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Where’s the Rigor When You Need It? 
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I was charged with the question: When it comes to causality, ‘What do social scientists know?’--

-and, presumably, ‘How do they know it?’ In expanding on that, Iván (Marinovic) in his 

invitation added: “Often the issue of causality and identification is ignored or ‘resolved’ by 

adding explanatory variables (given the large amount of data available). If you have some 

specific thoughts about this type of research I would really appreciate that you discuss them.” 

There are issues here that need to be talked about. Many are technical, and you have here real 

experts to discuss them. But there are other issues that are not technical, that really matter, that 

do not get discussed, and we repeatedly get into trouble because we do not pay attention to them.  

To unearth some of these issues, there are two points I want to urge today: 

1. Do not do inference by pun. 

2. In general, well substantiated, reliable general claims in science ≠ generalizations, i.e. 

claims warranted by generalizing from individual instances.  

The first must be totally uncontroversial. The second certainly should be.  

 

1. Inference by pun 

Behind the first is the obvious observation that there are a great many different kinds of causal 

claims one can hope to know---or better, since knowledge suggests a level of certainty that is 

generally beyond us---many different kinds of causal claims that we can hope to find compelling 

support for. Here are a few that will probably enter discussion today: 
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 X causes Y 

 X(u) causes/d/would cause Y(u) 

 The average treatment effect of X(u) on Y(u) is Φ 

 The local average treatment effect of X(u) on Y(u) is ϴ 

 … 

When we have claims like these there are three issues that need to be settled. The first 

concerns meaning. What are we claiming in making these claims? What is it for one quantity to 

cause another in an individual unit? What do we mean by the effect of a ‘treatment’ on an 

individual? And what is the scope of the claim: All units everywhere? All units of a certain kind 

(e.g. in a specific population)? Some units in a specific population? Some units somewhere in the 

world? The second issue concerns method. What are (reasonably) reliable methods for 

supporting these claims? The third issue is use. What further inferences could be drawn from 

these claims if they were established?  

Not only must we be clear about these three issues, but the three must mesh together 

properly. The methods must be appropriate for establishing the very thing the claim asserts. And 

the inferences that draw from it must be licensed by that claim, the very claim that the methods 

support. Otherwise we are doing inference by pun. This is all too common. We employ some 

methods that, at least in the ideal, are very reliable for establishing one specific, usually very 

narrow, kind of causal claim. Then because the claim has the word ‘cause’ in it, we draw 

inferences that are licensed by some other similar sounding claim that also has the word cause in 

it, but one not supported by the methods we employed in the first place. 

To see this more clearly, let’s start with methods. There are a variety of methods that can 

provably provide solid support for causal claims, including: 
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 Controlled experiments 

 Natural experiments 

 Instrumental variables models 

 Econometric models satisfying special conditions 

 Qualitative comparative analyses that satisfy special conditions 

 Causal Bayes nets methods 

 Process tracing 

 Derivation from a good theory. 

Every method comes with a set of assumptions that must be met for it to supply reliable results. 

It is important for the issues I raise to recognize that though the very same assumption can play 

both roles, there are two distinct roles that assumptions play. The first is to characterize the 

notions involved; that is, to make clear what exactly it is that is being claimed. The second is to 

specify what features must be true about particular cases in order for the methods to provide 

reliable results about those claims. 

For instance, discussions of randomized controlled trials (RCTs) or instrumental variable 

approaches often begin with what is sometime called a ‘structural’ or a ‘potential outcomes’ 

equation for a population of units u in U: 

POE: y(u) c= α(u) + β(u)x(u) + w(u) 

where we suppose there is a probability measure Prob over (α, β, w) for U. We often then aim to 

discover β: how much oomph on average x supplies towards y; or, failing that, Exp[β]. If Prob(β 

= 0) = 1, then x never contributes to y for U; when β(u) differs from 0 for some u, we say that x 

is a cause of y for that u. 
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You will have noticed that I write this equation not with just an ‘=’ sign but with the 

symbol ‘c=’. That’s because we are not trying to estimate Exp[β] in just any equation relating x 

to y that is true for U; we want the right equation---the one with the causes of y on the right-hand 

side. For instance, suppose x and y are both joint effects of the common cause v: 

1. x(u) c= α1(u) + β1(u)v(u)  

2. y(u) c= α2(u) + β2(u)v(u)  

Then  

3. y(u) = α2(u) – (α1(u)/ β1(u)) + (β2(u)/ β1(u)) x(u) = α2(u) + γ(u)x(u) 

It is not the coefficient of x in this equation that we are concerned about: finding that it is non-

zero will not tell us whether x causes y for any units in U. To learn about the effects of x on y, it 

is not enough to show, say, that we have an unbiased estimate of the coefficient of x for y in an 

equation for y that holds in U. We must show that we have an unbiased estimate of the 

coefficient in the right equation---the causal equation. But what is the difference? What is meant 

by ‘causes’ when we say we want the equations that have causes on the right and effects on the 

left? 

This is a question that is often not clearly answered. Economists talk of structural 

equations or potential outcome functions. I talk of a system of causal equations governing 

behaviors in U. This brings us squarely to the issue of meaning. What sense are we to give to the 

notion of causal or structural equations? I notice that Guido Imbens in a recent paper gives this 

brief explanation: “Functions are structural or invariant in the sense that they are not affected by 

changes in the treatment” (Imbens 2014, 12). This clearly needs elaboration. The usual way to do 

so would be to provide a set of axioms that a system of equations must satisfy if they are to be 

causal. Minimally I would expect these to include the assumptions that the causal relation is: 
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 asymmetric,  

 irreflexive, 

 time-ordered from earlier to later and 

 causality is preserved if the causes of a right-hand-side variable are substituted for the 

variable,  

plus, importantly, that any non-causal equations, like 3., are mere algebraic consequences of the 

causal equations.  

With these axioms and an appropriate definition of intervention I can show that equations 

that are invariant under interventions on right-hand side variables must be causal. This makes a 

neat fit with Imbens’ brief remarks and also with the ‘invariance-under-intervention’ criterion for 

causality championed by James Woodward and currently fashionable in philosophy. 

I am not urging here that we should adopt this axiomatization, nor any other particular 

one. Cause is a loose everyday word that does many different jobs in many different contexts. 

But that won’t do for social science, where rigor demands precise concepts. No single precise 

concept will match up with the ordinary one; there is no one axiomatization that is the right way 

to characterize causality. What matters is that we provide a precise characterization, that the 

scientific characterization we provide is up to the job we set it to and that we stick with the same 

characterization throughout. 

Returning now to assumptions. Recall, there are two kinds: Some assumptions are 

required to make explicit the constraints we are adopting on what a system of causal equations is. 

What do we mean by ‘causal’, or ‘structural’? Additional assumptions are required---facts about 

the population under study and about further features the causal equations must have---if our 

methods are to be trusted to teach what they are supposed to. For instance, we often use the net 
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outcome difference---Exp[y|treatment] – Exp[y|control]---to estimate the ‘effect size’ Exp[β] in a 

causal equation like POE. To do so we typically assume that x in the experimental population is 

probabilistically independent of each of α, β, and W in the POE. In that case Exp[β] = 

Exp[y|treatment] – Exp[(y|control)]. These independence assumptions about relations among 

variables in the study population are assumptions of the second kind; when these are satisfied, 

our RCT can be trusted to deliver what it is supposed to: an unbiased estimate of the coefficient 

of x for y in the POE for that setting and population. I stress the two different kinds of 

assumption because discussion is likely to focus on the second, the first is often ignored or the 

two get carelessly lumped together. But without being clear about the first, we do not know what 

it is that our methods have found out and we don’t know what further facts we can infer from 

what we have found out.  

That brings us to inference. There are three kinds of inferences we tend to draw from 

study results. Or---more carefully---three kinds of conclusions for which study results can figure 

as part of a (sometimes very large) body of support. These can be either qualitative or 

quantitative, causal or probability claims about: 

1. The population and setting in the study.  

2. A specific populations and setting outside the study.  

3. A general conclusion about what holds widely or across a given domain of populations 

and settings. 

One example of the first is the kind of conclusion we can draw from positive results in a good 

RCT: that Exp[β] = Exp[y|treatment] – Exp[y|control] for that study population and setting. 

Though there are issues with regard to conclusions of this kind, I shall not go into them since 

they are less controversial than for the other two. 
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So, 2. Consider an RCT, say for class size and reading scores for 8 year olds. When 

would you expect to get the same effect size in an RCT in California as in one conducted in 

Tennessee? We can tell exactly when by inspection. Recall: the effect size = Exp[y|treatment] – 

Exp[y|control] = Exp[β] in the POE governing the study population and setting. So you get the 

same effect size in both just in case a) x plays the same role in the POE for California as it does 

in the POE for Tennessee: it is either present in the POE for both or absent from both; and b) 

Exp[β] is the same in both.  

So what does β represent? It represents the net effect of the whole team of support factors 

necessary for x to produce a contribution to y, the factors without which x cannot contribute to y. 

Epidemiologists represent these factors in causal pies, like the simplified one for class size 

reduction in Figure 1.  

 

[Insert Figure 1 about here] 

 

So you would get the same effect size in an RCT on a California study population and setting as 

in Tennessee just in case class size really could be a cause given the causal principles that hold in 

the California population---class size really figures in the POE for the California population, and 

the (net effect of) the support factors necessary for class-size reduction to produce its good 

effects in California have the same average as do the support factors necessary in Tennessee. 

That’s a tall order (and note particularly that RCT evidence is not evidence for either of these 

assumptions). 

This is just one example of how we might use facts about causes that can get nailed down 

in a study population as part of a case to support causal conclusions about a target population. 
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What more can be done? This is just what Elias Bareinboim and Judea Pearl try to answer in 

several recent papers on the transportability of causal effects (see e.g. Pearl and Bareinboim 

2011). They consider two different populations. Suppose we have available both some causal 

results as well as some purely probabilistic information for population 1, while for population 2 

we have only probabilistic information, but no causal information. We know certain probabilistic 

facts and certain causal facts that the populations share and some that they do not. Bareinboim 

and Pearl produce some theorems that describe what further causal conclusions about population 

2 are fixed by this body of information. One of their overall lessons is to underline the obvious 

fact that exactly what conclusions about population 2 can be supported by information about 

population 1 depends on exactly what causal and probabilistic facts they have in common. 

There are two things to note here. First, Bareinboim and Pearl do not say what they mean 

by ‘causal’. But their work in these papers builds out from previous work by Pearl on causal 

Bayes nets, which starts with sets of equations which, as we can tell by inspecting their form and 

Pearl’s use of them, satisfy the minimal set of axioms I described earlier. The second is another 

obvious fact that they do not underline: an argument, like a chain is only as strong as its weakest 

link. We can draw conclusions about population 2 from:  

 Probabilistic facts and causal results on population 1, 

plus, 

 facts about probabilistic and causal commonalities between population 1 and 

population 2. 

Our conclusion is no more certain than any one of its premises. What I find odd is the asymmetry 

with which we tend to treat the two kinds of premises. We currently put a vast effort into 

securing premises in the first category, both empirical work---more and more RCTs, better and 
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better instrumental variables models---and theoretical work---for instance, under what conditions 

can we estimate an average treatment effect and when can we only get what is called a ‘local’ 

average treatment effect. We invest far less in empirical work to establish premises of the second 

kind. There are broadly speaking two kinds of warrants that could support these assumptions: 

methodological and causal-empirical. A methodological warrant consists in there being good 

reasons---based on the way the study was sampled and conducted---to support the assumption 

that the study is representative of the target. Causal-empirical warrant consists in knowing 

enough about the support factors and their distribution in the study and the target to support the 

conclusion that the net effect would be the same.  

The theoretical work is even more wanting. We have little clear, widely accepted 

methodology for how to go about establishing premises of the second kind. And I see little 

investment in trying to fill this gaping hole in our methodology. 

 

2. You can’t get general claims by generalizing 

Let’s turn now to inferences to the third kind of conclusion: general claims. We see these 

everywhere nowadays, in the expression ‘It works’, in the rise of hundreds of ‘What Works’ 

centers and in the admonition in evidence-based policy to rely only on interventions that have 

been shown to work. In practice it seems that what is supposed is that we can infer that an 

intervention works---works in general---from successful results on RCTs in some number of 

different populations. Here are two instances from evidence-based medicine, borrowed from 

Jonathan Fuller (2015): 

We suggest that guideline panels deal with the issue of generalizability by accepting that 

results of randomized trials apply to wide populations unless there is a compelling reason 
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to believe the results would differ substantially as a function of particular characteristics 

of those patients. (Post et al., 2013, 5).  

 

[I]n trying to judge whether interventions studied in research ‘will work for us’, 

Cartwright, like many others, conceptualises the challenge as being to demonstrate that 

the characteristics and circumstances of the research are sufficiently similar to those to 

which extrapolation is being contemplated. But why should the challenge be 

conceptualised that way round? Why not instead ask ‘Are there any good reasons to 

believe that the research is not relevant to us, that “It won’t work for us”?’ If there are 

not, and considering the undesirable alternative ways of reaching a decision, the default 

position should be that the result should be regarded as applicable. (Petticrew and 

Chalmers 2011, 1696). 

Supposing that we can infer that an intervention works---works in general---from successful 

results on RCTs in some number of different populations, or that we should take this as the 

default conclusion if we have no reason to the contrary, is nonsense. That mode of inference is 

what we call ‘induction by simple enumeration’ and we know we cannot trust that: Swan 1 is 

white, swan 2 is white…, so all swans are white. Study population 1 does x, study population 2 

does x...., so all populations do x. And with the studies we face the additional drawback that we 

would usually be generalizing from a very small inductive base indeed, not tens of thousands of 

British swans but 1 or 2 studies, or in the best of cases, a handful.  

It is as if we have forgotten the lessons about simple induction that have been rehearsed 

generation after generation for eons. Recall Bertrand Russell’s chicken. She infers, on very good 

basis, that when the farmer comes in the morning, he feeds her. That inference serves her well till 
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Christmas morning when he chops off her head to serve her for Christmas dinner. Of course the 

chicken did not base her inference on a randomized controlled trial. But had we conducted one 

for her we would have obtained exactly the same results that she did. Her problem was not her 

study design but rather that she was studying surface relations. She did not understand the 

underlying socio-economic structure that gave rise to the causal relations she observed. So she 

did not know how widely or how long they would obtain. We often act as if the methods of 

investigation that served the chicken so badly will do perfectly well for us.  

Why do we do this? I think there is a tendency to suppose that causality by its very nature 

must be general. Philosophers have certainly contributed to this supposition. The very influential 

philosopher from the end of the 20th century Donald Davidson for instance argued that it can be 

true that the event reported in column 1 of the first page of the New York Times can cause the 

event reported in column 2 on page 15 but only if there is some other descriptions of the first and 

second events---say the first is a C-type event and the second an E-type event---such that it is 

true generally that C-type events cause E-type events. Suppose we allow here that some kind of 

‘generality’ is required: we suppose at least that if the circumstances were just the same again, 

the same outcomes would be produced; so, the same thing would always happen in 

circumstances just like this. The issue then is: How general must these circumstances be? How 

widely must they obtain?  

Socioeconomic causal principles are not ‘universal’, as we suppose the law of gravity to 

be, but depend upon underlying ‘local’ structure. Rube Goldberg’s pencil sharpener (look it up!) 

is my favorite example of the kind of thing I mean. There are two different kinds of reasons 

illustrated here for why we should not expect the causal claims we can nail down in our studies 

to hold generally. The first is that they link the wrong kinds of features. They link features that 
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can be described and operationalized very concretely. But general principles tend to need more 

abstract concepts. Rube Goldberg’s pencil sharpener involves a number of general principles but 

they do not use concepts like ‘lever’ and ‘pulley’ and ‘fluid escaping from a breach in a closed 

container’. Second, the causal claim that flying a kite sharpens pencils is not even an instance of 

a general principle, even if we look for more abstract descriptions to give to the cause and the 

effect. The kite flying sharpens the pencil through a series of steps: the kite flying opens a little 

door, the opening of the door permits the moths to fly out into the room, etc. Each of these steps 

is an instance of a general principle: the kite flying opening the door is in this situation an 

instance of the law of the pulley; the opening the door permitting the moths to fly into the room 

is an instance in this situation of the principle that a breach in a closed container allows fluids 

within to escape. And so forth. So: though each step instantiates a general principle, there is no 

general principle to connect the start to the finish, no descriptions, C and E, under which the 

initial cause and the final effect fall such that it is true that C-type events cause E-type events.  

In his recent ‘Risk Relativism and Physical Law’ (2014), Alex Broadbent likens the 

assumption that relative treatment effects are universally transportable to the idea that we 

discover something like a physical law through an epidemiological study. Along these lines, I 

think that we treat the effect size that we discover in a study as a universal constant, like G in 

Newton’s law of gravitation, or as economists treat a structural parameter in a structural 

equation, as invariant across circumstances. Doing so is absurd once you consider that the effect 

size is the net effect resulting from the distribution of the various support factors. To assume that 

the effect size is a constant is to assume that the distribution of support factors in a population is 

either (i) invariant across populations or (ii) varies but generally in such a way as to produce the 

same net effect. (i) is almost always untrue, since we can generally identify causally relevant 
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differences between two populations. We should only expect (i) to be true if we routinely design 

studies so as to be representative of the target situations to which we wish to generalize (which is 

seldom the case, as other considerations prevail). (ii) is simply fanciful. 

Given these kinds of worries, the hope that we can arrive at general claims by simple 

generalization of study results is chimerical. How then do we support general claims? That’s the 

rub. It cannot be done by recipe. To establish a general claim it takes a great deal of to-ing and 

fro-ing: an interwoven complex of conceptual development, theories---big and small, 

observation, experiment, analysis, modelling, reasoning, antagonistic assessment and severe 

testing. A credible general claim will rest on a tangle of support. There is a long history of 

vigorous debate about just what it takes to confirm general hypotheses but there is wide 

agreement that we should require a good mix of at least the following: 

 Falsifiability. 

 Observation of genuine instances of the hypothesis. 

o Including strong reason to count these as instances. 

What are the rules for linking abstract descriptions and more concrete ones, and 

how well substantiated are these rules. E.g. why in the case observed can we 

count the seesaw (or the tire jack) as a lever so that weighing your end of the 

seesaw down and thus raising your children in the air is an instance of the law of 

the lever? Why can we count a great circle as a geodesic on a sphere so that a 

body travelling along a great circle on a sphere subject to no forces is an instance 

of the general claim that bodies subject just to inertia travel on geodesics? Why 

can we count money or status as utility in cases where we see behavior as actions 

maximizing expected utility? 
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 A good fit with other established claims. 

 Use of well characterized concepts with clear links to other well characterized 

concepts that have been shown to be theoretically and empirically useful. 

o With the aid of auxiliary hypotheses, the concepts used should be measurable 

in some circumstances. 

 A good body of predictive successes when coupled with a variety of different sets of 

credible (plausible) auxiliary hypotheses. 

o That they are different sets of auxiliaries matters. The more different 

auxiliaries there are the less likely that the successful result is a consequence 

of compensating errors. 

o Most everyone looks for some of these to be novel predictions (the principal 

exceptions are certain Bayesians). 

 Reasonable grounds against the truth of alternatives. 

It also a considerable boon if, with plausible/credible auxiliaries, the hypothesis can be derived 

from a reasonably well established theory; and also if we have direct reasons to back up that the 

features generalized are (what philosophers call) ‘projectible’, i.e. that the features generalized 

are the right kind to hold generally. (For instance, in the case of the swans, we would want to 

know enough about the biology to know whether the connection between species and color is 

robust. What supports the assumption that all birds of the same species have the same color?) 

This looks nothing like simple induction. Instances of the general claim are an ingredient 

in this mix and in many cases we may want to insist on the observation of genuine instances of 

the hypothesis before accepting it. Nevertheless, they make up only a small part of the tangle it 

takes to confirm the hypothesis. And they count for nothing at all unless we have sufficient 
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reasons to back up the assumption that they are instances of the general claim. In particular we 

need to establish that the concrete concepts in the claims we can nail down genuinely are 

instances in the case at hand of the abstract features that figure in the general claim we aim to 

support. If the effect of the kite flying on the little door in Rube Goldberg’s pencil sharpener is to 

be taken as an instance of the law of the pulley, we need good reasons to suppose that in this case 

flying the kite is pulling on a pulley rope. 

The process is iterative and complicated and it draws on a great variety of different 

resources. That is why I call it a tangle. This is just contrary to the impression you get from most 

evidence-based recipe guides, which do not advocate supporting general claims with a robust 

body of evidence, but rather with the best evidence of a certain kind (e.g. an RCT). Their image 

is of a hierarchy, rather than a tangle, of evidence.  

None of this is simple, and none of it is recipe-like. But it is no good averting our gaze 

from the tangle to focus on the nails we can drive in by recipe. As I already remarked, a chain of 

inference is only as strong as its weakest link. 

 

3. In Sum 

I have stressed that study results can’t do much of a support job on their own. But they are an 

ingredient, and are often taken to be an essential ingredient, in a mix of very different kinds of 

considerations that together can confirm a hypothesis. But which hypotheses can they help 

support? With respect to general claims: 

1. Results can be instances of general conclusions that use different---often more abstract---

concepts from those in terms of which the study is framed. In a spherical geometry, for 
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instance, motion along a great circle of an object subject to no forces is an instance of the law 

‘bodies moving by inertia alone travel on geodesics’. 

2. A study result that depends on a chain of events supports any general claim instantiated at 

any step. 

Both principles play a central role in confirming general claims in physics, where progress has 

depended on development of abstract, theoretical concepts and on tying these to more concrete 

experimental concepts, and where the bulk of the evidence for general principles comes from 

their display in complex settings, not in ‘isolating’ experiments. 

With respect to local claims now:  

1. Modularity: What happens in a specific setting in a specific process can sometimes 

support claims about what happens when parts of that process are inserted into other 

processes. This is of central importance in the natural sciences and in engineering, 

including social engineering. 

There is an important lesson here for both general and local conclusions. When it comes to the 

questions, ‘What conclusions can a result support?’ Unfortunately, you can’t tell just by looking 

at the result itself. My major point is that rigor matters. And where rigor matters, 

 We need to know what we are talking about. 

 A chain of support is only as strong as its weakest link. 

 No result wears on its sleeve what it is evidence for. 

 Rigor ≠ nailing down.  

A tight tangle of diverse evidence is what delivers the kind of rigor we need for general claims. 
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