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Abstract 
 
We examine the contrast between mechanisms for allosteric signalling that involve 
structural change, and those that do not, from the perspective of ‘allosteric pathways’.  In 
particular we treat in detail the case of ‘fluctuation-allostery’ by which amplitude 
modulation of the thermal fluctuations of the elastic normal modes conveys the allosteric 
signal, and address the question of what an ‘allosteric pathway’ means in this case.  We 
find that a perturbation theory of thermal elastic solids and non-perturbative approach (by 
super-coarse-graining elasticity into internal bending modes) have opposite signatures in 
their structure of correlated pathways.   We illustrate the effect from analysis of previous 
results from GlxR of C. glutamicum, an example of the CRP/FNR transcription family of 
allosteric homodimers. We find that the visibility of both correlated pathways and 
disconnected sites of correlated motion in this protein suggests that both mechanisms of 
local elastic stretch, and bend, are recruited for the purpose of creating and controlling 
allosteric cooperativity.  
 
 
Introduction 
 

Allostery is most broadly described as a mechanism by which ligand binding at one site 

on a protein affects the binding strength for an alternative molecule at a distant site and is 

a fundamental mechanism underpinning both normal and pathological molecular cellular 

processes (1, 2). A positive allosteric ligand enhances the affinity for a molecule at the 

distant site, while a negative allosteric ligand will reduce the affinity. The two earliest 



2 
 

models for protein allostery were couched in terms of a ligand-induced switch between 

distinct protein conformations with differing activities. The two-state Monod-Wyman-

Changeux model (MWC, or ‘symmetry model’) described allostery as arising from the 

equilibrium between two conformational states. This equilibrium is altered by ligand 

binding and all subunits in a multi-subunit protein change state together (3). The 

Koshland-Nemethy-Filmer model (KNF, or ‘sequential model’) replaces the 

conformational symmetry of the MWC model with an application of ‘induced-fit’ ligand 

binding with distinct protein conformations in the bound and unbound state and permits a 

description of negative allostery (4). Implicit in both the MWC and KNF models is the 

idea of protein structural change initiated by ligand binding. This led, for many years, to a 

view of allostery in which protein conformational change was the underlying mechanism 

and that ligand binding permitted the interconversion between stable ground state 

structures. 

Less high-profile has been the development of, and discussion around, an 

alternative allosteric mechanism which does not require structural switching, but instead 

exploits the physical consequence of thermal fluctuations around the mean structure. In 

this mechanism, substrate binding modulates the amplitude of thermal fluctuations by 

altering the local effective elastic modulus of the protein. Such a restriction of random 

motion has thermodynamic consequences: it constitutes a change in entropy on ligand 

binding since, in general, the entropic contribution from a single harmonic mode of 

motion with modulus kα is (see, for example (5)) 

 

      (1) 

 

Furthermore, if at least one global mode so affected extends from the effector-binding 

site to the allosteric site, then its effective modulus can be altered by purely local 

(binding-event related) changes at either site.  In this way, the full allosteric free energy 

may contain components that arise purely by this route. The powerful idea emerges that 

proteins have evolved to take functional advantage of not only the mean conformation, 

but also the inherent thermal fluctuations about this mean, in the generation of allosteric 

co-operativity. It was found that root mean square shifts of only 1% of the interatomic 
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distance, when summed over an entire protein, could permit changes to the allosteric free 

energies of experimental order of magnitude purely through alterations in this entropy of 

fluctuations in internal conformations (6).  

A feature of this mechanism of ‘fluctuation allostery’ is that, to contribute to non-

local allosteric interaction, the longer-wavelength slow-relaxation ‘global’ modes of 

motion are recruited, rather than the higher-frequency and more local motions (such as 

side-group oscillation). This is because small-scale inhomogeneities in the elastic 

properties of a material (such as typically arise in globular proteins) tend to localise 

normal modes to within a few wavelengths, an example of a general phenomenon known 

in physics as ‘Anderson localisation’ (7-9).  This is in distinction from homogenous 

media, which support extended normal modes of all wavelengths across their entire 

domains (the classic example is of sinusoidal standing waves on a taut string). The new 

length-scale of localisation, which is a function of the spatial frequencies and amplitudes 

of the inhomogeneities and the wavelength of the normal mode, is termed its ‘correlation 

length’ξ.  Mathematically, ξ appears in an approximately-exponential envelope-function 

of the normal mode localised at a general position r’, so that the amplitude from the mode 

at another position r is reduced by exp(-|r – r’|/ξ).  Now allosteric signalling by 

modulation of thermal fluctuation requires as a necessary condition the presence of 

correlated motion at effector and allosteric sites, since it is by modulating the amplitude 

of thermal fluctuations at the second through a mechanical perturbation at the first, that 

the signal is transmitted.  This condition combined with the localisation condition then 

restricts the class of relevant supporting normal modes to those whose own correlation 

lengths are of the order of the spatial separation of the communicating sites, which are in 

turn typically of the same order of magnitude as the entire protein.  Hence we arrive from 

the references results on localisation, by this logic, to the result that the global modes are 

primary carriers of the effect.  

This essential action of large-scale correlated motions in fluctuation-allostery 

means that successful models of protein dynamics that capture the effect are therefore 

coarse-grained rather than necessarily atomically-resolved.  Indeed, because of the long 

correlation times of some of the global modes responsible, it is in general not possible to 

simulate their equilibrium fluctuations in realistic computation times using fully-
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atomistic molecular dynamics. Specific models of particular protein systems at various 

degrees of course-graining have been constructed (10-13) which show that the orders of 

magnitude of real allosteric free energies can be generated by such restriction of 

dynamical correlations alone. More recently, Elastic Network Models (ENMs) more 

faithful to experimentally determined protein structures, have been able to capture 

thermodynamic effects in wild-type and mutant protein homodimers (14).  Although 

ENMs take the apparently crude approximation that all Cα

 carbons within a fixed cutoff 

radius (of typically a nanometer) are effectively coupled by a universal spring constant, 

the models reproduce normal mode and local dynamical structures remarkably well (for 

an example see (15)). 

Insights from these models have been combined with theoretical statistical 

mechanics applied to perturbative and non-perturbative models of elastic media to show 

that the elastic inhomogeneities that localise the faster global modes are actually 

necessary for the transmission of fluctuation allostery (16).  A perfectly uniform elastic 

medium has, surprisingly, no far-field allosteric effect from modulated fluctuations.  This 

is true even though there are still globally-extended normal modes.  In this limiting case, 

however, the interference from the many extended modes tends to cancel positively and 

negatively co-operative contributions.  

Some of the literature on this mechanism of allosteric interaction without 

structural change uses the term ‘population shift model’ (17, 18).  The terminology here 

arises from viewing the fluctuation structure around the mean as equivalent to a 

population of closely-neighbouring states (in phase space) whose width is modified by 

both effector and ligand binding (19-22).  The population of states momentarily occupied 

through thermal fluctuations around a mean state can be restricted or widened by 

increasing or decreasing the effective local elastic modulus, respectively.   Modifications 

of the ENM approach include methods for systematic coarse-graining, enhancing the 

model with stronger main-chain Cα bonds than off-chain, and capturing of both aspects of 

‘population shift’ – in both mean and fluctuation of co-ordinates (23).   

 Theoretical considerations of fluctuation-based allostery without mean 

conformational change need naturally to be investigated and tested by experimental 

example, ideally through the testing of model predictions. The CRP/FNR family 
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transcription factor CAP of Escherichia coli has been used by us and others as a core 

exemplar (14, 16, 24). CAP is a 210 amino acid homodimeric transcription factor that 

binds cAMP generated by adenylyl cyclase in response to the phosphorylated form of 

Enzyme IIAGlc (phosphorylated in response to the phosphoenolpyruvate-carbohydrate 

phosphotransferase system) (25). The CAP-cAMP complex (see figure 1) regulates the 

transcription of over 100 genes required for the metabolism of diverse carbon sources 

through its binding to a specific promoter region and recruitment of RNA polymerase 

(26).  

An NMR and thermodynamics based analysis of the isolated cAMP binding 

domains of CAP demonstrated entropically driven negative allostery between the cAMP 

binding sites in the absence of any observable conformational change (24). A subsequent 

combined experimental (NMR techniques) and theoretical analysis of CAP using ENMs 

demonstrated that negative allostery arises from modulation of the global low frequency 

modes on cAMP binding (14, 27-28). 

 The extensive literature on allostery that invokes conformational change has 

developed an extended discussion of the idea that effector and allosteric sites can be 

connected by ‘allosteric pathways’ of local structural change. So, rather than the entire 

protein becoming implicated in a switch from one conformation to another, a restricted 

sequence of more local structural shifts, beginning at the effector site, creates a ‘domino 

effect’ of sequential changes, eventually modifying the allosteric binding site. Some 

recent work has identified such allosteric pathways within the elastic normal modes, 

which we review briefly and selectively in the following. 

Balabin et al. (29) identified allosteric signalling pathways via a hypothesis that 

combines the approaches of structural and fluctuation mechanisms. A normal mode 

analysis (NMA) on coarse-grained models of the G-protein coupled receptors, bovine 

rhodopsin and the human beta(2) adrenergic receptor for which  high resolution crystal 

structures have been determined, identified candidate allosteric pairs of sites whose local 

structural distortions, from the activation of normal modes, were correlated. One 

dominant mode that conveys 50% of the allosteric signal was identified in these proteins.  

In this case the ‘allosteric pathway’ (in a very generalised sense) is essentially this 
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dominant normal mode. More local treatments of activated or repressed dynamics have 

discussed physically connected pathways between allosteric sites (30-32) 

In contrast, Gerek and Ozkan (33) performed a similar analysis by ‘perturbation 

response scanning’ (34). This method takes an elastic network or atomistic model of a 

protein and imposes a perturbation of local structure at an arbitrary region. When the 

entire protein model has been equilibrated to the new minimum energy subject to the 

constraint of this perturbation, all regions with correlated elastic perturbations are 

identified. Since, at least in linear response, the pattern of response is controlled by the 

same nonlocal elastic interactions that correlate fluctuations, this method must be 

equivalent to the correlation method of Balabin et al. via the fluctuation-dissipation 

theorem (35). Gerek and Ozkan found that in two PDZ domain proteins, regions that 

exhibited elastic perturbations correlated with those around allosteric sites formed 

spatially connected pathways through the globular structures, connecting in both cases to 

the effector sites. Furthermore, although the proteins were similar, the pathways 

connecting allosteric and effector sites differed markedly.  The PDZ proteins are small 

and single-domain in contrast with the  multi-domain membrane proteins, however, 

studied by Balabin et al. 

In a third case, Ribeireo and Ortiz (36) found that such displacement correlation 

measures performed poorly in identifying residues critical for allosteric signalling in the 

enzyme imidazole glycerol phosphate synthase. The allosteric signalling pathways were 

better predicted by a network analysis of the strength of local covalent and non-covalent 

bonding. In this case, the propagation of the allosteric signal from the HisF glutaminase 

to the HisH cyclase domain proceeds by local structural rearrangement. 

At first glance, the mechanism of allostery arising from fluctuation-modification 

without mean structural change, as in the case of CAP, has no such structure of 

‘pathways’, for at least two reasons.  The first is simply that the coarse-grained structure 

of the protein that fluctuation effects draw upon, and which can be captured by such 

crude models as the ENM, appears at first sight not to have the resolution to capture the 

local structural rearrangements that are typically constitutive of allosteric pathways.  

However, the fluctuation-allosteric mechanism does not depend on such structural 

rearrangements, as does allostery by conformational change.  So any pathways that 
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appear may do so at the large lengthscales, greater than the minimal Cα-Cα unit, which are 

captured by ENM models.  Second, we need in any case to redefine what the notion of an 

‘allosteric pathway’ would mean in the fluctuation case without structural change.  The 

only candidate would be the appearance of spatially-connected correlated patterns of 

motion that take the form of connected pathways.  Such structures seem unlikely because, 

as discussed, the fluctuation-modification mechanism involves delocalised and long-

range global modes of motion, rather than local modes that might connect. However, 

when applied to such inhomogeneous elastic objects as proteins, it is not obvious that 

pathways of communication do not arise in this case as well.  The form of global modes 

in highly inhomogenous elastic media can be very different from the isotropically-

extended forms of uniform sheets or solids.  

Here we explore the relevance of allosteric pathways in the case of allostery in the 

absence of structural change.  We first extend the model calculations of (16) in both 

perturbative elastic field theory calculation and in non-perturbative coarse-grained 

models to establish general criteria for when and how such pathways of correlated 

fluctuation can arise through elastic inhomogeneities in protein structure.  We then 

analyse our previous results on the CRP/FNR homodimer family as an example. 

 

 
Materials and Methods 
 
ENM simulations - were performed using our own code (27) based on the regular 
implementation (38). Only the Ca atoms in the protein were considered and joined 
together with a simple harmonic spring with spring constants set to a constant value of 1 
kcal mol–1 Å–2 and with a cut-off radius of 8 Å. The presence of cAMP effector at the 
binding site was treated by the addition of one node at the mass weighted average 
coordinate for each ligand. The allosteric free energy was calculated by summing over 
modes 1 to n. n was determined by examining where values for the ratio of binding 
constants for the first and second cAMP binding events, K2/K1 converged (14).  The PDB 
file for constructing the GlxR ENM was 3R6S. 

Theoretical Statistical Mechanics employed Gaussian field theory using a scalar field 
model of continuum elasticity and a perturbation analysis of the partition function and 
free energy (16) to second order in three terms: (i) elastic perturbation at the allosteric 
site; (ii) perturbation at the effector site; (iii) perturbation to the continuum elastic 
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modulus.  Highly coarse-grained model structures were treated with low-dimensional 
normal mode analysis with exact enumeration of the partition function. 
 
Structure determination: Materials and methods involved in extracting the structure and 
allosteric properties of mutant and wild-type GlxR CRP/FNR homodimer, to which we 
refer, can be found in the original publications (14), (27) and (37). 
 
 
Results  
 
We obtained theoretical results for the connectivity and possible pathway-structure of 
allosteric fluctuations by extension of previous calculations departing from two extreme 
limits (12).  The first starting point is a minimal, uniform, model of local homogenous 
elasticity, penalising positional deformation with a harmonic potential.  The second starts 
from a highly non-uniform structure of stiff rods, where higher-order bending elasticity 
dominates. 
 
Results from simplified models (1): perturbation approach in elastic fields 

We begin with general theoretical considerations of when fluctuation-pathways 
may arise.  The existence of elastic inhomogeneity turns out to be essential for the 
existence of long-range fluctuation allostery.  In previous work (16), we showed that 
there is a general relation in a simplified model of scalar elasticity between the allosteric 
free energy GΔΔ  and the correlations of the gradient in elastic deformation (notated by 
the action of the spatial gradient operator on the scalar field: ( )xxφ∇ at the effector (x1) 
and allosteric (x2) sites (16)). 

 

( )( ) ( )( ) ( )( ) ( )( )[ ]
0

2
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2
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2
2

2
1

2~
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xxxxG xxxx φφφφκ
β

∇∇−∇∇−=ΔΔ  (2) 

 
(this equation is reproduced from reference 16).  The allosteric free energy is defined as 
the difference in the two binding free energies ΔG of one ligand in the cases where the 
other ligand is bound and not bound (hence the two ‘deltas’ in ΔΔG).    In the calculation 
of equation (2) the form of the perturbation to the local elasticity on substrate binding at 
either site xi within a general elastic medium, is assumed to be ( )ixx −δκ~ .  The coefficient 

of this delta-function becomes a coefficient of equation (2).  The field ( )xφ describes in a 
simplified way the local displacement of the structure at site x (in a full model there 
would be three component fields of vector displacement, but the vectorial version retains 
the structure of the scalar theory described here).  The angular brackets indicate 
averaging over the equilibrium ensemble, and β=1/kBT.  Equation (2) just expresses the 
physical statement made in the introduction above, that in order for the local 
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modifications of thermal fluctuations to convey allosteric signalling ( GΔΔ ) , there must 
exist equilibrium correlations in the fluctuations between the communicating sites (the 
averages on the RHS of equation (2)).  This powerful result is independent of the form of 
elastic energy of any specific theory.  So to complete the calculation of the allosteric free 
energy requires just a Hamiltonian for the energy of the field ( )xφ .  Taking the linear-
response case of Gaussian energy penalty for the fluctuating elastic energy: 
 

( )( ) xx x d
2
1 2

∫ ∇= φκH  (3) 

 
with a uniform elastic medium of local modulus  κ(x)=κ0,  the correlator in the square 
brackets of equation (2) is identically zero unless the two positions are coincident (16).   

So to generate a long range effect requires inhomogenous elastic structure.  This is 
a fundamental requirement.  It clarifies two observations from previous theoretical work 
on allostery without structural change.  First, it clarifies that the ‘toy models’ such as 
‘scissor-molecules’ (16) and paired plates (10), which usefully showed how large 
fluctuation-induced allosteric free energies could in principle be induced in protein-sized 
objects at ambient temperatures, clearly invoke inhomogenous elastic structure.  The 
‘scissor-molecule’, for example (see below in a generalised calculation), can be thought 
of as two stiff rods with very high internal elastic modulus connected by much weaker 
springs, or equivalently by connecting regions of much lower elastic modulus.  Second, it 
suggests an explanation for the large elastic inhomogeneities observed in real proteins.  In 
building ENM models of real proteins, the elastic springs are generated by the rule that 
every Cα atom is connected to every other within a cutoff range of about a nanometre.  
When this is done it is evident that proteins possess very strongly inhomogeneous elastic 
structures; the density of springs is visibly highly non-uniform.  An example is given in 
figure 1 of (27).   
 The next level of calculation, motivated by the observation that proteins have 
indeed evolved highly non-uniform elastic structures, and by the possible appearance of 
‘pathway’-like structures even in the case of allostery via delocalised normal modes, is to 
examine the effect of non-uniform perturbations to the elastic background of an otherwise 
continuous elastic medium, irrespective of the local changes on effector binding. So, 
following (16) we write again the elastic Hamiltonian of equation (3), but now with a 
spatially modulated background elasticity.  
 

( ) )(10 xx κκκ +=  (4) 
 
Now in the modified calculation of the allosteric free energy, the averages of equation (2) 
are taken perturbatively with respect to the inhomogenous elastic field )(1 xκ  so that, 
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when the Boltzmann factor for the equilibrium distribution exp(-βH) is expanded, they 
generate the functional-integral forms for the averages in equation (2): 
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     (5) 
 

The first non-zero and nonlocal terms in the allosteric free energy now pick up sixth-
order averages at lowest order in the elastic field, rather than the fourth-order averages 
which gave the null result of (16) in purely homogenous media.  The calculation 
proceeds, as in (16), via Fourier transforms using the transformed functions 

)(~ qκ and )(~ qφ  (the tilde generally indicates a Fourier transform), but now generating a 
non-local form for the perturbative term in equation (5).  This is a straightforward 
consequence of the convolution theorem applied to the product of functions ( )x1κ  and 

φx∇ (x): 
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Likewise the fourth-order correlator in equation (2) is also expressed in Fourier transform 
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Finally, the non-zero and nonlocal terms in the expression for the allosteric free energy 
(2) are found by taking the Gaussian averages in equation (5) with (without loss of 
generality since other choices are symmetric among the indices) the identifications 
q1=q5-p;  q2=p; q3=-q4 and q3=q5-p;  q4=p; q1=-q2 The final result, after multiple use of 
the standard result fo a Gaussian , for the lowest order term in the allosteric free energy is  
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[ ])()(~
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We note straight away from equation (8) that the translational symmetry of the system is 
now broken - the result is not a function of (x1-x2) but picks up the local differences in 
elastic modulus around the two communicating sites.  This is an expected result of 
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introducing the spatially non-uniform modulus field )(1 xκ .  More significantly, the result 
of equation (8) is significant for the discussion of pathways:  at this order the allostery 
does not require a continuous pathway of special elastic structure perturbed away from 
the uniform background.  Instead it responds to local perturbations at the allosteric and 
effector sites.  The result shows that, as anticipated, it is possible for fluctuation allostery 
to arise without any structure of ‘pathways’ at all, supporting previous detailed findings 
by Balabin and others.    

However, the magnitude predicted by equation (8) is very small in perturbation, 
and it is advisable to approach the problem from the opposite direction of a starting point 
of highly anisotropic elasticity, already identified as effective in the highly simplified 
models of scissors (16), plates (10) and coils (12). 
 

Results from simplified models (2): non-perturbative modification of bending energies 
The elastic field theory of (16), extended above to account for inhomogenous elasticity, 
can generate a finite-ranged fluctuation allostery by the alternative route of including 
‘bending elasticity’ in the Hamiltonian (fourth order, rather than second order, in spatial 
gradient ( )xxφ∇  ), as well as the simple displacement elasticity described in equation (3).  
Even in homogenous media, this now results in an allosteric interaction with finite 
(exponentially damped) range.  This higher-order bending elasticity can emerge in further 
coarse-graining of, for example, an ENM model.  It is also appropriate in the modelling 
of some secondary structural elements in globular proteins, such as α-helices.  The pair 
of helices at the dimer interface of the CAP protein constitutes an example of such 
structures with a high density of Cα-Cα bonds, and which exhibit bending dynamics within 
global modes of protein motion (16).   The presence of such linear and relatively stiff 
structures within proteins motivates highly-simplified and very coarse-grained models of 
fluctuation allostery that begin with such highly inhomogenous structures rather than 
perturb about the case of uniform elasticity (16). 
 The simplest, and instructive, example is the two-rod model, in which mutual 
displacements and rotations of stiff rods, interacting via local harmonic potentials at their 
extremities and mid-point, is modified by binding events at the rod ends. In the simplest 
case, completely stiff rods generate a system with just two degrees of freedom (mutual 
displacement x, and mutual rotation θ) whose free energy can be calculated exactly.  If 
the strength of the harmonic interactions at the extremities are modified upon binding 
from a stiffness λ1 to δλ1, then the allosteric free energy becomes a function of just two 
model parameters, δ and the ratio of the central harmonic spring strength to those at the 
extremities λ0 (this result is reproduced from reference 16): 
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    (9) 

 
This non-perturbative model is instructive as a limiting case of an ‘allosteric pathway’ as 
was defined above in the case of fluctuation allostery without conformational change. 
The motion of all the segments of the rods are, by construction, both correlated and 
connected - these connected correlations constitute a pathway between the allosteric sites. 
In stark contrast to the case of displacement elasticity discussed above, which does not 
require spatially-connected correlations to generate allostery, if bending elasticity is 
involved (in the case of the simple stiff-rod model, the bending elasticity is present but 
formally infinite), connected pathways of correlations are generated naturally.  As a 
consequence, the extremities of the fluctuating rods, which in the model we assume to be 
the allosteric sites, are just one of a continuous family of possible pairs of allosteric sites, 
uniformly distributed along the length of the rods.  This characteristic property of the 
fluctuation allostery of bending/rotational modes of embedded rods contrasts markedly 
with the disconnected topology of allosteric sites generated by inhomogenous 
perturbations to a smooth background of displacement elasticity we found in the last 
section. 
 To explore this behaviour of bend-dominated elastic deformation, in contrast to 
the case of  simple, local displacement-elasticity, we here generalise the two-rod model to 
permit finite bending of the two rods at their midpoint.  To the co-ordinates x and θ we 
add a bending mode, with associated angular degree of freedom φ (see figure 2). 

By introducing a quadratic potential energy term for the internal, now finite, bend 
φ of the rods (µ/2) φ2, we can analyse the effect on the allosteric free energy of de-
correlating the fluctuations of the communicating sites.  In the limit of µ→∞ we expect 
the result of (9) for stiff rods to be recovered.  Writing the total potential energy Φ in 
terms of the co-ordinate system x and Hessian matrix (for the pairwise elastic interactions 
between residues) K as Φ= (x. K .x) in the three cases of 0K , 1K and 2K for the apo, 
holo-1 and holo-2 cases respectively: 
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We now use the general result for the allosteric free energy 
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(where the vertical straight brackets signify determinants of the Hessian matrices) to find, 
finally, a closed form expression in terms of the model parameters, defining in 
dimensionless form λ≡λ1/λ0=λ2/λ0 for the holo values of the spring constants at the 
effector and allosteric sites and δ 
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In the limit µ→∞ (12) just reduces, as it must, to the expression for completely stiff rods 
in equation (9).  But for finite stiffness there is a considerably richer structure.  In figure 3 
we show the dependence on stiffness for four values of the local binding elasticity change 
(δ) covering the cases of both softening and stiffening, choosing to fix the baseline ratio 
of the binding site springs λ1 and λ2 to the internal spring λ0 to 0.01, within the range of 
the model that gives significant allosteric free energies. 

The result, for this simplest case of allostery through fluctuations transmitted by 
bending elasticity, differs markedly from the case of local displacement elasticity.  Now 
when the bending potential drops to zero, breaking the pathway of correlated motion 
between the sites, the allosteric co-operativity disappears.  This is simple to check from 
the expression (12).  Interestingly, in the case of softening on binding (δ<1 cases in figure 
3), the limiting value for allosteric free energy is regained as the bending constant 
increases much faster than in the case of stiffening on binding.  
 The two cases of coarse-grained elasticity – local displacement and local bending 
– generate very different structures when employed to generate fluctuation allostery.  In 
the first case, there is no requirement to connect the effector and allosteric sites with a 
continuous pathway of local elastic stiffness that differs from the surrounding medium. 
This may be the case, but the only necessary condition is that the elasticity is perturbed in 
the vicinity of the two sites.  In the presence of bending structures however, the situation 
is different, and the allosteric effect does require a connected pathway of correlated 
motion.   
 With these interpretive tools to hand, we can now turn to the case of the family of 
allosteric CRP/FNR homo-dimers (so named after the first two discovered members of 
the family) in which we have identified the controllable presence of allostery without 
conformational change. 
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An Example: Fluctution Correlation Pathways in GlxR 
Insight into both the original allosteric co-operativity and the third-order allosteric 

control via fluctuation modification can be obtained by plotting correlation maps of 
motions in phase, or in anti-phase, in apo and holo forms of the protein, as calculated 
within the ENM model.  This is done for the case of GlxR homodimer in figure 4, using 
the ΔΔPT toolkit and methods as described in (27).  We note the appearance of highly 
non-local correlations from specific residues.  For example, the helix interface residues 
125-140 (and corresponding residues in the other monomer) sustain correlated motions 
that extend far into the opposite monomer (in the diagrams this appears as strongly off-
diagonal vertical and horizontal signals – indicated within a dashed ellipse in figure 4a).  
These deep ‘pathways’ of correlations increase in strength with successive binding of the 
two cAMP.  They also become strongly correlated with the fluctuations of the cAMP 
nodes of the network (additional residues 460-500 in figure 4 b and c).  Other correlations 
change their nature on cAMP binding – the anti-correlation between residues in the 
regions of 100 and 320 in the apo dimer becomes a correlation in the holo-2.    

The ‘pathways’ of correlation in figure 4 are necessarily spatially connected if 
they follow consecutive residues, but may also constitute physically connected pathways 
even if correlated regions are localised in residue number.  To identify spatially 
continuous and discontinuous correlation patters requires a real-space representation.  To 
do this, however, we cannot retain all the information of the cross-correlation plots of 
figure 4, but must choose one residue at a time, whose fluctuation correlations can then 
be plotted spatially.  In figure 5 (a-c) the choice is made of 127 close to the interfacial 
helix (as this is strongly implicated in a highly non-local band of correlations identified in 
figure 4) in all three bound states, as well as 71 (5 d) and 82 (5 e, f), residues more deeply 
within the elastically-coherent non-DNA-binding ‘block domain’.  These three ‘base 
residues’ for correlation were selected also for their implication in distant correlated 
dynamics from the large calculation of figure 4. 

Although the total allosteric interactions operate via a sum of delocalised normal 
modes, the real-space representation of the correlated fluctuations is instructive: we 
conclude in the case of correlations from 127 that the signal proceeds into the opposite 
monomer principally via a ‘pathway’ of the type discussed above in terms of the twin-rod 
model.  The effective rods are generated by the two central helices.  Furthermore, their 
finite effective stiffness is reflected in the progressive loss of correlation along their 
lengths.  We note that this qualitative pattern of correlations is identified independently of 
choice of correlated monomer within the helices.  Other weaker correlations appear at 
more distant sites, for example within the helices of the DNA binding domains in the 
opposite monomer where an anticorrelated region is not connected to the 127 residue by 
any spatially connected pathway of correlations in the three cases (dashed circle in Figure 
5a).  Finally, as first one, then two, cAMP molecules bind so new connected pathways 
appear, involving the binding sites themselves, and sites immediately adjacent to them, as 
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they are occupied. β-strands containing next-nearest residues then also become 
correlated. So the two-strand β-sheet, adjacent to the binding sites and opposite the 
central helix domains, initially uncorrelated with the helices in the apo dimer, become 
positively correlated when the cAMP binds (dashed ellipse in Figure 5b). 

Figure 5(d) shows the correlations with the motions of residue 71 across both 
monomers.  The coherent block-like elastic property of its domain is signalled by 
correlations throughout the domain, sustained especially by the β-sheet secondary 
structure (this is also clear from the strong correlations in figure 4 perpendicular to the 
main diagonal). The domain is contiguous with the interface helices, which are able to 
convey correlated motion continuously into the opposite monomer.  This structure 
illustrates the continuous pathway case of relatively rigid units.  However, residue 71 is 
mildly anticorrelated with the helices in both DNA-binding domains (dashed circle of 
Figure 5d).  These are not connected by bending elasticity to the domain of the residue, as 
the domain interface is a relatively weak hinge (corresponding to a low value of µ in the 
coarse grained two-rod model).  In this case there is no connected pathway of correlation 
between the two sites.  The small anticorrelation is an example of the transmission by 
inhomogenous displacement elasticity which avoids the need of a connected correlation 
pathway. 

Figure 5 (e and f) shows the correlations from residue 82, in the same domain as 
71 but closer to the interfacial helix, in apo and holo-1 states.  This example is instructive 
as it illustrates an example of ‘pathway shift’ on binding.  The apo form transmits 
correlations from residue 82 mostly away from the DNA binding regions (dashed ellipse 
in Figure 5e), but the holo-1 form shifts the correlated pathway towards them (dashed 
ellipse in the upper region in Figure 5f) especially in the helix of the opposite domain.  
Residue 82 is adjacent to the cAMP binding site, and this pathway shift is clearly a major 
contributor to the anti-cooperative binding of the second cAMP.  The mild anticorrelation 
of the DNA binding regions follows a very similar pattern to that evinced by residue 71. 

The GlxR example is instructive as it contains both examples of the elastically-
transmitted fluctuation allostery discussed in the case of approximate models.  Spatially 
connected pathways do exist, and others emerge on effector binding.  But some 
potentially allosteric regions are spatially disconnected from each other, primarily when 
they are separated by weak domain interfaces.  The method is sensitive to and 
discriminatory of, the two cases.  This is exemplified by the disconnected correlations 
between binding-site adjacent residues and the DNA binding regions (stretch) and the 
connected correlations along the helices (bend).  So the method can identify both from 
the connectivity of the correlations, and from their sign.  Disconnected (stretch– induced) 
regions may be negatively correlated, while bend-induced correlations are positive.   
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Discussion and Conclusions 
We have explored the presence, meaning and implication of ‘allosteric pathways’ in the 
case of allostery without conformational change, or ‘fluctuation allostery’.  In this case, 
pathways may emerge from connected regions of correlated motion.  The discussion has 
led us to identify two different types of coarse-grained elastic structures within proteins, 
both of them able to transmit allostery without conformational change, through 
modification of the correlations of thermal fluctuations.  They correspond to the two 
different elastic deformations of ‘stretch’ (or ‘displacement elasticity’) and bend.  At the 
level of quadratic approximation for their energies, these local deformations create 
energetic potentials proportional to the second, and forth power of the gradient of local 
displacements, respectively. 
 Very coarse-grained calculations, perturbing from two base state elastic structures 
that are in the first case homogenous and in the second highly inhomogenous, show that 
stretch and bend elasticity generate very different behaviours in terms of allosteric 
pathways.  Stretch elasticity requires the introduction of elastic inhomogeneities at the 
effector and allosteric sites with respect to the rest of the protein.  However, it does not 
require a connected spatial pathway of stiffer regions in order to convey the allosteric 
signal.  In this case the ‘pathway’ can be thought of as a complex sum of normal modes 
of motion, delocalised spatially so that no preferred pathway emerges.  In the case of 
bend elasticity there does emerge a continuous spatial pathway of correlated fluctuations 
between the communicating sites. 
 We examined the GlxR homodimer within the ENM coarse-grained approach, 
using structures and models developed in our previous work, but now focussing on 
correlated fluctuations and the emergence of connected pathways of correlations.  We 
found evidence that both types of fluctuation transmission arise, giving rise to both 
connected pathways, and disconnected regions for correlations, from three representative 
residues. 
 The correlation patterns and mechanisms give additional insight into the 
mechanism of binding cooperativity and its control.  We found in earlier work (14) that 
both the strength and the sign of allosteric interaction between binding sites can be 
controlled by mutating the elastic strength locally at a number of third sites.  These 
‘control sites’ tended to occupy isolated regions. Now we can see this to be symptomatic 
of the recruitment of stretch elastic energy, which does not need connected correlation 
pathways to generate allosteric effects.  It also helps to clarify the disparate findings of 
work on the existence of allosteric pathways where there is no structural change.  Further 
mutation experiments on the lines of (14) may deliberately modify bend or stretch 
rigidity locally, and test the general predictions made in this work.  
 The existence of more than one strategy to create allosteric signalling, even in the 
case of fluctuation allostery, has clear consequences for protein evolution.  Very recently 
(39) we found significant bias within historical evolution of CRP/FNR homo-dimers in 
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which double mutations tended to correlate to maintain the value of allosteric 
cooperativity.  The relative occurrence of mutations that control stretch, and bending, 
elasticity is of relevance both to past evolution and to applications of engineered proteins. 
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Figure Legends 

 
Figure 1. Ribbon diagram of the crystal structure of CAP homodimer determined at 1.48 
Å resolution (PDB 4HZF) with the cAMP ligand bound (in ball-and-stick representation). 
 

Figure 2. The modified two-rod model of fluctuation allostery in which the degree of 
freedom of mutual displacement x, and rotation θ, of the rods is supplemented with a 
bending angle at their midpoint φ. Binding events by substrates at the extremities of the 
rod-pair is modelled by a modification to their interaction potential at those points.  The 
spring constants λi are indicated for each location i. The binding of small molecules at the 
positions of springs λ1 and λ2 is modelled by modifying the local spring constants by a 
factor δ. 
 

Figure 3. Allosteric free energy ΔΔG from equation (12) in terms of the dimensionless 
bending constant, µ, of the two-rod model.  The legend gives the values of the four 
different values of δ, the change of local stiffness on binding.  The limiting values for 
simple stiff rods are recovered at high stiffness. 
 
Figure 4. Correlated motions in ENMs for apo-GlxR (a) (the dashed lines indicate a 
region of inter-monomer correlation – see text), holo1-glxR (b) and holo2-GlxR (c). Both 
the x and y axes represent amino acid number in CAP for the first (1-220) and the second 
(221-440) cAMP binding monomer.  Residues beyond 440 in the centre and right panels 
correspond to the ENM representation of the cAMP molecule itself (dashed ellipses). The 
colour chart represents the degree of correlation and anti-correlation in motion. 
 
Figure 5. A real-space representation of the correlations in apo-GlxR from figure 4.  Red 
indicates correlated, blue anticorrelated, white uncorrelated motion with respect to the 
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chosen reference residue in each panel.  For each panel the reference residue and bound 
state of the dimer is given; (a) 127 apo ; (b) 127 holo-1;  (c) 127 holo-2 ; (d) 71 apo; (e) 
82 apo; (f) 82 holo-1.  A green circle indicates the correlated residue in each case. 
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