea level (i.e. ice-volume equivalent) of c. 125 

+3 to 4 m between 127 and 119 k yr ago and one at +9 m for c. 118 k yr ago, implying a c. 5 m sea-126 

level jump late in MIS 5e (Figure 1E).  Although the tectonic stability of the region has been 127 

challenged (Whitney and Hengesh, 2015), the sea-level jump component has not.  128 

From these studies we identify the following as important elements of sea-level change 129 

during the LIG highstand: 130 

 131 

1.  LIG sea-level oscillations are recorded at the start, during the middle and towards the end of the 132 

LIG highstand, and are often interpreted as evidence for polar ice-sheet collapse.  The North 133 

American and European ice masses are typically assumed to have only contributed to RSL rise early 134 

in MIS 5e (up to 127 k yr ago: Rohling et al., 2008; O’Leary et al., 2013).  Chronological differences 135 

reflect, in part, the duration of the different records and the interval of time when sea level was 136 

higher than present, which is when sedimentary records are preserved.  Several far-field sites record 137 

unconformities and palaeosols within double-reef architectures, from which meter-scale RSL 138 

oscillations are reconstructed. In the intermediate field, younger reef elements bury older elements 139 

and a marked sea-level jump is inferred against a broadly stable background RSL trend. 140 

 141 

2.  It is claimed by some studies that there was at least one interval during the main LIG highstand 142 

when RSL fell and then rose, possibly abruptly, to re-attain a LIG highstand, several meters higher 143 

than before.  In the coral reef examples discussed above, the RSL fluctuation during the MIS 5e 144 

highstand was c. 3 to 5 m in amplitude. The fluctuation seems best characterised as a multi-millennia 145 

period of relatively stable sea level that terminated with a short-lived period of relatively rapid rise, 146 

the midpoint of which is dated to between c. 121 and 118 k yr ago.   147 

 148 

3.  Rates of sea-level change calculated from one of the Red Sea isotope records (core KL11), suggest 149 

RSL fluctuations with magnitudes of up to 10 m in 1-2 k yr or less, with peak rates of rise of 2.1 cm yr 150 

and fall of -1.8 cm yr during the LIG highstand (Rohling et al., 2008). The size of the Red Sea RSL 151 

fluctuations are approximately twice as large as those inferred from most reef records. 152 

 153 



These different elements of the LIG sea level records form a basis for considering how near-154 

field, low energy depositional environments might have responded to such changes. 155 

 156 

3. Relative sea-level change and coastal evolution on near-field coasts in northwest Europe  157 

The LIG near-field coasts of northwest Europe differ to their far- and intermediate-field 158 

counterparts in several ways.  Because of their proximity to the Saalian (MIS 6) ice sheets, RSL 159 

records from this region were strongly impacted by GIA.  In some peripheral locations, such as the 160 

Netherlands, forebulge collapse meant that the background (millennial) rate of RSL rise was 161 

relatively stable late into the LIG (Lambeck et al., 2006).  This contrasts with the situation in far- and 162 

some intermediate-field sites where RSL was already falling by this time (Figure 2).   163 

 164 

A second difference is that the LIG highstand coastal deposits can be well preserved in 165 

sedimentary depocenters, some of which have recorded post depositional subsidence, and are 166 

relatively complete based on known biostratigraphical changes established from northwest 167 

European terrestrial pollen zones (Müller, 1974). Most paleo-coastal records occur as infills of deep 168 

Saalian depressions that provided accommodation space for deposition as well as a good chance of 169 

preservation during RSL fall at the end of the LIG.  Many depressions also experienced post 170 

depositional subsidence which further aided preservation.  171 

 172 

A third difference is the abundance of fine-grained minerogenic and organic sediments that 173 

have accumulated in North Sea estuaries, tidal inlets, and coastal lagoons.  These environments 174 

provide excellent archives from which to develop RSL records and reconstruct system-wide 175 

responses to abrupt or gradual sea-level forcing.  Where these sequences have remained 176 

waterlogged since their deposition and include fossiliferous successions from intertidal to supratidal 177 

and terrestrial facies, the strong vertical zonation of coastal plant and animal communities with 178 

respect to tidal inundation can yield well-constrained sea-level data.  179 

 180 

For many of the above reasons, near-field coastal systems are intensively studied for 181 

Holocene sea level; in northwest Europe they have been used to identify short-term (centennial) 182 

early-Holocene sea-level jumps of 1 to 3 m (e.g. Hijma and Cohen, 2010), instantaneous events such 183 

as tsunami and storms (e.g. Dawson et al., 1988), as well as gradual multi-century to millennial-scale 184 

RSL fluctuations (e.g. Denys and Bateman, 1995; Beets and Van der Spek, 2000; Kiden et al., 2002;  185 

Waller and Long, 2003).  There are differences between Holocene and LIG coastal environments (e.g. 186 

Cohen et al., 2014), largely due to variations in substrate topography and composition, due to the 187 



configuration of the main rivers (Busschers et al., 2007; 2008; Peeters et al. 2015) and, potentially, 188 

due to differences between the Holocene and LIG deglaciation, GIA and RSL histories. Nevertheless 189 

the methods and understanding developed from Holocene RSL studies are instructive when 190 

considering potential LIG RSL changes. 191 

 192 

4. A conceptual model of Last Interglacial-type sea-level oscillations recorded in the near-field 193 

coastal architecture of northwest Europe 194 

An abrupt RSL rise would cause the landward and upwards migration of an estuary and 195 

associated environments; indeed entirely new estuaries might develop in previously freshwater 196 

valley settings with freshwater swamps rapidly replaced by fluvial-tidal open-water environments.  197 

Hijma and Cohen (2010; 2011) record such a change at the time of an early Holocene sea-level jump 198 

that preceded the 8.2 ka BP cold event, when RSL in the Netherlands rose by c. 4 m in a few 199 

centuries due in part to the sudden drainage of Lakes Agassiz and Ojibway on the margins of the 200 

Laurentide Ice Sheet.  In the Rhine-Meuse palaeovalley the coastline moved landward by c. 30 km 201 

and fluvial-deltaic wetland forests and open reed and sedge wetlands were transformed into tidal 202 

flats (Hijma and Cohen, 2011; Bos et al., 2012).   203 

 204 

Within transgressed valleys, wind and wave energy would increase as surface area and 205 

water depth also increase (e.g. as happened in the mid to late Holocene within the Delaware 206 

Estuary, USA; Fletcher et al., 1990).  Extensive flood tidal deltas would develop during the initial 207 

establishment of tidal inlets and barrier systems, and would migrate landwards (depending on 208 

sediment availability; Beets and Van der Spek, 2000), potentially over tidal flat and lagoonal 209 

environments. Alternatively, if sediment supply were deficient or sea-level rise very rapid, coastal 210 

barriers might be unable to migrate landwards and become drowned, with new barriers forming 211 

inland (e.g. Hijma et al., 2010). Eventually, the position of the barrier system would stabilize. In the 212 

lagoonal settings that result from that stage, an event of abrupt sea-level rise would potentially 213 

erode and rework marginal unconsolidated basin deposits.   214 

 215 

From a lithostratigraphic perspective, an abrupt rise in RSL would see the development of 216 

extensive transgressive overlaps that mark the facies change from predominately fresh/brackish-217 

water to marine deposits.  In lagoons, any fall in salinity stratification might see the accumulation of 218 

more massive clastic deposits and a reduction in anoxic-tolerant biota, whilst reworking of marginal 219 

basin deposits might disrupt trends in litho- and biostratigraphy associated with more gradual 220 

sedimentation. 221 



 222 

From a highstand, a rapid RSL fall (such as that associated with one of the Red Sea RSL 223 

oscillations; Rohling et al., 2008) would reverse many of the above processes.  Mid-estuary tidal 224 

flood basins would be replaced by fluvial channel environments and migrate downstream, replacing 225 

former salt marsh and tidal flats.  A raised estuarine terrace might develop, creating a depositional 226 

environment for freshwater floodplain sediments.  Gravel and sand barriers would consolidate as 227 

increased sediment is made available due to shallower near-shore waters.  In shallow coastal 228 

lagoons, the frequency of tidal inundation would fall sharply, and a freshening of the lagoon be 229 

accompanied by enhanced salinity stratification.  Tidal inlets would likely constrict when sea level in 230 

the lagoon behind it falls and their tidal prism is reduced.    231 

 232 

From a stratigraphic perspective a fall in sea level would be manifest in a variety of ways; 233 

there may be a hiatus or abrupt lithological change that marks a cessation or abrupt change in 234 

sediment accretion, or the widespread development of (partly erosive) regressive overlaps or soil 235 

horizons that mark the lithostratigraphical change between predominately brackish-water and fresh-236 

water deposits (e.g. Peeters et al., 2015).  Regressive overlaps would extend seawards and fall in 237 

elevation.  An increase in salinity stratification within deeper lagoons might coincide with the 238 

accumulation of finer-grained, potentially laminated, organic-rich sediments and a fall in the 239 

occurrence of open coast biota.   240 

 241 

Multiple meter-scale oscillations in sea-level in a few millennia (or less), would be more 242 

disruptive. In deep depositional centres they could create stacked sequences of estuarine and 243 

freshwater deposits characterised by multiple changes in sedimentary type, and along fringes leave 244 

complex erosional contacts and sedimentary hiatuses.  Also the architectural properties of the 245 

record (i.e. the spatial continuity and uniformity of stratigraphic bounding surfaces), would be 246 

affected by the propensity for erosion to destroy older sequences deposited during earlier episodes 247 

of sea-level change.   248 

 249 

5. Evidence for near-field Last Interglacial relative sea-level changes in northwest Europe 250 

The higher than present sea levels of the LIG had a profound impact on the geometry of 251 

northwest European coasts.  In the Southern North Sea, LIG shorelines were established inland of 252 

the present coastline, with shallow inner shelf seas developing in the Netherlands, Belgium and 253 

Germany (e.g. Jelgersma et al., 1979; Zagwijn, 1983; 1989; Paepe and Baeteman, 1979; Behre et al., 254 

1979; De Gans et al., 2000; Streif, 2004; Peeters et al., 2015) (Figure 3).  In England, coastal LIG 255 



deposits (Ipswichian stage) are preserved in parts of Lincolnshire and Cambridgeshire (e.g. Gaunt et 256 

al., 1974; Gao and Boreham, 2011), within the Thames Estuary (e.g. Gibbard, 1985; Preece, 1999; 257 

Bridgland, 1994), and at several sites along the English Channel coast (e.g. Bates et al., 1997; 2010; 258 

West and Sparks, 1960; Preece et al., 1990).  Based on their pollen assemblages, most of these 259 

coastal sequences preserve sediments that span only a relatively short interval of the LIG RSL record.   260 

 261 

Thicker, more complete LIG sequences are recorded in the Baltic and White Sea, and also on 262 

the North Sea coast of Germany and the Netherlands.  LIG sequences occur in the White Sea region 263 

(reviewed by Grøsfjeld et al., 2006), the eastern Baltic at Peski (Karelian Isthmus, Russia; e.g. 264 

Miettinen et al., 2002; Miettinen et al., 2014) as well as in the western Baltic in the Lower Vistula 265 

region (Poland; e.g. Marks et al., 2014) and at Mommark (Denmark; e.g. Erikkson et al., 2006).  On 266 

the North Sea coast of Germany, thick (c. 20 m) LIG records are described from Dagebüll (e.g. Temler 267 

et al., 1995; Win et al., 2000).  Notwithstanding these long records, the most complete near-field 268 

sedimentary record for LIG RSL changes in northwest Europe is preserved in the Saalian glacial basins 269 

of the Netherlands.   270 

 271 

Lobes of the Saalian Scandinavian ice sheet reached their maximum southward expansion at 272 

c. 160 k yr ago (within MIS 6) (Busschers et al., 2008) and in the central Netherlands excavated a 273 

series of deep glacial basins up to -100 m NAP (Dutch Ordnance Datum = approximately mean sea 274 

level). These became depositional traps during the deglaciation stages (Drenthe and Warthe 275 

Substages of the Saalian), the Eemian (before and after the marine transgression), and the last 276 

glacial (Weichselian) (de Gans et al., 1987; Busschers et al. 2007; 2008; Peeters et al. 2015) (Figure 277 

4).  The main Amsterdam and (adjacent) Amersfoort Basins have a sill in the base of the in situ 278 

Eemian sediments with a present height of c. -40 m that separated them from the Eemian Rhine 279 

Valley towards the north (Cleveringa et al., 2000; Gunnink et al., 2012; Peeters et al., 2015).  This sill 280 

controlled the timing of initial marine inundation and influenced tidal mixing in each lagoon (Van 281 

Leeuwen et al., 2000), at least until sediment accumulation exceeded their heights.   282 

 283 

Many hundreds of boreholes exist from the Amsterdam Basin (Figure 5).  A key site is the 284 

Amsterdam Terminal borehole (Figure 4) (Bosch et al., 2000; van Leeuwen et al., 2000; de Gans et 285 

al., 2000; Beets and Beets, 2003; Beets et al., 2003; Busschers et al., 2007;  Peeters et al., 2015). The 286 

Eemian fill comprises a c. 30 m thick sequence of clay-rich sediments that are overlain by a wedge of 287 

shell-rich sand that is up to 20 m thick in the north of the basin and which disappears to the south. 288 

The deposits are mainly shallow marine in origin and span six distinct pollen zones (NW European 289 



pollen zones E1 to E6) (Zagwijn, 1983; de Gans et al., 2000) that include a brief initial temperate 290 

terrestrial stage (E1, E2), the main RSL transgression (in E3-E4a), the highstand (during E4b, E5) and 291 

the start of the subsequent regression and RSL fall at the end of the LIG (E6).  A broadly similar 292 

sedimentary fill is found in the Amersfoort Basin.  Here, the key cored sites (including the stratotype 293 

site Amersfoort-1) (Zagwijn, 1961; Cleveringa et al., 2000), are from a more marginal, shallower 294 

setting (Figure 6).  Importantly, the upper part of the Amersfoort-1 LIG record preserves a fining-295 

upwards sequence that formed as tidal flats were replaced by salt marsh and then freshwater peat 296 

(Zagwijn, 1961; Cleveringa et al., 2000).   297 

 298 

Zagwijn’s (1983; 1996) RSL graph of Dutch Eemian RSL changes (Figure 1F) uses index points 299 

that have ages inferred from pollen biostratigraphy and altitudes established with respect to high 300 

tide level. The graph shows RSL rise from c. -25 m NAP to a highstand of c. -8 m NAP during E5, 301 

before falling during E6. A preceding part of the curve, that spans the initial rise from -45 to -25 m, is 302 

based on the inundation of the Amsterdam basin and on offshore (North Sea) cores.  The highstand 303 

sea-level index points used by Zagwijn (1983) and Streif (1990) are collected from several sites 304 

scattered along the fringe of the Eemian embayment in the central Netherlands.  They have been 305 

influenced differentially by the effects of long-term sediment compaction, tectonics and isostatic 306 

motions, the latter including GIA.  Kooi et al. (1998) estimate that the long-term net effect of these 307 

processes varies between c. 12 and 18 cm/k yr.  Recent re-analysis of the Zagwijn (1983) data, 308 

updated by Streif (1990), corrects for each of these effects (Figure 1F; Lambeck et al., 2006; Kopp et 309 

al., 2009).   310 

 311 

The approximate duration of the European regional pollen zones is known from annually 312 

varved lake deposits in northwest Germany (Müller, 1974).  The key pollen zones for the purposes of 313 

this study, those that span the culmination of the LIG RSL transgression and highstand in the 314 

Netherlands, are E4b (duration c. 1-1.2 k yrs) and E5 (duration c. 4 k yrs).  Although the duration of 315 

the transgression and highstand is reasonably well-known, there is debate regarding its numerical 316 

age.  Zagwijn (1983) originally dated the highstand peak to late in the LIG (c. 120 k yr ago), based on 317 

correlation with the deep sea oxygen isotope record of MIS 5e (Shackleton and Opdyke, 1973).  A 318 

late LIG highstand (c. 123 k yr ago) is also proposed by more recent correlation of the NW European 319 

Eemian to tied terrestrial pollen and marine δ18O records and implies a lag between the start of MIS 320 

5e and the far-field LIG highstand of c. 4-5 k yr (Sanchez-Goñi et al., 1999 ; Shackleton et al., 2002; 321 

2003). A relatively late LIG sea-level highstand compared to that seen in the far-field is compatible 322 

with what is seen during the Holocene. 323 



 324 

In contrast, Funder et al. (2002) correlated the highstand with that recorded by far-field 325 

coral reefs to 128 ± 1 k yr ago (McCulloch and Esat, 2000; Shackleton, 2000).  Beets et al. (2006) also 326 

prefer this timing, correlating the Eemian transgression to the main rise in benthic δ18O at the start 327 

of MIS 5e.  Kopp et al. (2009) establish a numerical age for the Zagwijn (1983) sea-level curve by 328 

tuning this against the global oxygen isotope stack of Lisiecki and Raymo (2005).  From this they 329 

propose a broad, flat peak to the highstand that lasted between c. 127-121 k yr ago.  330 

 331 

More recently, it has been proposed that the start of the terrestrial Eemian in northwest 332 

Europe is even younger than that proposed by Sanchez-Goñi et al. (1999) and  Shackleton et al. 333 

(2002; 2003) (c. 123 k yr ago). A key line of supporting evidence comes from palaeomagnetic 334 

investigations of the Blake Event, a prominent dipole moment low (Singer et al., 2014).  In Neumark 335 

Nord 2, Germany, it is identified in the earliest part of the LIG pollen sequence (Sier et al., 2011).   A 336 

second study of the Blake Event (supported by luminescence dating) by Sier et al. (2015) from a core 337 

drilled at Rutten – in the area of the Zagwijn (1983) sea-level data - places the start of the Eemian 338 

(zone E1) to c. 121 k yr ago, and by implication the sea-level highstand (zone E4b) was attained at c. 339 

119 k yr ago (Figure 7). In this model, the end of the nearfield highstand (end of zone E5) correlates 340 

with the end of MIS 5e, whilst the following early stage of RSL fall (zone E6) correlates with the start 341 

of MIS 5d (at c. 114 k yr ago).  342 

 343 

6. Evidence for last interglacial (‘Eemian’) sea-level oscillations or jumps in the Netherlands 344 

We now focus our attention on the evidence for RSL changes during the sea-level highstand 345 

of the Dutch Eemian sequences, starting with the lower-energy sequence recorded in Amersfoort-1.  346 

By the start of E5, sedimentation had already infilled the original basin to above its sill elevation and, 347 

as a result, the basin was operating as a tidal lagoon.  Any large RSL oscillation during the LIG 348 

highstand should be manifest in the core between c. -23 m NAP and -10.5 m NAP (the latter 349 

representing the level at which freshwater peat accumulation begins).  This interval spans pollen 350 

zones E4b to E6 (Figure 7).  351 

 352 

Following the initial tidal inundation in E2, several proxies indicate that water depths and 353 

accommodation space increased due to RSL rise (Cleveringa et al., 2000).  The lithology records an 354 

up-core transition from shallow-water, brackish clay-rich sands and shells to a sand with shells that 355 

coarsens upwards.  The transition between these facies is dated to the end of E4b and the start of E5 356 

(c. -22.50 m NAP).  Molluscs and foraminifera above this level point to a deepening and an increase 357 



in salinity, with some of the latter taxa washed in from the North Sea inner shelf.  Maximum water 358 

depths of c. 10 m are inferred between core depths of -18.8 m to -16.8 m NAP.  Accommodation 359 

space decreased above this level as sedimentation outstripped the slowing rate of RSL rise.   The 360 

coarsening-upwards trend in the sands seen in the second half of E5 indicates an increase in wave 361 

action and related hydrodynamic processes.  Heavy mineral data and the setting of the site indicate 362 

the sands were likely derived from the local reworking of ice-pushed ridges close to the basin 363 

margins.  Changes in the molluscan and ostracod assemblages point to local reworking within these 364 

sands, most likely owing to wave or current processes.     365 

 366 

Towards the end of E5 (c. -14.50 m NAP) the shelly sands described above are abruptly 367 

overlain by c. 4 m of clays and sandy clays. Cleveringa et al. (2000) suggest a discontinuity in 368 

sedimentation (they use the term ‘hiatus’) between the shelly sands and overlying clays, also noting 369 

an abrupt change in molluscan and foraminiferal assemblages that indicate a change from a lagoon 370 

to an ‘estuary-like water body surrounded by mudflats’ (Figure 6).  The uppermost fine-grained 371 

deposits were deposited under tidal mudflat and then salt marsh conditions.  They record the final 372 

infilling of the basin during the broad RSL highstand that culminated in freshwater peat formation as 373 

RSL started to fall.  The stratigraphic cross-section of the Amersfoort area compiled by Zagwijn 374 

(1983) (Figure 5) shows only a single regressive contact to the overlying freshwater peat that can be 375 

traced across the basin to its margins; there are no intercalations of organic or minerogenic 376 

sediments at the basin margins. 377 

 378 

In the Amsterdam Terminal borehole, a thick sequence of clays and silts formed during the 379 

latter part of E4 and throughout E5 (van Leeuwen et al., 2000).  Crumbly and then homogenous silty 380 

clays grade upwards into a laminated silty clay at c. -46 m NAP. Foraminifera and dinoflagellates 381 

indicate a steady deepening of the lagoon, and a strengthening of the exchange of water with the 382 

open sea that created a well-ventilated water column (van Leeuwen et al., 2000).  An increase in 383 

tidal influence is also suggested by an increase in salt marsh pollen frequencies.  This phase of 384 

unobstructed exchange of water with the open coast ended shortly after the start of E5 when the 385 

deposition of laminated finer-grained clays indicates the establishment of more restricted, lagoonal 386 

conditions.  Drawing analogies with the Holocene development of coastal beach barriers - which in 387 

this region stabilised c. 6.5 k yr ago (e.g. Beets & Van de Spek, 2000), some 1.5-2 k yrs after Holocene 388 

RSL had begun to slow (Hijma & Cohen, 2010) - van Leeuwen et al.  (2000) and de Gans et al. (2000) 389 

interpret these changes as recording a phase of sand barrier development in the sill area which 390 

restricted tidal inflow and lead to lagoonal stratification.   391 



 392 

The final phase of the LIG highstand in the Amsterdam Terminal borehole above -38 m NAP 393 

comprises an upward coarsening trend with massive silty clays that contain increasingly thicker 394 

laminations of sand during the latter part of E5 (van Leeuwen et al., 2000).  Foraminifera and 395 

molluscs suggest deposition in a large, tidally-affected lagoon that was shallowing, and which once 396 

had an unobstructed exchange of water with the open marine areas to the north.  This may record 397 

the breakdown of a former barrier or spit (Van Leeuwen et al., 2000; de Gans et al., 2000).  Van 398 

Leeuwen et al. (2000) propose reworking of these coarse sands by tidal channels as accommodation 399 

space fell further, as shown by a shell-rich lag deposit containing clay pebbles reworked from 400 

mudflats, encountered at c. -32 m NAP.  However, Busschers et al. (2007) and Peeters et al. (2015) 401 

indicated that this lag is the base of a much younger (MIS 4) fluvial channel belt of the Rhine system.   402 

In summary, the Amersfoort-1 and Amsterdam Terminal cores contain no evidence for 403 

abrupt oscillations in RSL during the LIG highstand (E4-E5).  The discontinuities that do exist can all 404 

be explained by analogy to mid-Holocene coastal dynamics, without invoking vertical changes in RSL 405 

(other than RSL rise at the onset of the highstand and fall towards the end, Figure 4).  The hiatuses 406 

seen in the Amersfoort-1 core are not seen within the finer-grained sediments that accumulated in 407 

the deeper-water setting of the Amsterdam Terminal core, away from the basin margins.  Nor does 408 

the latter contain evidence for large-scale input of sand, organic material and/or pollen that might 409 

suggest sudden RSL rise and associated erosion of basin valley flanks by wave or tidal processes.   410 

 411 

7. A critical evaluation of the near-field relative sea-level record from northwest Europe 412 

7.1  Issues of dating and vertical precision in near-field relative sea-level records 413 

It could be argued that the relatively poor vertical precision of the near-field LIG sea-level 414 

index points may hinder our ability to identify RSL oscillations/jumps; indeed we note that the 415 

highstand sediments in the Amsterdam Terminal core (but not the Amersfoort-1 core) are silty clays 416 

and coarse shelly sands that are not ideal for developing detailed RSL records.  The chronology of 417 

these records is a floating one based on pollen zones and their registration in annually laminated 418 

lacustrine sediments elsewhere in NW Europe. The absolute age-models for the sequence vary 419 

between studies (see above) and this makes direct correlation with other, better-dated sequences 420 

from far- and intermediate-field settings difficult. The near-field highstand record is also 421 

considerably shorter than the far-field highstand, such that the former does not overlap all of the 422 

latter (i.e. the near-field Eemian sea-level record cannot overlap both the Seychelles and the Yucatán 423 

records of MIS 5e).  We also note that during the main Eemian transgression, when sea level rose 424 

rapidly from c. -45 m NAP (the lowest sea-level indicator) to c. -15 m NAP (the start of the local 425 



Dutch highstand), we cannot currently rule out the possibility of a sea-level jump within the earliest 426 

part of the Eemian (during E1-E3).  However, when considering the sedimentary architectures from 427 

which these index-points are derived (by analogy to the reef studies reviewed in section 2) the 428 

resolution is similar and we identify no evidence for sea-level jumps in the time interval considered.  429 

 430 

7.2 Local and regional signals in the last interglacial sea level records of northwest Europe 431 

Looking beyond the Netherlands, we see no evidence for abrupt RSL changes in the adjacent 432 

Eemian sequences described by Temler (1995) and Winn et al. (2000) from North Germany.  LIG 433 

marine deposits from south and east England typically only span brief time intervals and also record 434 

no evidence for synchronous abrupt RSL changes (e.g. West and Sparks, 1960; West et al., 1970; 435 

Holyoak and Preece, 1985).  In Trafalgar Square (London), LIG deposition occurred at the landward 436 

limit of tidal influence.  This setting should have been sensitive to abrupt RSL changes in the LIG 437 

highstand, yet only gradual changes are observed (Gibbard, 1985; Preece, 1999).    438 

 439 

Elsewhere in northwest Europe, two extensive reviews from the Baltic/White Sea regions 440 

also find no evidence for such events during the RSL highstand (Funder et al., 2002; Lambeck et al., 441 

2006).  Indeed, of the examples of gradual changes in LIG RSL inferred from detailed litho- and 442 

biostratigraphy we highlight the study of Grøsfjeld et al. (2006) from the White Sea region of 443 

northwest Russia and the multiproxy examination of displaced marine sediments in the Mommarck 444 

area of southern Denmark (e.g. Haila et al., 2006; Kristensen and Knudsen, 2006) as two further 445 

records which document gradual RSL rise and then fall over the LIG highstand.   446 

 447 

It would be misleading, though, to suggest that the possibility of RSL fluctuations in the LIG 448 

have not been made from northwest European sites.  For example, Hollin (1977) interpreted 449 

evidence from the Thames Estuary as evidence for a two-phase RSL record in the LIG, including a 450 

jump from c. 0 m to +16 m at the end of the interglacial that they attribute to an Antarctic ‘surge’.  451 

More recently, two studies suggest salinity variations during the LIG RSL highstand from the White 452 

Sea. Diatoms from Peski, on the Karelian Isthmus, suggest a brief mid-Eemian lowering in salinity 453 

that Miettinan et al. (2014) speculate could be related to a mid-LIG (c. 126 k yr ago in their age 454 

model) sea-level fall.  At Cierpieta, in the Lower Vistula region of Poland, Marks et al. (2014) report a 455 

short-lived ‘transgressive pulse’ that happened about 6.2-6.6 k yrs into the interglacial (during the 456 

end of E5 or start of E6) and was associated with an increase in tidal and littoral diatoms.  However, 457 

each of these studies is equivocal in one or more ways; the study of Hollin (1977) is now recognised 458 

as flawed because all of the high level sites they thought were from the LIG are now attributed to 459 



MIS 7 or older (e.g. Bridgland, 1994; Penkman et al., 2011), whilst the Baltic sites are sensitive to 460 

climate-driven changes in freshwater discharge and changes in tidal dynamics that accompanied the 461 

evolution of the LIG White Sea (Miettinen et al., 2014; Marks et al., 2014).   462 

 463 

In summary, the resolution of the near-field RSL reconstructions from the LIG is not as 464 

detailed as those from the Holocene.  Nevertheless the size of the sea-level signal that we are testing 465 

for is much larger than any RSL variation during the Holocene highstand.  Moreover, we would 466 

expect a large oscillation/jump in RSL to be a regional signal, with evidence preserved in many of the 467 

near-field coastal sequences described above.  We see no evidence for regionally synchronous 468 

changes of this nature (other than the initial rapid transgression) and observe that synchronous 469 

regional sea-level fall is first recorded at the onset of zone E6, in the last millennia of the Eemian. 470 

 471 

Section 8.1 472 

8.1 Sea-level signals of Last Interglacial ice sheet instability  473 

The size of the LIG sea-level oscillations/jumps reconstructed in several far- and 474 

intermediate-field RSL studies implicates either Greenland and/or Antarctica as potential sources, 475 

although other ice masses may have contributed too (see below).  Sea-level fingerprinting provides a 476 

means to assess such a possibility, as previous studies predict spatially variable sea-level changes 477 

consequential to ice sheet collapse events.  Hay et al. (2014) show that the ability to identify rapid 478 

collapse events in sea-level records should be more robust than with current gradual melting 479 

because the sea-level fingerprint of a sudden event is less sensitive to uncertainties in the geometry 480 

of the melt region and will dominate over the signal from steric effects.   481 

 482 

One hypothesis for the lack of obvious sea-level oscillation/jump in the Netherlands (and 483 

elsewhere in northwest Europe) is that this reflects the geographical proximity of these sites to the 484 

LIG Greenland Ice Sheet.  To test this hypothesis, we present a pair of experiments in which we 485 

modified global ice sheet deglaciation histories (ICE-5G; Peltier, (2004) and HUY-2; Simpson et al. 486 

(2009)) to simulate hypothetical episodes of ice sheet collapse/regrowth in Greenland or Antarctica.  487 

The combined ICE-5G-HUY-2 deglaciation history detailed in Simpson et al. (2009) focuses on sea-488 

level change since the Last Glacial Maximum with the sea level calculation initiated at 122 k yr ago.  489 

In this model, sea level reached +8 m above present at 122 k yr ago until an abrupt fall at 116 k yr 490 

ago.   491 

 492 



We modify the ICE-5G-HUY-2 deglaciation history by adding several synthetic eustatic sea-493 

level fluctuations between 127 and 116 k yr ago. We limit the mass fluxes from Greenland 494 

(experiment G1) to the equivalent of ± 2-3 m eustatic sea level, and the mass fluxes from Antarctica 495 

(experiment A1) equal to ± 5 m (Figure 8, Table S1).  Note that the timing and number of fluctuations 496 

differ in each experiment and that our interest is in the relative size of the sea-level signal between 497 

sites and not their absolute values.  Moreover, although these models are purely illustrative, we 498 

present a ‘realistic’ ice sheet history by allowing the geometry of the Greenland Ice Sheet to oscillate 499 

between states representative of 122 k yr ago and 110 k yr ago during the period of interest. For 500 

Antarctica, we construct oscillations in mass balance by applying scaling factors for ice thickness 501 

uniformly across the ice sheet, which we consider adequate for the purposes of this experiment (see 502 

Mitrovica et al. (2009) for details of the influence of more complex melt patterns).   The scaling 503 

factors and details of ice sheet deglaciation for the period 127-117 k yr ago used in both scenarios 504 

are detailed in Supplementary Information (Table S1).  Global ice extent outside of the target areas 505 

of each experiment (Greenland and Antarctica) is fixed at its 122 k yr ago extent during the LIG 506 

maximum.   507 

 508 

We input the resulting loading histories into the sea-level model presented in Mitrovica and 509 

Milne (2003) and Kendall et al. (2005), and use this to predict RSL changes at the Netherlands, 510 

Seychelles, Red Sea, the Yucatán Peninsula, Bahamas and Western Australia (Figure 8).  In the sea-511 

level model, we do not include calculation of the Earth response to pre-LIG changes in global ice and 512 

ocean loads since the aim of this experiment is only to test sensitivity for recording jump-events and 513 

not to accurately reproduce any specific global or regional sea-level history. The sea-level change 514 

associated with pre-LIG glaciation-deglaciation cycles will not alter the magnitude of the applied LIG 515 

oscillations in each experiment but rather superimpose them on a long-term secular trend. We 516 

present the results for experiments A1 and G1 in which Antarctica and Greenland, respectively, are 517 

subjected to growth-collapse periods during the LIG.  518 

 519 

Model results for an Antarctica-only source for the sea-level fluctuations show that all sites 520 

track the modified eustatic curve reasonably closely, especially late in the LIG (after 123 ky ago), 521 

when the Northern Hemisphere has almost completely deglaciated (Figure 8).  This overall pattern is 522 

in agreement with other sea-level fingerprint experiments (Mitrovica et al., 2001; Hay et al., 2014) 523 

and shows that all of these sites should be sensitive to sea-level oscillations sourced from 524 

Antarctica.  An Antarctic-sourced sea level oscillation seen in the Yucatán Peninsula, for example, 525 

should be manifest at the same time, and with a broadly similar amplitude, in each of the other 526 



sites.  Of course, whether the signal is actually preserved in coastal stratigraphic data would depend 527 

on the particular local RSL history (including background rates of tectonic- and GIA- and 528 

hydroisostasy-induced subsidence, e.g. in Yucatán, in the Netherlands).  It is conceivable that in 529 

near-field sites, such as the Netherlands, RSL was potentially below present at the time of both an 530 

early and a late interglacial sea-level jump recorded in far- and intermediate-field settings, i.e. after 531 

c. 128 k yr (Seychelles) and before c. 119 k yr ago (Yucatán Peninsula). 532 

 533 

Model results for a Greenland-only source show more considerable differences between the 534 

study sites (Figure 8). Because of the proximity of the Netherlands to Greenland and a deglaciating 535 

Eurasian Ice Sheet, the predicted sea-level record for this site is effectively ‘blind’ to the oscillations 536 

(±2 m) recorded in each of the far-field sites (see also Mitrovica et al. (2001)).  This experiment raises 537 

the possibility that the lack of obvious sea-level oscillations/jumps in the Netherlands is because 538 

abrupt RSL changes observed in far-field sites were sourced from Greenland.  539 

 540 

8.2 Near-field records of ice-sheet instability 541 

The experiments above show that the Netherlands is potentially sensitive to abrupt sea-level 542 

changes sourced from Antarctica, an advantage over other far-field RSL sites that are potentially 543 

unable to discriminate between Antarctic and Greenland contributions.  Marine diatoms and 544 

cosmogenic isotopes from beneath the West Antarctic Ice Sheet (WAIS) indicate exposure to marine 545 

conditions at an unspecified interglacial (Scherer et al., 1993; Scherer et al., 1998), but they cannot 546 

be ascribed with any confidence to the LIG.  Bryozoan diversity data suggest an open seaway 547 

between the Weddell and Ross Sea at some time in the late Quaternary (Barnes and Hillenbrand, 548 

2010; Vaughen et al., 2011).  Rapid collapse of WAIS should result in massive discharges of icebergs, 549 

meltwater and significant IRD (Hillenbrand et al., 2009), yet no such evidence is recorded in sea bed 550 

cores from sites close to Antarctica (e.g. O’Cofaigh et al., 2001; Hillenbrand et al., 2002).  A review of 551 

17 marine records from the wider Southern Ocean by Capron et al. (2014) reveals no evidence of 552 

synchronous abrupt warming or cooling events during the main part of the LIG that might trigger, or 553 

record, abrupt Antarctic instability. 554 

 555 

Ice-core records from Antarctica provide an important source for identifying abrupt changes 556 

in climate and associated changes in ice sheet surface elevation that could be related to sea-level 557 

changes, although as Bradley et al. (2012) show, the location of many ice cores, mainly in East 558 

Antarctica, is not ideal for testing models of WAIS collapse.  Common to most Antarctic ice cores is 559 

an early (c. 128 k yr ago, using the AICC2012 timescale; Bazin et al., 2013) maximum in LIG air 560 



temperatures, 1-4 °C warmer than present and lasting c. 3 k yrs, that was followed by a multi-561 

millennial scale plateau (126-122 k yr ago; Masson-Delmotte et al., 2011) of stable temperatures 562 

(Jouzel et al., 2007).  This was followed by a cooling into the glacial inception at c. 110 k yr ago 563 

(Capron et al., 2012).   564 

 565 

Steig et al. (2015) note that the δ18O data from Mt. Moulton (West Antarctica) show a 566 

statistically significant smaller difference between LIG and Holocene values than is seen in East 567 

Antarctic ice cores. This is consistent with the differences predicted by a climate model that includes 568 

WAIS collapse that was well underway by ~130 k yr ago.  Steig et al. (2015) note several caveats to 569 

this study; it assumes a fixed linear correlation between temperature and the ice core isotope data, 570 

whilst the Mt Moulton record implies relatively low and high δ18O values in MIS 5e and the coldest 571 

part of the glacial period (~20-40 k yr ago) compared to other ice core records.  Moreover, there is 572 

no strong evidence that WAIS was significantly thicker during this period.  Model experiments by 573 

Holden et al. (2010) of the impact of meltwater on the Antarctic Meridional Overturning Circulation 574 

and associated air temperatures over Antarctica also require WAIS melting so as to satisfactorily 575 

predict the observed peak temperatures in the early part of the LIG.   576 

 577 

These data-model studies suggest, contrary to the geological evidence, that the early LIG 578 

warmth may have been associated with ice-sheet retreat that contributed to the higher than present 579 

sea levels observed during the LIG.  But the relationship between atmospheric warmth and mass 580 

change in Antarctica is complex; indeed a period of warmth in the mid Holocene in Antarctica 581 

between c. 4.5 and 2 k yr ago (Bentley et al., 2009; Sterkin et al., 2012) coincided with a 30% 582 

increase in ice accumulation over West Antarctica (Siegert and Payne, 2004), whilst Frieler et al. 583 

(2015) use a combination of ice core data and modelling to derive a continental-scale increase in 584 

accumulation of approximately 5 ± 1 % K-1, that would have competed with surface melting and 585 

dynamical loss at the ice sheet margin by other processes.  So, although it is overly-simplistic to 586 

assume warmer air temperatures equate directly to ice-sheet mass loss, the main observation we 587 

draw from the Antarctic ice cores is that there is only one interval of significant warmth, and that 588 

this happened early in the LIG.  589 

    590 

Turning to Greenland, evidence for LIG ice sheet behaviour is provided by sea-bed cores that 591 

contain proxies for Greenland vegetation cover, run-off and IRD.  Pollen and spores from a sea-bed 592 

core located off southeast Greenland (core HU-90-014-013) indicate single peaks in relative 593 

abundances that implicate only a single interval of reduced ice cover in southern Greenland (de 594 



Vernal and Hillaire-Marcel, 2008).  Sr-Nd-Pb isotope ratios of silt-sized sediment in a core offshore of 595 

the southern tip of Greenland also indicate that the southern part of the ice sheet underwent 596 

continued retreat throughout much of the last interglacial (Coleville et al., 2011), although there is 597 

no evidence for multiple phases of ice-sheet collapse followed by regrowth.  Records of Ti and Fe 598 

present in core MD99-2227, from the same region, suggest high but steady run-off throughout the 599 

main part of the LIG (Carlson et al., 2008; Carlson and Windsor, 2012).   600 

 601 

Several records from the North Atlantic and Baffin Bay have evidence for one or more 602 

cooling episodes during the broad oxygen isotope plateau of the LIG that may record ice-sheet 603 

instability, although not necessarily all are attributed to Greenland (e.g. Maslin et al., 1998; Bauch, 604 

2011; Schwab et al., 2014).  Sea surface temperature reconstructions and foraminiferal assemblages 605 

from core MD03-2664 (southwest Greenland) (Irvani et al., 2012), indicate a warm early start to MIS 606 

5e that was interrupted at c. 126 k yr ago by a 1.6 k yrs cooling event.  This was accompanied by a 607 

significant freshening that is attributed to enhanced Greenland run-off.  Galassen et al. (2014) 608 

identify multiple such transient cooling events that they relate to variations in North Atlantic Deep 609 

Water (NADW) production.  Some of these are reminiscent of the 8.2 k yr cold event (see also Bauch, 610 

2011); indeed one is described in detail by Nicholl et al. (2012) who trace a red carbonate layer along 611 

the Labrador and Greenland margins of the Labrador Sea that they source to a large outburst flood 612 

from a LIG glacial Lake Agassiz, dated to c. 124.5 k yr ago.  Variations in NADW during the latter part 613 

of the LIG are also identified by Galassen et al. (2014) at c. 119.5 and 116.8 k yr ago that are 614 

attributed to (unspecificed) non-Greenland forcing.  615 

 616 

The North Greenland Eemian Ice Drilling core (NEEM) records a maximum in air 617 

temperatures of +8 ± 4 °C (compared to the average of the last millennium) during the early Eemian 618 

(c. 126 k yr ago) (NEEM Members, 2013).  Regular summer melt events occur between 127 and 619 

118.3 k yr ago, and the NEEM Members (2013) conclude that the GIS contributed no more than c. 2 620 

m to the LIG highstand.   The NEEM core records a cooling after c. 121 k yr ago that broadly tracks 621 

the decline in northern hemisphere insolation.  In NGRIP there is an abrupt cooling assigned to c. 622 

119 k yr, followed by relatively stable depleted δ18O phase (Greenland stadial 26) until c. 115 k yr 623 

ago (NGRIP Community Members, 2004). If the NEEM CH4 tuned age-model (NEEM Members, 2013) 624 

is applied to the lower part of the NGRIP core (from Greenland stadial 24 towards the LIG), these 625 

ages become 1.5-2 k yrs younger (Sier et al. 2015).   626 

 627 



Other potential near-field sources capable of driving abrupt sea-level changes include the 628 

Laurentide and Fennoscandinavian ice sheets.  These are normally excluded from discussions on LIG 629 

sea-level (and GIA modelling) since it is assumed that by the peak of MIS 5e they had melted, or 630 

were too small to drive meter-scale changes in global sea level.  However, the MIS 6 631 

Fennoscandinavian Ice Sheet was significantly larger than its LGM counterpart, accounting for up to 632 

50% of the total northern hemisphere ice volume (Svendsen et al., 2004; Lambeck et al., 2006).  It is 633 

conceivable that this ice sheet may have continued to melt late into the LIG, and the GIA response 634 

and RSL signal in its near-field delayed in comparison to Termination I.  In the eastern and northern 635 

Nordic Seas, Van Nieuwenhove et al. (2013) note that peak ocean temperatures occurred relatively 636 

late in the LIG, and implicate meltwater run-off from a residual Norwegian ice mass until as late as c. 637 

122-120 k yr ago (see also Bauch and Erlenkeuser (2008)). The absence of significant Laurentide-638 

sourced IRD-events during MIS 6 beyond the Labrador Sea could be because the configuration of the 639 

Laurentide Ice Sheet was different to that of other glacials (i.e. smaller), or that no ice stream existed 640 

in Hudson Strait in MIS 6 (Naafs et al., 2013), in which case the ice sheet may have been more stable.  641 

Indeed, as noted above, Nichol et al. (2012) identify an abrupt drainage event that they attribute to 642 

former glacial Lake Agassiz in the Hudson Bay region at c. 124.5 k yr ago.  A smaller and more stable 643 

Laurentide Ice Sheet might, therefore, have still been retreating during much of the interval covered 644 

by the Seychelles LIG sea level record, which is interpreted to reflect only Antarctic and Greenland 645 

contributions (Dutton et al., 2015).   646 

 647 

The above discussion highlights that ice sheets other than Greenland and Antarctica may 648 

have played a role in causing sea level to vary during the LIG highstand and that their configurations 649 

and retreat dynamics during Termination II and MIS 5e were probably different to those during 650 

Termination I and the Holocene.  However, as yet there is no compelling evidence for significant ice-651 

sheet collapse in Antarctica or for polar ice sheet regrowth during the LIG that is required to explain 652 

abrupt oscillations in sea level, other than at the end of the highstand. 653 

 654 

9. Reflections on Last Interglacial sea-level studies 655 

Our first reflection is that few far- and intermediate-field RSL studies attribute sea-level 656 

jumps to known periods of ice-sheet instability.  There is a large body of literature that has 657 

reconstructed abrupt oscillations in RSL during the LIG from far- and intermediate-field settings.  Our 658 

intention in this study is not to criticise these reconstructions, although we note that in several 659 

studies that assert there is more than one LIG highstand the deposits are poorly dated or undated.  660 

Rather we aim to highlight the lack of evidence for equivalent changes in the near-field in northwest 661 



Europe, and the lack of any coherent evidence for significant collapse and regrowth events from 662 

Greenland or Antarctica during the peak LIG capable of driving abrupt, meter-scale RSL fluctuations.   663 

 664 

A second reflection is on the importance of using uninterrupted stratigraphic sequences to 665 

test for sea-level oscillations/jumps.  In the Netherlands, it is the elevation of the basin sills that 666 

connected them to the Rhine Valley and the North Sea which provides the primary elevation control 667 

during the initial LIG transgression, whilst during the highstand the vertical RSL constraint is obtained 668 

from intertidal and salt marsh deposits and overlying terrestrial peat.  It is the stratigraphic 669 

successions preserved in these sequences that are the key to testing for large amplitude sea-level 670 

fluctuations/jumps.  The value of stratigraphically constrained data applies equally in the far- and 671 

intermediate-field settings.  672 

 673 

A third observation is that there are periods during the LIG when different RSL records have 674 

been used to invoke episodes of abrupt sea-level change when at other sites RSL is stable or 675 

changing little.  Mindful of the fingerprint discussion above, rapid jumps in sea level at one site 676 

should be recorded at the same time at others (as supposed to gradual sea-level change resulting in 677 

a spatially and temporally variable highstand).  Between-site variability therefore indicates that one 678 

or more of the records in conflict must reflect site- (or region-) specific processes.  One example 679 

illustrates this point; Thompson et al. (2011) report that RSL on the Bahamas fell from c. +4 m at 123 680 

k yr ago to 0 m and then rose again to + 6 m by 119.2 k yr ago.  But in this same 4 k yr interval, RSL 681 

on the Yucatán Peninsula was stable until a sudden 3 m jump tentatively dated at c. 121 k yr ago 682 

(Blanchon et al., 2009).  Meanwhile in the Red Sea, using the Grant et al. (2012) chronology, there is 683 

a rather modest (c. 2 m) oscillation in this interval (Figure 1).  It is difficult, if not impossible, to 684 

reconcile these records with each other. 685 

 686 

The above example underscores our fourth reflection, namely the need for precise age 687 

constraints from LIG sea-level reconstructions so as to enable robust chronological comparisons 688 

between sites and with the ice-sheet records and models.  In practice, dating LIG sea-level records is 689 

a major challenge.  In the Netherlands, the duration of the RSL record is determined with respect to 690 

‘floating’ varve chronologies and associated pollen zones (e.g. Caspers et al., 2002; Funder et al., 691 

2002; Sirocko et al., 2005).  Indeed, in some instances chronologies for the near-field RSL records are 692 

developed by aligning records with a single interglacial sea-level highstand identified in the far-field, 693 

regardless of potential differential GIA between these regions (e.g. Funder et al., 2002).  In the 694 

intermediate- and far-fields, U-Th dating provide the potential for precise and accurate dating 695 



control, but age determinations require careful screening to ensure that only the most trustworthy 696 

dates are used in any analysis.  In a recent LIG database exercise, Dutton and Lambeck (2012) discard 697 

about two thirds of available U-Th dates by following a robust screening procedure (see also 698 

Medina-Elizalde (2013)).  The importance of different age models is also evident in the way that the 699 

Red Sea sea-level record has shifted c. 6 k yr (from the early to the middle part of the LIG, Figure 1B) 700 

since its original publication (Rohling et al., 2008), whilst we note also that single-site chronologies 701 

can also be uncertain; the timing of the Yucatán sea-level jump at c. 121 k yr ago is only ‘tentatively’ 702 

dated (Blanchon et al., 2008).   703 

 704 

In Europe, debate regarding the absolute age of the Eemian deposits means that correlation 705 

with other intermediate- and far-field records is unclear.  The oldest suggested age for the Eemian 706 

highstand is c. 129 k yr ago (Funder et al., 2002) and, if correct, would mean that the initial sea-level 707 

jump recorded in the Seychelles by Dutton et al. (2015) could be recorded in the main Dutch 708 

transgression. The more conventional age-model, based on palynological correlation to the Iberian 709 

Peninsula and its offshore marine record (Sanchez-Goni et al., 1999; Shackleton et al., 2003) has the 710 

highstand (within E4 and E5) spanning from 124 to 119 k yr ago. If correct, it would mean that 711 

Seychelles sea-level jump happened when much of the Netherlands was dry land and the coastline 712 

well offshore in the southern North Sea.  Conversely, the late LIG sea-level jumps recorded on the 713 

Yucatán Peninsula/Bahamas and Western Australia (c. 121 to 118 k yr ago) would have happened 714 

(but are not recorded) during the final phase the Dutch highstand.  The youngest proposed 715 

chronology has the highstand spanning from 119 to 114 k yr ago (Sier et al., 2015). This model would 716 

mean that the proposed Yucatán and/or western Australia oscillations happened during the main 717 

transgression phase (E3).  Close interval sampling of multiple cores taken across these key time 718 

intervals from the flooding surface in the Amersfoort Basin would potentially help test the latter two 719 

hypotheses. 720 

 721 

A final observation is that well-constrained ice-margin histories mean that it is now possible 722 

to infer upper bounds to individual Holocene sea-level jumps, but this is not yet the case in the LIG.  723 

Indeed, the challenge in reconstructing the 8.2 k yr sea-level jump (Hijma and Cohen, 2010), which 724 

required excellent dating control and detailed sedimentological investigations, highlights the 725 

potential of this approach to LIG deposits but also the scale of the challenge ahead.  We therefore 726 

encourage caution against seeking to link RSL data from single sites or regions to ice-sheet behaviour 727 

until such time that abrupt sea-level changes are replicated in near-, intermediate- and far-field 728 



sites, or robust ice-sheet histories demonstrating unequivocal evidence for collapse and regrowth 729 

events are established.  730 

 731 

10. Conclusions and future research priorities  732 

Abrupt jumps or oscillations in RSL caused by the partial or full collapse and regrowth of an 733 

ice sheet should be recorded globally as distinct, spatially-variable, RSL signatures.  For decades, 734 

investigations in far- and intermediate-field sites have identified evidence that sea level during the 735 

LIG was several meters higher than present.  Additionally, there is also a large body of literature that 736 

argues for significant, meter-scale fluctuations in RSL during the LIG highstand, which have been 737 

attributed to largely unidentified ice-sheet collapse and regrowth events.   738 

 739 

Near-field stratigraphic sequences from the Amsterdam and Amersfoort Basins (the 740 

Netherlands) provide data that imply stable or only gradually changing ice volumes during the LIG 741 

highstand of this part of northwest Europe.  Reviews of other LIG marine records from northwest 742 

Europe yield no compelling evidence for widespread abrupt changes in RSL during the LIG highstand, 743 

changes that, based on our understanding of how coastal systems in this region typically respond to 744 

Holocene forcings, should be clearly identifiable.  745 

 746 

The fact that the near-field LIG records lack clear evidence for abrupt RSL change requires 747 

explanation if we are to be confident in making predictions for how the polar ice sheets may behave 748 

in a future, warmer-than-present world.  A lack of direct field evidence from Greenland and 749 

Antarctica for collapse/regrowth events within the LIG RSL highstand is a significant challenge to 750 

ongoing and future glaciological and palaoceanographic research.  Although sea-level modelling 751 

experiments predict that the Netherlands is relatively insensitive to Greenland ice-mass change, the 752 

latter had already lost significant mass at the time of the LIG sea-level highstand and cannot have 753 

been the sole source of large fluctuations/jumps in sea level during the LIG.  Present approaches to 754 

reconstructing LIG ice mass sources are hamstrung by poor chronologies for the deglacial history of 755 

Antarctica, Greenland, as well as other northern hemisphere ice sheets, parts of which may have 756 

persisted late into the LIG. 757 

 758 

The differences noted in this study provide directions for future research in near-, 759 

intermediate- and far-field RSL studies, in the LIG and other older interglacials, that may be used as 760 

analogues for future sea-level change.  For sites in the near-field, a priority must be replication of 761 

further, more detailed investigation of fine-grained tidal flat and salt marsh deposits formed during 762 



the LIG highstand, including with closer sampling intervals across key stratigraphic changes that span 763 

periods of hypothesised ice sheet collapse.  One such period – spanning the hypothesised sea-level 764 

jump observed c. 121 k yr ago – can be tested for by detailed study of the period of rapid 765 

transgression that marks the early part of the Eemian in the Dutch RSL record.   766 
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List of Figures 1150 

Figure 1:  Illustrative relative sea-level records from the last interglacial: A: The Seychelles 1151 

(Dutton et al., 2015). B: The Red Sea, core KL11 using the age models of Rohling et al. (2008) 1152 

and Grant et al. (2012); C: Yucatán Peninsula (Mexico) (Blanchon et al., 2009); D: The 1153 

Bahamas (Thompson and Goldstein, 2005); E: Western Australia (O’Leary et al., 2013), the 1154 

dashed green line is an inferred sea-level curve based on a minimum coral palaeodepth; and 1155 

F: The Netherlands.  The graph shows the original data of Zagwign (1983) and an enlarged 1156 

dataset (Streif, 1990) which has been corrected for GIA, compaction and tectonics (Lambeck, 1157 

1996).  1158 



 1159 

Figure 2:  Schematic relative sea-level histories recorded at near- and far-field sites during the 1160 

last interglacial (modified from Cohen et al., 2012).  Note that the highstand occurs earlier in 1161 

the far-field compared to the near-field.  A fluctuating sea-level history is depicted for 1162 

illustrative purposes to show how such a record might be recorded in each setting. 1163 

 1164 

Figure 3:  Location map of Northwest Europe showing last interglacial site names referred to in 1165 

the text.   1166 

 1167 

Figure 4: Reconstruction depicting (A) the Netherlands, (B) the Last Interglacial coastal 1168 

configuration in the Netherlands during the sea-level highstand (modified from Peeters et al. 1169 

(2015)), (B) the glacial basins in the Netherlands (modified from Cleveringa et al. (2000)).   1170 

 1171 

Figure 5:  Simplified lithostratigraphy in the Amersfoort Basin (modified from Zagwijn (1983)).  1172 

Position of pollen zones are approximate, based upon Zagwijn (1983). 1173 

 1174 

Figure 6:  Summary lithology and selected biostratigraphic data from the Amersfoort-1 and 1175 

Amsterdam Terminal boreholes (modified from Van Leeuwen et al. (2000) and Cleveringa et 1176 

al. (2000)) 1177 

 1178 

Figure 7: The Zagwign (1983) Netherlands sea level curve plotted against the established 1179 

pollen zone chronology (in black) and Sier et al. (2015) chronology (in grey).  The 1180 

approximate timing of the Seychelles and Western Australia sea level jumps (as shown in 1181 

Figure 1) are marked. 1182 

 1183 

Figure 8:  Sea-level predictions associated with hypothetical collapse/regrowth cycles of the 1184 

Greenland and Antarctic ice sheets.  Experiments G1 and A1 assume that Greenland and 1185 

Antarctica, respectively, are subjected to growth-collapse cycles with amplitudes that vary 1186 

between c. ± 2-3 and 5 m.  A) Predictions assuming a Greenland-only origin for sea-level 1187 

oscillations/jumps; B) Predictions assuming an Antarctic-only origin.  Two periods of mass 1188 

loss are shown for Greenland (122-121 k yr, 120-119 k yr) and three for Antarctica (123-122 1189 

k yr, 120-119 k yr, 118-117 k yr).  Details of experimental set-up associated with each model 1190 

are provided in Supplementary Information Table S1. 1191 
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Supplementary information Table S1 
 
Model parameters governing deglaciation scenarios A1 and G1. Columns 2,4 and 6 titled 'Extent' 
refer to the time period (kyr ago) which is used to represent the extent of global ice sheets applied 
at each time interval. Columns 3,5 and 7 denote the scaling factor applied uniformly to the regional 
ice distributions at each time step. For example, at 127.00 kyr BP in model A1, Antarctica, Greenland 
and the Rest of the World display ice cover identical to that at 122.00 kyr BP in ICE5G - HUY2 
deglaciation history (Peltier, 2004; Simpson et al. 2009). These ice extents are scaled by a factor of 1. 
 
Loading Step   (kyr 
ago  BP) 

Antarctica Greenland Rest of World 

Extent Scaling Factor Extent Scaling Factor Extent Scaling Factor 

132.00 116.00 0.980 116.00 0.980 116.00 0.980 

127.00 122.00 1.000 122.00 1.000 122.00 1.000 

126.00 122.00 1.000 122.00 1.000 122.00 1.000 

125.00 122.00 0.999 122.00 1.000 122.00 1.000 

124.00 122.00 0.998 122.00 1.000 122.00 1.000 

123.00 122.00 1.020 122.00 1.000 122.00 1.000 

122.00 122.00 1.000 122.00 1.000 122.00 1.000 

121.00 122.00 1.020 122.00 1.000 122.00 1.000 

120.00 122.00 1.090 122.00 1.000 122.00 1.000 

119.00 122.00 1.030 122.00 1.000 122.00 1.000 

118.00 122.00 1.100 122.00 1.000 122.00 1.000 

117.00 116.00 1.000 122.00 1.000 122.00 1.000 

116.00 116.00 1.000 115.00 1.000 116.00 1.000 

Model G1 

Loading Step   (kyr 
ago  BP) 

Antarctica Greenland Rest of World 

Extent Scaling Factor Extent Scaling Factor Extent Scaling Factor 



132.00 116.00 0.980 116.00 0.980 116.00 0.980 

127.00 122.00 1.000 122.00 1.000 122.00 1.000 

126.00 122.00 1.000 122.00 0.900 122.00 1.000 

125.00 122.00 1.000 122.00 0.700 122.00 1.000 

124.00 122.00 1.000 122.00 0.500 122.00 1.000 

123.00 122.00 1.000 122.00 0.200 122.00 1.000 

122.00 122.00 1.000 116.00 1.500 122.00 1.000 

121.00 122.00 1.000 116.00 1.050 122.00 1.000 

120.00 122.00 1.000 116.00 1.500 122.00 1.000 

119.00 122.00 1.000 122.00 0.200 122.00 1.000 

118.00 122.00 1.000 122.00 1.000 122.00 1.000 

117.00 122.00 1.000 116.00 1.000 122.00 1.000 

116.00 116.00 1.000 116.00 1.000 116.00 1.000 

 
Package 1 
 
The figures contained in PDF packages FigureS1.pdf and FigureS2.pdf show plots of global relative 
sea level (RSL) and global sea level trends for the time period between 132 kyr BP and 116 kyr BP for 
deglaciation histories A1 and G1 respectively. Snapshots of global relative sea level are taken at the 
times listed in Table S1, whereas sea level trends correspond to the rate of change of relative sea 
level from the preceding time slice. For this reason, no corresponding sea-level trends accompany 
the plot of global relative sea level for 132 kyr BP. 
 
FigureS1.pdf: Global relative sea level and sea level trends for deglaciation history A1. 
FigureS2.pdf: Global relative sea level and sea level trends for deglaciation history G1. 
 
Package 2 
 
PDF Package 2 contains plots of global ice extent and changes in ice load between the time steps 
detailed in Table S1. The ice loads applied at each time step in Table S1 correspond to the change in 
ice thickness with respect to the previous time step.  For example, the ice load applied at 122 kyr BP 
reflects the change in global ice thickness from 123 kyr to 122 kyr BP. For this reason, no 
corresponding change in ice load accompanies the plot of ice extent for 132 kyr BP. 
 
FigureS3.pdf: Global ice extent and loading changes for deglaciation history A1. 
FigureS4.pdf: Global ice extent and loading changes for deglaciation history G1. 
 
Package 3 
 
Package 3 contains two animations of global ice extent and corresponding relative sea level change 
for deglaciation histories A1 and G1. 
 



AnimationS1.avi:  Thirteen-frame Audio Video Interleaved (.avi) animation of global ice extent and 
relative sea level for the period 132 – 116 kyr BP for experiment A1. 
AnimationS2.avi: Thirteen-frame Audio Video Interleaved (.avi) animation of global ice extent and 
relative sea level for the period 132 – 116 kyr BP for experiment G1. 



RSL at time 132 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 127 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 126 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 125 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 125 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 124 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 124 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 123 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 123 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 122 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 122 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 121 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 121 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 121 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

−4

−2

−2

−2

0

0

−20 −15 −10 −5 0 5 10 15 20

RSL (m) / Rate (mm/yr)



RSL (upper) and sea−level trend (lower) at time 120 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 120 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 120 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 119 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 119 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 118 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 117 kyr BP for Antarctica experiment
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RSL (upper) and sea−level trend (lower) at time 116 kyr BP for Antarctica experiment
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RSL at time 132 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 127 kyr BP for Greenland experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

RSL (upper) and sea−level trend (lower) at time 127 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 126 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 126 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 125 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 124 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 123 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 123 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 122 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 121 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 120 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 120 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 119 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 119 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 119 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 118 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 118 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 117 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 117 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 117 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 116 kyr BP for Greenland experiment
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RSL (upper) and sea−level trend (lower) at time 116 kyr BP for Greenland experiment
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Ice load at 132 kyr BP for Antarctica experiment
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Ice load at 127 kyr BP for Antarctica experiment
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Change in ice load at 127 kyr BP for Antarctica experiment
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Ice load at 126 kyr BP for Antarctica experiment
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Ice load at 125 kyr BP for Antarctica experiment
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Change in ice load at 125 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Change in ice load at 125 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Change in ice load at 125 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

−400 −200 0 200 400

Change in Load (m)



Ice load at 124 kyr BP for Antarctica experiment
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Change in ice load at 124 kyr BP for Antarctica experiment
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Ice load at 123 kyr BP for Antarctica experiment
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Change in ice load at 123 kyr BP for Antarctica experiment
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Ice load at 122 kyr BP for Antarctica experiment
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Change in ice load at 122 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Change in ice load at 122 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Change in ice load at 122 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

−400 −200 0 200 400

Change in Load (m)



Ice load at 121 kyr BP for Antarctica experiment
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Ice load at 120 kyr BP for Antarctica experiment
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Change in ice load at 120 kyr BP for Antarctica experiment
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Ice load at 119 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Ice load at 119 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Ice load at 119 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

0 400 800 1200 1600 2000 2400 2800

Load (m)

Change in ice load at 119 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Change in ice load at 119 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Change in ice load at 119 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

−400 −200 0 200 400

Change in Load (m)



Ice load at 118 kyr BP for Antarctica experiment
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Change in ice load at 118 kyr BP for Antarctica experiment
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Ice load at 117 kyr BP for Antarctica experiment
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Change in ice load at 117 kyr BP for Antarctica experiment
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Ice load at 116 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Ice load at 116 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

Ice load at 116 kyr BP for Antarctica experiment

−160˚

−160˚

−120˚

−120˚

−80˚

−80˚

−40˚

−40˚

0˚

0˚

40˚

40˚

80˚

80˚

120˚

120˚

160˚

160˚

−80˚ −80˚

−60˚ −60˚

−40˚ −40˚

−20˚ −20˚

0˚ 0˚

20˚ 20˚

40˚ 40˚

60˚ 60˚

80˚ 80˚

0 400 800 1200 1600 2000 2400 2800

Load (m)

Change in ice load at 116 kyr BP for Antarctica experiment
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Ice load at 132 kyr BP for Greenland experiment
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Ice load at 127 kyr BP for Greenland experiment
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Change in ice load at 127 kyr BP for Greenland experiment
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Ice load at 126 kyr BP for Greenland experiment
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Change in ice load at 126 kyr BP for Greenland experiment
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Ice load at 125 kyr BP for Greenland experiment
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Change in ice load at 125 kyr BP for Greenland experiment
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Ice load at 124 kyr BP for Greenland experiment
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Change in ice load at 124 kyr BP for Greenland experiment
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Ice load at 123 kyr BP for Greenland experiment
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Change in ice load at 123 kyr BP for Greenland experiment
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Ice load at 122 kyr BP for Greenland experiment
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Change in ice load at 122 kyr BP for Greenland experiment
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Ice load at 121 kyr BP for Greenland experiment
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Change in ice load at 121 kyr BP for Greenland experiment
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Ice load at 120 kyr BP for Greenland experiment
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Change in ice load at 120 kyr BP for Greenland experiment
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Ice load at 119 kyr BP for Greenland experiment
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Ice load at 118 kyr BP for Greenland experiment
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Ice load at 117 kyr BP for Greenland experiment
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Ice load at 116 kyr BP for Greenland experiment
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Change in ice load at 116 kyr BP for Greenland experiment
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