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Abstract: 

Six new C,C´-bis(benzodiazaborolyl)dicarba-closo-dodecaboranes, 1,A-R2-1,A-C2B10H10, 

where R represents the group 2-(1,3-Et2-1,3,2-N2BC6H4) or 2-(1,3-Ph2-1,3,2-N2BC6H4) and A 

is 2, 7 or 12, were synthesized from o-, m-, and p-dicarbadodecarboranes (carboranes) by 

lithiation and subsequent treatment with the respective 2-bromo-1,3,2-benzodiazaboroles. 

UV-visible and fluorescence spectra of all carboranes display low energy charge transfer 

emissions. While such emissions with Stokes shifts between 17330 and 21290 cm
-1

 are typical 

for C,C´-bis(aryl)-ortho-carboranes, the observed low-energy emissions with Stokes shifts 

between 8320 and 15170 cm
-1

 for the meta- and para-isomers are unusual as high-energy 

emissions are typical for meta- and para-dicarbadodecaboranes. Fluorescence quantum yields 

(F) for the novel 1,7- and 1,12-bis(benzodiazaborolyl)-carbaboranes depend on the 

substituents at the nitrogen-atoms of the heterocycle. Thus, the para-carborane with N-ethyl 

substituents 1,12-(1´,3´-Et2-1´,3´,2´-N2BC6H4)2-1,12-C2B10H10 has a F value of 41% in 

cyclohexane solution and only of 9% in the solid state, whereas the analogous 1,12-(1´,3´-

Ph2-1´,3´,2´-N2BC6H4)2-1,12-C2B10H10 shows quantum yields of 3% in cyclohexane solution 

and 72% in the solid state. X-ray crystallographic, computational and cyclic voltammetry 

studies for these carboranes are also presented. 

 

mailto:lothar.weber@uni-bielefeld.de


2 

 

Introduction 

Organic light-emitting diodes (OLEDs) are of great attraction worldwide due to their 

potential applications in full-colour displays and solid state lights. Small molecules with 

bipolar electron-transporting character are extremely desirable as they offer the possibility to 

achieve efficient and stable OLEDs even in a simple single-layer device.
1
 Tremendous efforts 

have been devoted to the design of materials with comparable hole- and electron-transporting 

abilities (such as donor-acceptor molecules) which are also called ambipolar materials.
2
 

Luminescent molecules with entirely new donor and acceptor units are desirable in the quest 

for stable and efficient OLEDs.  

Since their discovery five decades ago, an extensive and rich chemistry of the three 

icosahedral carboranes, ortho-, meta- and para-C2B10H12 has been established.
3
 These 

carboranes have only recently been considered as potential components for OLEDs in 

photophysical studies on C,C-diarylated dicarbadodecaboranes.
4-13

 Selected photophysical 

data for some C,C-diarylcarboranes are summarized in Chart 1.
4-7

  

 

 

 

Chart 1.  

The meta- and para-carborane clusters are generally considered as inductively 

electron-withdrawing pseudo-aromatic spacers with subtle effects on the emission spectra of 
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these fluorophors.
4,7,9-19

 Due to similarities in their sizes, the para-carborane motif - 

CB10H10C- has been compared with the para-phenylene spacer 1,4-C6H4- in donor-acceptor 

molecules. There, however, the carborane behaved as an effective insulator, whereas the 

phenylene-moiety is well known as an electron-conducting conjugated -system.
14

 The ortho-

carborane cluster, on the other hand, is a more powerful electron-withdrawing unit with a 

remarkably flexible C-C bond within the cage.
15

 These features give rise to differerent 

photophysical behaviour of fluorophors with ortho-carborane building blocks, where in the 

solid state low-energy charge transfer emissions frequently occurred upon UV 

irradiation.
4,6,8,12

 The cluster geometries of the excited states are presumably similar to the 

structures of carborane radical anions, where the cage C-C bond is significantly elongated by 

accommodation of the extra electron.
16,17 

 Carborane containing OLEDs were first reported in 

2012 as polymer-light emitting diodes (PLEDs based on ortho-carborane with Ar=fluorene 

polymer, Chart 1)
18 

and phosphorescent organic light emitting diodes (PHOLEDs based on 

ortho-, meta- and para-carboranes with Ar=carbazolyl; Chart 1).
19

 

In the past decade, the chemistry of 1,3,2-benzodiazaboroles has seen a rapid 

development.
8,17,20-24

 OLEDs fabricated from iridium and platinum chromophors with 

benzodiazaborolyl ligands emit blue or green light.
25

 However, efficient and long-standing 

OLEDs from fluorescent organic molecules
20-23

 and polymers
26 

containing benzodiazaborole 

functions have not been reported to date.  

We recently described the synthesis and photophysical behaviour of a series of ortho 

carboranes (1-15, Chart 2) featuring a 1,3-diethyl-, 1,3-diisopropyl-, 1,3-diphenyl- or 1,3-

dihydro-1,3,2-benzodiazaborolyl substituent at one cage carbon atom.
8,17

 Apart from 6 and 10, 

these compounds show remarkable low-energy fluorescence emissions with Stokes shifts of 

15100-20260 cm
-1

 and quantum yields up to 70% in the solid state. These low-energy 

emissions are due to a charge transfer between the electron-accepting cage and the electron-

donating benzodiazaborolyl unit. These are luminescent molecules with a fundamentally new 

combination of donor- and acceptor functionalities which are of potential use in the 

fabrication of efficient solid state OLEDs. In view of these results, it was logical to explore 

meta- and para-carborane benzodiazaboroles in order to evaluate the influence of different 

cluster isomers on their photophysical properties.  
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Chart 2. 

 

Here we describe the synthesis, structural, photophysical and quantum-chemical studies for 

the six novel ortho-, meta- and para-carboranes 16-21 (Chart 3) where each cluster carbon 

atom is ligated by a benzodiazaborolyl group. For comparison, 2-tert-butyl-1,3,2-

benzodiazaboroles 22 and 23 are considered because of the similar steric requirements of the 

tert-butyl group and the carborane cage.  

 

 

Chart 3.  
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Results and Discussion  

 

Syntheses 

Metallation of ortho-, meta- and para-carboranes with 2 equivalents of n-or tert-butyllithium 

and the subsequent treatment of the reaction mixtures with 2 equivalents of 2-bromo-1,3-

diethyl-1,3,2-benzodiazaborole
31 

or 2-bromo-1,3-diphenyl-1,3,2-benzodiazaborole,
23

 

respectively, afforded the bis(diazaborolyl)carboranes 16-21 (Scheme 1). The products were 

isolated by short-path distillation and purified by crystallisation (8-42% yield). 

 

Scheme 1: General route to C,C´-bis(benzodiazaborolyl)carboranes 16-21  

  

The colourless compounds 16-21 are well soluble in dichloromethane, chloroform and 

aromatic hydrocarbons but only sparingly soluble in n-hexane. The solubility generally 
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decreases in order from ortho, meta- to para-carboranes. Solutions of the compounds are 

oxygen- and moisture sensitive. In the solid state, the 1,3-diphenyl-1,3,2-benzodiazaboroles 

17, 19 and 21 may be stored in air for days without visible deterioration. 

  

 

In the 
1
H NMR spectra of the 1,3-diethyl-1,3,2-benzodiazaboroles 16, 18 and 20, the peaks 

corresponding to the ethyl groups are found as quartets at δ = 3.57 - 4.00 ppm and triplets at δ 

= 0.92 - 1.34 ppm arising from 
3
JHH couplings. The NMR data for 16 suggest that there are no 

rotational barriers at the C1-B2' and C2-B2'' bonds in solution for 16 so all rotational 

conformers probably exist in solution (for atom numbering see Figure 1). 

 

Figure 1. Numbering schemes used for the carborane cluster and the benzodiazaborolyl 

group. For discussion of the second benzodiazaborolyl group at C2, C7 or C12, the labels N1'' 

for N1', B2'' for B2' etc are used. 

 

For the phenyl-substituted benzodiazaboroles, 19 and 21, the 
1
H NMR spectra display two 

apparent multiplets at δ = 7.15 (Hortho) and δ = 7.44 ppm (Hmeta, Hpara) corresponding to the 

phenyl groups. By contrast, in the ortho-carborane 17, five broad signals for the phenyl group 

hydrogens are recorded [δ = 5.90, 7.20 ppm (Hortho, Hortho'), δ = 6.98, 7.50 ppm (Hmeta, Hmeta'), 

δ = 7.36 ppm (Hpara)] (Figure S5). The 
13

C{
1
H} NMR spectrum of 17 also revealed two sets 

of resonances corresponding to the ortho and meta carbons of the phenyl groups (Figure S7). 

This is consistent with restricted intramolecular rotations around the C1-B2', C2-B2'' and the 

four Ph-N bonds in 17. It is thus likely that the rotations at the Ph-N bonds in the 

diphenylbenzodiazaborolyl groups are restricted in 19 and 21 as well. The shift difference of 

1.3 ppm between the two ortho-phenyl proton peaks in 17 is remarkable and suggests that one 

set of protons is strongly shielded by π-electron fields from aryl groups in close proximity. 

The broad proton peaks were sharpened at -45°C (Figure 2) showing the two ortho-protons at 

5.81 and 7.23 ppm. 
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Figure 2. 
1
H NMR spectrum for 17 at -45°C.  

 

The tert-butyl benzodiazaboroles, 22 and 23, were formed from the corresponding 

bromoboroles with tert-butyllithium in 72% and 35% yields, respectively. These compounds 

are much more sensitive to air and moisture than the carboranes 16-21.  

 

X-ray crystallography 

Molecular structures were determined for the ortho-carboranes 16, 17, the meta-carboranes 

18, 19, the para-carborane 21 and the tert-butyl benzodiazaborole 23 (Figure 3). Single 

crystals thereof were grown from dichloromethane or dichloromethane/n-hexane mixtures. 

Compounds 16, 18, 19 and 21 crystallise in the monoclinic space group C2/c, whereas 17 

crystallises in the space group P21/c and 23 in the trigonal space group R . While crystal 

structures of carboranes with an exopolyhedral boron atom attached to one cage carbon are 

known,
27

 experimental geometries of carboranes with exopolyhedral boron atoms at both cage 

carbons have not been reported prior to this study. Dichloromethane molecules are present in 

the crystals structures of 16, 17 and 21 with carborane:CH2Cl2 ratios of 1:1, 1:1 and 3:4 

respectively. Bond lengths and angles of interest here are listed in Table 1 using the 

numbering schemes in Figure 1.  
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Figure 3. Molecular structures of 16 - 19, 21 and 23. 

 

 

Table 1. Selected bond lengths (Å) for 16 - 19, 21 and 23.  

 Bond lengths [Å] 
Torsion angles 

[°] Phenyl-diazaborolyl 

interplanar angles [°] 
 C1-B2' C1-C2 

C2/B2-C1-B2'-

N3'  

16 1.602(2)/ 1.602(2) 1.725(2) 76.4/57.9 - 

17 1.582(4)/1.601(4) 1.697(4) 60.0/55.2 75.2/83.3/80.7/75.9 

18 1.598(2) - 95.0 - 

19 1.587(3) - 81.1 69.3 

21 1.582(4)/1.585(4)/1.587(3) - - 86.5/80.8/75.3/82.1/84.6/84.3 

23 1.587(2) - - 64.4/68.1 
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The two adjacent diazaborolyl groups in 16 and 17 adopt orientations which minimize the 

steric interactions between the four ethyl groups in 16 and the four phenyl groups in 17. The 

observed C2-C1-B2'-N3' and C1-C2-B2''-N3'' torsion angles are 76.4° and 57.9° for 16 and 

60.0° and 55.2° for 17 which are smaller than in other crystal structures of ortho-carboranes 

with one diazaborolyl group at C1 and a methyl, phenyl, tert-butyl or a trimethylsilyl group at 

C2 with C2-C1-B2'-N3' torsion angles of 78-90°.
8,17

  

 

In the crystal structure of 17 here are intramolecular C-H…π(ring) interactions between the 

phenyl groups with C-H…ring(centroid) distances of 2.42/2.64 Å, 3.45/3.69 Å for the 

C…centroid distances and 164.9/163.0° for the C-H…centroid angles (Figure 4). There are 

also intramolecular C-H…π(ring) interactions between the diazaborolyl rings in 17 with 

corresponding values of 2.78/2.82 Å, 3.31/3.36 Å and 109.9/110.5°. These interactions agree 

with the considerable shielding of one proton resonance at 5.81 ppm in the observed 
1
H NMR 

spectrum of 17 (Figure 2). On this basis, the shielded signal is assigned to the four hydrogens 

attached to C2A, C2B, C2C and C2D atoms.  

 

Figure 4. Intramolecular C-H…π(ring) interactions in 17. Only C1 and C2 atoms of the 

carborane cluster are shown for clarity. 

 

Each molecule of the meta-carboranes 18 and 19 is characterized by a two-fold axis bisecting 

bonds B2-B3 and B9-B10 thus placing the cage carbons C1 and C7 and the adjacent 

diazaborolyl fragments on symmetrically equivalent positions. Interestingly, in the meta-
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carboranes the C1-B3 bonds (1.738(2) Å (18), 1.737(3) Å (19)) which are nearly in co-planar 

orientation to the diazaborolyl plane (torsion angle B3-C1-B2'-N3' = 18.8° (18), 5.9° (19)) are 

lengthened by ca. 0.03 Å compared to the C1-B2 bonds (1.713(2) Å (18), 1.704(3) Å (19)) 

which are almost perpendicular to the heterocyclic unit (torsion angle B2-C1-B2'-N3' = 95.0° 

(18), 81.1° (19)). Steric repulsions between the substituents at the diazaborolyl-N atoms and 

the B3-H unit are probably responsible for the differences in the C1-B2 and C1-B3 bonds. 

 

The para-carborane 21 crystallises as a pseudo-merohedral twin with 1.33 molecules in the 

asymmetric unit. The half molecule is completed via a two-fold axis bisecting two opposite B-

B bonds of the cage. The bonding parameters within the heterocyclic units agree with the 

corresponding data of numerous other 1,3,2-benzodiazaboroles.
8,16,22

 In the 

diphenyldiazaboroles, the N-phenyl substituents and the diazaborolyl planes enclose 

interplanar angles of 64.4° in 23 to 86.5° in 21. Thus, no conjugation between these π-systems 

is expected and the influence of the phenyl rings on the electronic structure of the 

benzodiazaborole moiety is mainly of inductive character. 

 

As the solid-state emission data for the meta- and para-carboranes 18-21 differ significantly 

(vide infra), the intermolecular interactions in the crystal structures were examined here 

(Table 2). There are some close intermolecular phenyl C-H…π-benzodiazaborolyl 

interactions in the crystals of 19, 21 and 23. In the case of 19, the C6H4 ring of the borolyl 

group is involved whereas in 21 and 23 the C2N2B rings participate in these interactions. 

Interactions in crystalline 18 with benzodiazaborole participation are limited to C4'H…cage B 

(3.09 and 3.14 Å) and C7'H…methyl H (2.26 Å).  

 

Table 2. Intermolecular interactions in the crystal structures of 19, 21 and 23. 

 

 Ring in borolyl 

group 

Ring centroid…H 

distance (Å) 

Ring centroid…C 

distance (Å) 

Centroid…H-C 

angle (°) 

19 C6H4 2.74 3.64 139.6 

21 C2N2B 2.55 3.44 139.9 

 C2N2B 2.76 3.57 131.8 

 C2N2B 2.93 3.87 145.6 

 C2N2B 3.04 3.93 139.8 

23 C2N2B 2.58 3.55 148.6 
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Photophysics 

The recorded absorption maxima in the UV-Vis spectra of solutions of 16-21 are devoid of 

any significant solvatochromism ( = 284 - 297 nm in cyclohexane; 285 - 297 nm in 

dichloromethane) and agree nicely with the respective absorption data in the solid state (287 - 

300 nm) (Table S2 and Figure S25). For comparison, a cyclohexane solution of 2-tert-butyl-

1,3-diethyl-1,3,2-benzodiazaborole
 
22 gives rise to an intense absorption at  = 285 nm and 

solid 2-tert-butyl-1,3-diphenyl-1,3,2-benzodiazaborole 23 absorbs at  = 288, 293 nm (Table 

S2 and Figure S26). Thus the absorption bands reflect local π-π* transitions within the 

benzodiazaborolyl parts of the molecules. 

 

Table 3 summarises the emission data of all compounds investigated here. The photophysical 

behaviour of the ortho-carboranes, 16 and 17, closely resembles the characteristics of the C-

mono(benzodiazaborolyl)-ortho-carboranes.
8,17

 In cyclohexane solutions, they emit in the red 

to orange region at λ = 635 nm (16) and 579 nm (17) (Figure 5) with Stokes shifts of 18340 

cm
-1

 (16) and 17330 cm
-1

 (17) pointing to considerable geometric reorganizations in the 

excited state. In dichloromethane solutions, the emission maxima are bathochromically 

shifted and occur at 777 nm (16) and 710 nm (17). This positive solvatochromism shows that 

the excited state is more polarized than the ground state. Using the Lippert-Mataga method 

with an Onsager-radius of 3.52 Å, transition dipole moments of 7.4 D (16) and 7.7 D (17) 

were estimated which agrees with the distinct charge transfer (CT) character of these low-

energy emissions. In addition, weaker emission bands were measured for cyclohexane 

solutions of compounds 16 and 17 in the UV region (λ = 330 nm (16), 346 nm (17)). As 

evidenced by X-ray crystallography, the molecules adopt conformations with C2-C1-B2'-N3' 

torsion angles markedly different from 90°. This rotational mobility around the C1-B2 bond 

opens a path to an alternative excited state characterized by minor geometric changes.
8 

Fluorescence quantum yields for both emissions are very low in solution (ΦF <1 %). 

 

In the solid state, the low-energy emissions of the ortho-carboranes 16 and 17, were 

bathochromically shifted with respect to the corresponding maxima in cyclohexane at λ = 666 

nm (16) and 618 nm (17) (Figures 5 and 6). Due to restriction of molecular motions, the solid 

state quantum yields (ΦF 3 % (16), 14 % (17)) are higher than in solution. However, they are 

significantly lower than the reported ΦF values between 25 and 70 % for luminescent 

mono(benzodiazaborolyl)-ortho-carboranes with large C2-C1-B2'-N3' torsion angles of 78-
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90°.
8,17

 Non-radiative decay processes are obviously favorable in the bis(benzodiazaborolyl)-

ortho-carboranes, 16 and 17, which may be due to the smaller C2-C1-B2'-N3' torsion angles 

(56-76°) in their crystal structures. 
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Figure 5. Emission spectra of ortho-carboranes 16 and 17. 

 

 

 

 

Figure 6. Crystals of 16 and 17. Left column: Without UV irradiation. Right column: Under 

UV irradiation at 350 nm. 
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Table 3. Emission data for 16 – 23. 

   Cyclohexane     Dichloromethane (DCM)     Solid state 
  

 Emission 

max  

[nm]  

Relative  

Height  

Stokes shift  

[cm
-1

]  

ΦF 

[%] 

Emission max  

[nm] 

Relative 

Height 

Stokes-shift  

[cm
-1

]  

ΦF 

[%] 

Emission max  

[nm]  

Stokes shift  

[cm
-1

] 

ΦF
[a]

 

[%]
 

Lifetime τF 

[ns]
 

16 

 

330, 635
 

0.51 : 1.00 3790, 18340 1 777  21290 < 1 666 18720 3 2.5 ± 0.2 

17 

 

346, 579
 

0.32 : 1.00 5520, 17330 1 710  20670 < 1 618 18200 14 2.3 ± 0.1 

18 

 

309, 392
 

1.00 : 0.02 1700, 9830 26 309, 487
 

1.00 : 0.56 2170, 15170 2 474 13320 < 1 2 ± 1
[b]

 

19 

 

303  1440 1 306, 455
 

1.00 : 0.03 1790, 13210 1 310 1770 28 1.8 ± 0.2 

20 

 

310  1430 41 314, 461
 

1.00 : 0.15 1860, 12720 < 1 314, 377
[c] 

1560, 8320 9 
 [d]

 

21 

 

303  1450 3 307  1750 1 354 5980 72 3.4 ± 0.2 

22 

 

307
[e]

  1440 
[f] 

309
[e,g]

  1650 
[f] [h] 

   

23 

 

[h] 
   

[h] 
   312 2080 12 

[f] 

 

[a] Measured with the integrating sphere method.
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[b] Large error due to low intensity. 
 

[c] Relative height 1.00 : 0.09.  

[d] Biexponential fit necessary with values of 1.0 ± 0.2
 
and 4.6 ± 0.2 determined. 

[e] Reference 23. 

[f] Not recorded. 

[g] Not recorded in DCM, values are quoted with tetrahydrofuran (THF) which has a similar solvent polarity. 

[h] Reliable measurements were not obtained due to photochemical decomposition of sample. 
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For the cyclohexane solutions of meta- and para-carboranes 18-21, high energy (UV) 

emission bands were observed (λ = 303 - 310 nm) (Figures 7 and 8) without a significant 

solvatochromism upon changing the solvent to dichloromethane (λ = 306 - 314 nm). Together 

with the reference compound 2-tert-butyl-1,3-diethyl-1,3,2-benzodiazaborole 22 which emits 

at 307 nm in cyclohexane and 309 nm in THF (Figure S26), this allows the conclusion that 

the UV emissions arise from local π-π* transitions within the benzodiazaborolyl units. The 

small Stokes shifts of 1430 - 1700 cm
-1

 for the high-energy emissions from 18-22 indicate 

negligible geometric rearrangement in the excited state. The ΦF values of the two 

diethylbenzodiazaborolyl compounds 18 (26 %) and 20 (41 %) in cyclohexane solutions are 

significantly higher than those of their diphenyl analogues 19 (1 %) and 21 (3 %). In other 

solvents, the quantum yields are lower for all four compounds and decrease to values of 2 % 

and below in dichloromethane (Table S5). 
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Figure 7. Emission spectra of meta-carboranes 18 and 19. 
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Figure 8. Emission spectra of para-carboranes 20 and 21. 
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Interestingly, additional emission bands at lower energies were detected for 18 in 

cyclohexane, toluene and dichloromethane, for 19 in dichloromethane and for 20 in toluene 

and dichloromethane (Figures 7 and 8 and Tables S3-6). These bands have markedly lower 

intensities compared to the high-energy emissions and reach into the blue region of the visible 

spectrum (λ = 455 - 487 nm in dichloromethane). Solvatochromic shifts of 2580 cm
-1

 for 18 

and 1330 cm
-1

 for 20 upon changing the solvent from toluene to dichloromethane agree with a 

CT character of these emissions. The Stokes shifts of 12720 - 15170 cm
-1

 in dichloromethane 

point to considerable structural changes in the excited state which, however, are less 

pronounced than for the ortho-carboranes 16 and 17. The fact that CT emission for the 

diphenylbenzodiazaborolyl compounds was only found in the case of 19 in the polar solvent 

dichloromethane may be explained by the lower donor strengths of the 

diphenylbenzodiazaborolyl group compared to the diethylbenzodiazaborolyl group.  

Unusual luminescence data were obtained from solid meta- and para-carboranes 18 - 

21. Only one emission band was measured in case of both meta-carboranes. For 18, this band 

was found in the blue region (λ = 474 nm) and therefore presumably corresponds to the CT 

emission which was also observed in solution (Figure 7). The solid state emission for 19 at λ 

= 310 nm is assigned to a local emission within the benzodiazaborolyl unit. The solid para-

carborane derivative 20 shows a band for a local transition at λ = 314 nm and another band of 

lower intensity at λ = 377 nm. For 21, an emission band occurred at λ = 354 nm which is 

considerably bathochromically shifted compared to the emission in cyclohexane at λ = 303 

nm. The large energy difference of 4750 cm
-1

 in the emission maxima between the solution 

and the solid state for 21 suggests the existence of two different excited states for 21.  

The solid state quantum yields of the diphenylbenzodiazaborolyl compounds 19 (ΦF 

28 %) and 21 (ΦF 72 %) are significantly higher than those of their diethyl analogues 18 (ΦF < 

1 %) and 20 (ΦF 9 %). Aggregation of the diethylbenzodiazaborolyl compounds 18 and 20 

may have led to quenching of luminescence whereas restriction of molecular motions in solid 

diphenylbenzodiazaborolyl compounds 19 and 21 reduced non-radiative decay. 

Luminescence lifetimes of 1.0 - 4.6 ns of the solids of 16 - 21, clearly show that the 

observed emissions arise from fluorescence (Table 3). The emissions generally decayed 

monoexponentially with the exception of 20. In this case a biexponential fit was necessary 

which means that two fluorescence processes occurred for solid 20. This agrees with the two 

observed emission bands. Thus two different excited states are populated in case of this 

compound. 
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Although no direct information about packing of the molecules in the 

spectroscopically investigated solid layers is available, it is conceivable that similar 

intermolecular interactions as described in the crystallographic section contribute to the 

differences in the solid state photophysical behaviour of 18-21. 

 

Electrochemistry 

Cyclic voltammetry for the carboranes 16-21 in dichloromethane solutions reveals 

irreversible oxidation waves in the narrow range between 0.9-1.0 V with respect to the 

ferrocene/ferrocenium couple (Figure S27) which are characteristic of oxidations of the 

benzodiazaborolyl group.
20

 Reduction waves were observed for the ortho-carboranes, 16 and 

17, but not for the meta- and para-carboranes, 18-21. The ortho-carboranes are considerably 

easier to reduce than their meta- and para-carborane analogues. The two one-electron 

reduction waves observed for 16 in acetonitrile (shown in Figure 9) are typical for 1,2-diaryl-

ortho-carboranes.
16,28,29

 CV simulations of these two reversible 1e reduction processes (Figure 

9) gave values of the heterogeneous electron transfer like those of diphenyl-ortho-carborane, 

1,2-Ph2-1,2-C2B10H10 24, observed in acetonitrile.
16,28

 Compound 17 is, unfortunately, not 

soluble in acetonitrile.  

In dichloromethane solutions, two quasi-reversible reduction processes are observed 

for 16 and 17, and the mechanism is reasonably well described by digital simulations (Figures 

S28 and S29) in which the first reduction process is slower than the second, in a similar way 

as observed for 24 in the same solvent (Figure S30). It is generally accepted that a slow 

electron transfer indicate a geometrical rearrangement and/or molecular reorganization 

induced by the electron transfer process.
30

  

The CV data for electrochemical reduction waves for 16,  17 and 24 summarized in 

Table 4 are similar and suggest that both, the phenyl- and benzodiazaborolyl groups, have 

comparable influences on the stabilities of the unusual 2n+3 carborane radical monoanions. 

From a recent electrochemical study on monobenzodiazaborolyl carboranes,
 
the long C1-C2 

cluster bond lengths facilitate the stabilities of the monoanionic radicals.
17

 The structurally 

determined C1-C2 bond lengths for 16, 17 and 24 are in fact similar [1.725(2), 1.707(3) and 

1.722-1.730(2) Ǻ respectively].
28
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Figure 9. Experimental (black solid line) and simulated (red dashed line, Redox(0/-1): E°=-

1.418 V, k°=2.5×10
-3

 cm/s, α=0.50; Redox(-1/-2): E°=-1.644 V, k°=2.5×10
-3

 cm/s, α=0.50) 

CV of 16 in acetonitrile. Potentials are against the FcH
+
/FcH redox couple (not simulated). 
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Table 4. Reduction potentials from cyclic voltammetry data
a
 of 16, 17 and 24.  

 Working 

Electrode
 b
 

Solvent E(Red1) 

cathodic
 
 

V
 c
 

E(Red1) 

anodic 

V
d
 

E1/2 

(Red1) 

V 

Red1 

p-p 

mV
e 

E(Red2) 

cathodic 

V
f
 

E(Red2) 

anodic 

V
 g
 

E1/2 

(Red2) 

V 

Red2 

p-p 

mV
e 

E1/2(Red1-

Red2) 

mV 

16 GC MeCN -1.46 -1.37 -1.42 90 -1.69 -1.60 -1.65 90 230 

 Pt DCM -1.88 -1.49 -1.69 390 -1.88 -1.77 -1.83 110 140 

17 Pt DCM -2.41 -1.51 -1.96 900 -2.41 -1.75 -2.08 660 120 

24 GC MeCN -1.63 -1.50 -1.57 130 -1.76 -1.68 -1.72 80 155 

 Pt DCM -1.90 -1.48 -1.69 420 -1.90 -1.80 -1.85 100 160 
 

a
 0.1 M 

n
Bu4NPF6 solution at 298 K, scan rate 100 mV s

-1
, referenced internally to the ferrocene/ferrocenium FcH/FcH

+
 couple, with platinum wires as counter and reference 

electrodes. Measurements carried out under inert atmosphere using a glove box.  
b 
GC = glassy carbon working electrode, Pt = platinum working electrode 

c
 cathodic wave of first one-electron reduction wave. 

d
 anodic wave of first one-electron reduction wave. 

e
 peak separation. 

f
 cathodic wave of second one-electron reduction wave. 

g
 anodic wave of second one-electron reduction wave. 
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Computations 

The molecular geometries of all eight compounds, 16 - 23, were optimized at B3LYP/6-31G* 

with no symmetry constraints. Calculated GIAO 
11

B NMR shifts from these geometries are in 

very good agreement with experimental NMR data for 16-21 (Table S7). The computed 

GIAO 
1
H NMR shifts of 7.36 and 6.39 ppm for the two sets of ortho-protons on the optimised 

geometry of 17 correspond well with the observed data (Figure 2). The geometric parameters 

for 16-19, 21 and 23 are in general agreement with the results of the X-ray determinations. 

Rotation barrier energies at the C1-B2' axis for 16 and were estimated to be 7.4 and 13.0 

kcal∙mol
-1

, respectively. These values are probably underestimated, especially for 17, as the 

computed C1-C2 bond lengths in the optimized geometries are 1.753 and 1.746 Å compared 

to the experimental values of 1.725(2) and 1.707(3) Å for 16 and 17, respectively.  

 

The different C1-B2 and C1-B3 bond lengths found in the X-ray structure analyses as well as 

in the optimised geometries of the meta-carboranes, 18 and 19, are due to steric effects of the 

ethyl and phenyl groups at N1' and N3'. Replacing the ethyl substituents in 18 with hydrogen 

atoms gave an optimised geometry with identical C1-B2 and C1-B3 bond lengths. 

 

The frontier orbital energies for 16-24 are given in Table 5. The orbital energies for the simple 

molecules, ortho-, meta- and para-carboranes, and the parent diazaboroles are also included 

for comparison. The HOMOs in the boroles are represented by the π orbitals of the 

benzodiazaborolyl unit as shown in Figure 10 for 16 and 18. For 16-21, the LUMOs are the 

π*B orbitals with some carborane character. The LUMOs for the diazaboroles 22 and 23 are 

of π*(benzodiazaborolyl) character. The similarities in the frontier orbital energies between 

the carboranes 18-21 and the simpler benzodiazaboroles including 22 and 23 agree nicely 

with the experimental UV spectra where similar low energy transitions within the 

benzodiazaborole were observed. 
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Table 5. Frontier orbital energies for 16-24 and related compounds. 

  LUMO 

[eV] 

HOMO 

[eV] 

HOMO-LUMO Gap 

[eV] 

1,2-[C6H4(NEt)2B]2-ortho-C2B10H10  16 -0.93 -5.78 4.85 

1,2-[C6H4(NPh)2B]2-ortho-C2B10H10  17 -0.77 -5.85 5.08 

1,7-[C6H4(NEt)2B]2-meta-C2B10H10  18 -0.47 -5.61 5.14 

1,7-[C6H4(NPh)2B]2-meta-C2B10H10  19 -0.43 -5.60 5.17 

1,12-[C6H4(NEt)2B]2-para-C2B10H10  20 -0.52 -5.54 5.02 

1,12-[C6H4(NPh)2B]2-para-C2B10H10  21 -0.31 -5.58 5.27 

C6H4(NEt)2BtBu   22 -0.28 -5.25 4.97 

C6H4(NPh)2BtBu   23 -0.25 -5.38 5.13 

1,2-Ph2-ortho-C2B10H10  24 -1.40 -7.18 5.78 

ortho-C2B10H12  -0.25 -8.59 8.34 

meta-C2B10H12  -0.09 -8.61 8.52 

para-C2B10H12  -0.05 -8.64 8.59 

C6H4(NEt)2BH  -0.23 -5.37 5.14 

C6H4(NPh)2BH  -0.22 -5.54 5.32 

 

 

The ortho-carboranes 16 and 17 have lower HOMO and LUMO energies by 0.2-0.7 

eV compared to 18-23. Reduction waves were observed for 16 and 17, but not for 18-21, in 

the cyclic voltammetry studies here which corresponds to the lower LUMO energies 

computed for the ortho-carboranes. However, the calculated LUMO energy for the diphenyl 

carborane 24 is lower than for 16 by 0.4 eV yet they have similar reduction potentials 

observed experimentally (Table 4). Thus, care should be exercised when comparing observed 

reduction potentials with computed LUMO energies.
17
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Figure 10. Molecular orbitals involved in the absorption and low-energy emission processes 

for 16 and 18. 

 

TD-DFT calculations on these geometries predict π(borolyl) > πB* transitions with high 

oscillator strengths (f = 0.094 to 0.485) for all carboranes 16-21 (Table S8, Figure 10). There 

are also borolyl group to phenyl group transitions in 17, 19 and 21 but with low oscillator 

strengths. The computed transition energies are in broad agreement with the absorption data 

for all carboranes and the observed bands at ca. 292 nm are confidently assigned here as 

π(borolyl) > πB* transitions. The absorption bands for the tert-butyl compounds 22 and 23 are 

attributed to π(benzodiazaborolyl) > π*(benzodiazaborolyl) transitions. 

 

The low-energy emissions for the ortho-carboranes 16 and 17 arise from the charge transfer 

of the cage to the diazaborolyl unit. The computed first excited state geometry (S1) for 16 has 

a long C1-C2 bond distance of 2.45 Å. Thereby, the LUMO is located on the cage and the 

HOMO on the borolyl group. The data of the weak low-energy emission observed for the 

meta- and para-carboranes 18-20 also suggest some charge transfer character thus implying 

cluster rearrangements in the excited states of the molecules. The computed first excited state 

geometry (S1) for 18 in Figure 10 displays a somewhat disordered meta-carborane cluster with 
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long C1-B2/B3 bond distances of 2.25 Å. The computed LUMO on this S1 geometry showed 

a πB* type orbital with considerable cage character. The calculated S0 < S1 emission values of 

723 nm and 523 nm for 16 and 18 respectively, are in reasonable agreement with observed 

solid state values of 666 nm and 474 nm. 

 

Conclusions 

A general route from bromobenzodiazaboroles and dilithiated carboranes to novel ortho-, 

meta- and para-carboranes (16-21) containing 1,3,2-benzodiazaborolyl groups at both cage 

carbons is presented. According to the photophysical data, two different excited states are 

possible for all three carborane isomers, the population of which depends on the solvent or the 

solid state, respectively. These excited states either correspond to local excitations within the 

benzodiazaborolyl fragment or to charge transfer (CT) processes between the heterocyclic 

unit and the cage. Huge Stokes shifts of 17330 and 21290 cm
-1 

for the CT emissions of 16 and 

17 underline the unique characteristics of the ortho-carborane cage. This is most certainly due 

to its flexible C-C bond and its increased electron-deficiency compared to the other carborane 

isomers. In agreement with these factors, electrochemical reduction waves were observed for 

the ortho-carboranes, 16 and 17, but not for the meta and para carboranes, 18-21. However, 

the weak low-energy emissions observed for 18-21 indicate that the meta- and para-carborane 

clusters are also active participants in light-induced charge transfer with the heterocyclic 

substituents. To the best of our knowledge, such low-energy CT emissions have not been 

reported for meta- and para-carboranes previously. 

 

 

Experimental Section 

General: All manipulations were performed under an atmosphere of dry oxygen-free argon 

using Schlenk techniques. All solvents were dried by standard methods and freshly distilled 

prior to use. The compounds 2-bromo-1,3-diethyl-1,3,2-benzodiazaborole
31

 and 2-bromo-1,3-

diphenyl-1,3,2-benzodiazaborole
23

 were prepared as described in the literature. 1,2-, 1,7- and 

1,12-dicarbadodecaborane (ortho-, meta- and para-carborane respectively) were purchased 

commercially (KatChem). NMR spectra were recorded from solutions at room temperature on 

a Bruker AM Avance DRX500 (
1
H, 

11
B, 

13
C), a Bruker Avance III 500 and a Bruker Avance 

400 Spectrometer (
1
H{

11
B}) with SiMe4 (

1
H, 

13
C) and BF3·OEt2 (

11
B) as external standards. 

1
H- and 

13
C{

1
H} NMR spectra were calibrated on the solvent signal [CDCl3: 7.24 (

1
H), 77.16 

(
13

C); C6D6: 7.15 (
1
H), 128.06 (

13
C)]. 

1
H, 

1
H{

11
B}, 

13
C{

1
H} and 

11
B{

1
H} NMR spectra for 
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carboranes 16 - 21 are shown in Figures S1-S24. The 
1
H and 

13
C NMR peaks were assigned 

with the aid of 2D 
1
H-

1
H COSY and 

1
H-

13
C{

1
H} correlation spectra. Mass spectra were 

recorded with a VG Autospec sector field mass spectrometer (Micromass).  

 

1,2-Bis-(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)-1,2-dicarbadodecaborane (16): A 

solution of 2-bromo-1,3-diethyl-1,3,2-benzodiazaborole (0.92 g, 3.64 mmol) in n-hexane (13 

mL) was added dropwise to a chilled slurry (0 °C) of 1,2-dilithio-1,2-dicarbadodecaborane, 

prepared from 1,2-dicarbadodecaborane (0.26 g, 1.80 mmol) and an n-butyllithium solution 

(1.6 M in n-hexane, 2.40 mL, 3.84 mmol) in diethyl ether (8.5 mL). The mixture was stirred 

for 19 h at ambient temperature and filtered subsequently. The filter cake was washed with n-

hexane (2  3 mL), freed from volatile materials in vacuo, taken up in dichloromethane (10 

mL) and filtered again. The filtrate was evaporated to dryness. Final purification of the 

residue was achieved by short-path distillation at 510
-3

 mbar by means of a flame followed 

by crystallisation from a 1:1 mixture (24 mL) of dichloromethane and n-hexane to afford a 

colorless solid 16. Yield: 0.43 g (42 %). Found: C, 48.16; H, 6.97; N 9.80 %; C22H38B12N4 ∙ 

CH2Cl2 requires C, 48.19; H, 7.03; N, 9.77 %; 
1
H NMR (C6D6):  [ppm] = 0.92 (t, 

3
J = 6.9 

Hz, 12 H, CH3), 2.0 - 4.0 (m, br, 10 H, BH), 3.57 (q, 
3
J = 6.9 Hz, 8 H, CH2), 6.64 (m, 4 H, 

H4´,7´), 6.92 (m, 4 H, H5´,6´); 
1
H NMR (CDCl3):  [ppm] = 1.23 (t, 

3
J = 7.1 Hz, 12 H, CH3), 

2.0 - 4.0 (m, br, 10 H, BH), 3.57 (q, 
3
J = 7.1 Hz, 8 H, CH2), 6.99 (m, 8 H, H4´,5´,6´,7´); 

1
H{

11
B} NMR (CDCl3):  [ppm] = 2.49 (s, 4 H, BH), 2.64 (s, 4 H, BH), 3.34 (s, 2 H, BH);  

13
C{

1
H} NMR (C6D6):  [ppm] = 15.3 (s, CH3), 37.8 (s, CH2), 71.0 (br s, C1), 110.3 (s, 

C4´,7´), 120.7 (s, C5´,6´), 136.2 (s, C8´,9´); 
13

C{
1
H} NMR (CDCl3):  [ppm] = 15.5 (s, CH3), 

37.9 (s, CH2), 70.5 (br s, C1), 110.1 (s, C4´,7´), 120.3 (s, C5´,6´), 136.0 (s, C8´,9´); 
11

B{
1
H} 

NMR (C6D6):  [ppm] = –8.4 (with shoulder at -8.9 ppm, 6B), –5.2 (2B), 2.5 (2B), 22.9 (2B, 

B2',2''); 
11

B{
1
H} NMR (CDCl3):  [ppm] = –9.1 (6B), –5.8 (2B), 1.8 (2B), 22.9 (2B, B2',2''); 

MS (EI): m/z = 488.3 (M
+
), 472.3 (M

+
-CH3), 459.3 (M

+
-C2H5), 244.2 (M

2+
). 

 

1,2-Bis-(1´,3´-diphenyl-1´,3´,2´-benzodiazaborol-2´-yl)-1,2-dicarbadodecaborane (17): A 

solution of 2-bromo-1,3-diphenyl-1,3,2-benzodiazaborole (1.50 g, 4.30 mmol) in benzene (11 

mL) was added dropwise to a chilled slurry (0 °C) of 1,2-dilithio-1,2-dicarbadodecaborane, 

prepared from 1,2-dicarbadodecaborane (0.31 g, 2.15 mmol) and an n-butyllithium solution 

(1.6 M in n-hexane, 2.82 mL, 4.51 mmol) in diethyl ether (10 mL). The mixture was stirred 

for 65 h at ambient temperature and filtered subsequently. The filter cake was washed with n-
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hexane (2  3 mL), and the combined filtrates were freed from volatiles in vacuo. Purification 

of the residue was achieved by short-path distillation at 510
-3

 mbar by means of a flame 

followed by crystallisation from dichloromethane (25 mL). For complete removal of the 

dichloromethane included in the crystals, they were heated in vacuo with a heat gun until gas 

evolution ceased. Yield: 0.46 g of colourless solid 17 (31 %). Found: C, 67.18; H, 5.57; N, 

8.23 %; C38H38B12N4 requires C, 67.07; H, 5.63; N, 8.23 %; 
1
H NMR (CDCl3, 293 K):  

[ppm] = 1.0 - 3.5 (m, br, 10 H, BH), 5.90 (s, br, 4 H, Hortho), 6.34 (m, 4 H, H4´,7´), 6.95 (m, 4 

H, H5´,6´), 6.98 (s, br, 4 H, Hmeta), 7.20 (s, br, 4 H, Hortho'), 7.36 (t, 
3
J = 7.2 Hz, 4 H, Hpara), 

7.50 (s, br, 4 H, Hmeta'); 
1
H NMR (CDCl3, 228 K):  [ppm] = 1.0 - 3.5 (m, br, 10 H, BH), 5.81 

(s, br, 4 H, Hortho), 6.37 (br, 4 H, H4´,7´), 6.98 (m, 4 H, H5´,6´ + s, br, 4 H, Hmeta), 7.23 (d, 
3
J 

~ 6.6 Hz, 4 H, Hortho'), 7.38 (t, 
3
J = 7.5 Hz, 4 H, Hpara), 7.53 (t, 

3
J ~ 6.7 Hz, 4 H, Hmeta'); 

1
H{

11
B}-NMR (CDCl3):  [ppm] = 1.64 (s, 4 H, B4,5,7,11H), 2.01 (s, 2 H, BH), 2.11 (s, 2 H, 

BH), 2.55 (s, 2 H, BH);  13
C{

1
H} NMR (CDCl3):  [ppm] = 69.5 (br s, C1), 111.4 (s, C4´,7´), 

121.1 (s, C5´,6´), 127.8 (s, Cpara), 128.8 (s, br, Cortho), 129.1 (s, br, Cmeta), 129.5 (s, br, Cmeta'), 

130.1 (s, br, Cortho'), 138.0 (s, C8´,9´), 140.0 (s, Cipso);
 11

B{
1
H} NMR (CDCl3):  [ppm] = –9.7 

(6 B), –6.2 (2 B), 1.0 (2 B), 23.2 (2 B, B2',2''); MS (EI): m/z = 680.8 (M
+
), 411.0 (M

+
-

B(NPh)2C6H4), 339.9 (M
2+

). 

 

1,7-Bis-(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)-1,7-dicarbadodecaborane (18): A 

solution of 2-bromo-1,3-diethyl-1,3,2-benzodiazaborole (0.74 g, 2.93 mmol) in n-hexane (10 

mL) was added dropwise to a chilled slurry (0 °C) of 1,7-dilithio-1,7-dicarbadodecaborane, 

prepared from 1,7-dicarbadodecaborane (0.21 g, 1.46 mmol) and an n-butyllithium solution 

(1.6 M in n-hexane, 1.90 mL, 3.04 mmol) in diethyl ether (8.0 mL). The mixture was stirred 

for 20 h at ambient temperature and filtered subsequently. The filter cake was washed with n-

hexane (12 mL).The combined filtrates were freed from volatiles in vacuo. Purification of the 

residue was achieved by short-path distillation at 510
-3

 mbar by means of a flame followed 

by crystallisation from a mixture of dichloromethane (12 mL) and n-hexane (10 mL) to yield 

colourless solid 18. Yield: 0.25 g (35 %). Found: C, 53.94; H, 7.87; N, 11.39 %; C22H38B12N4 

requires C, 54.11; H, 7.84; N, 11.47 %; 
1
H NMR (CDCl3):  [ppm] = 1.34 (t, 

3
J = 6.9 Hz, 12 

H, CH3), 1.8 - 3.7 (m, br, 10 H, BH), 4.00 (q, 
3
J = 6.9 Hz, 8 H, CH2), 7.07 (m, 8 H, 

H4´,5´,6´,7´); 
1
H{

11
B} NMR (CDCl3):  [ppm] = 2.43 (s, 2 H, BH), 2.68 (s, 4 H, B4,6,8,11H), 

2.75 (s, 2 H, BH), 3.16 (s, 2 H, BH); 
13

C{
1
H} NMR (CDCl3):  [ppm] = 16.0 (s, CH3), 37.9 

(s, CH2), 63.5 (br s, C1), 109.6 (s, C4´,7´), 119.9 (s, C5´,6´), 136.5 (s, C8´,9´); 
11

B{
1
H} NMR 
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(CDCl3):  [ppm] = –12.5 (2B), –9.3 (4 B, B4,6,8,11), –8.0 (2 B), –1.2 (2 B), 24.0 (2B, 

B2',2''); MS (EI): m/z = 488.4 (M
+
), 471.3 (M

+
-CH3), 244.2 (M

2+
). 

 

1,7-Bis-(1´,3´-diphenyl-1´,3´,2´-benzodiazaborol-2´-yl)-1,7-dicarbadodecaborane (19): A 

solution of 2-bromo-1,3-diphenyl-1,3,2-benzodiazaborole (1.59 g, 4.57 mmol) in benzene (10 

mL) was added dropwise to a chilled slurry (0 °C) of 1,7-dilithio-1,7-dicarbadodecaborane, 

prepared from 1,7-dicarbadodecaborane (0.33 g, 2.29 mmol) and an n-butyllithium solution 

(1.6 M in n-hexane, 3.00 mL, 4.80 mmol) in diethyl ether (10 mL). The mixture was stirred 

for 23 h at ambient temperature and filtered subsequently. The filter cake was washed with n-

hexane (2  3 mL). The combined filtrates were evaporated to dryness. Final purification was 

achieved by short-path distillation at 510
-3

 mbar by means of a flame followed by 

crystallization from a mixture of dichloromethane (120 mL) and n-hexane (24 mL) to give a 

colourless solid 19. Yield: 0.19 g (12 %). Found: C, 66.17; H, 5.46; N, 8.20 %; C38H38B12H4 

requires C, 67.07; H, 5.63; N, 8.23 %; 
1
H NMR (CDCl3):  [ppm] = 1.1 - 2.6 (m, br, 10 H, 

BH), 6.42 (m, 4 H, H4´,7´), 6.89 (m, 4 H, H5´,6´), 7.16 (d, 
3
J = 6.3 Hz, 8 H, Hortho), 7.46 (m, 

12 H, Hmeta, Hpara); 
1
H{

11
B} NMR (CDCl3):  [ppm] = 1.76 (s, 6 H, BH), 2.14 (s, 4 H, BH);  

13
C{

1
H} NMR (CDCl3):  [ppm] = 62.0 (br s, C1), 110.8 (s, C4´,7´), 120.6 (s, C5´,6´), 127.9 

(s, Cpara), 129.3 (s, Cmeta), 130.0 (s, Cortho), 138.3 (s, C8´,9´), 139.9 (s, Cipso);
 11

B{
1
H} NMR 

(CDCl3):  [ppm] = –12.8 (2 B), –9.9 (4 B, B4,6,8,11), –8.8 (2 B), –1.8 (2 B), 23.8 (2 B, 

B2',2''); MS (EI): m/z = 680.4 (M
+
), 340.2 (M

2+
). 

 

1,12-Bis-(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)-1,12-dicarbadodecaborane (20): 

2-Bromo-1,3-diethyl-1,3,2-benzodiazaborole (0.66 g, 2.61 mmol) was added to a slurry of 

1,12-dilithio-1,12-dicarbadodecaborane, prepared from 1,12-dicarbadodecaborane (0.17 g, 

1.18 mmol) and a tert-butyllithium solution (1.7 M in n-hexane, 1.55 mL, 2.64 mmol) in 

boiling n-hexane (6 mL)  for 2 h. The mixture was heated two further hours at reflux 

temperature, diluted with an n-hexane (5 mL) and filtered subsequently. The filter cake was 

washed with n-hexane (5 mL) and the filtrates were freed from volatile compounds in vacuo. 

Purification of the crude product was achieved by short-path distillation at 510
-3

 mbar 

followed by crystallization from a mixture of dichloromethane (36 mL) and n-hexane (12 

mL). Thereby colourless solid 20 was obtained. Yield: 0.09 g (16 %). Found: C, 53.69; H, 

7.81; N, 11.47 %; C22H38B12N4 requires C, 54.11; H, 7.84; N, 11.47 %; 
1
H NMR (CDCl3):  

[ppm] = 1.29 (t, 
3
J = 6.9 Hz, 12 H, CH3), 2.0 - 3.5 (m, br, 10 H, BH), 3.91 (q, 

3
J = 6.9 Hz, 8 
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H, CH2), 7.03 (m, 8 H, H4´,5´,6´,7´); 
1
H{

11
B} NMR (CDCl3):  [ppm] = 2.70 (s, 10 H, BH); 

13
C{

1
H} NMR (CDCl3):  [ppm] = 15.9 (s, CH3), 37.7 (s, CH2), 109.4 (s, C4´,7´), 119.7 (s, 

C5´,6´), 136.5 (s, C8´,9´), The resonance of C1 was covered by the solvent signal. It was 

calculated at 79.9 ppm; 
11

B{
1
H} NMR (CDCl3):  [ppm] = –10.9 (10 B, B2-11), 23.7 (2 B, 

B2',2''); MS (EI): m/z = 488.4 (M
+
), 471.3 (M

+
-CH3), 244.2 (M

2+
). 

 

1,12-Bis-(1´,3´-diphenyl-1´,3´,2´-benzodiazaborol-2´-yl)-1,12-dicarbadodecaborane (21): 

A solution of 2-bromo-1,3-diphenyl-1,3,2-benzodiazaborole (1.65 g, 4.74 mmol) in benzene 

(10 mL) was added to a slurry of 1,12-dilithio-1,12-dicarbadodecaborane, prepared from 1,12-

dicarbadodecaborane (0.31 g, 2.15 mmol) and a tert-butyllithium solution (1.6 M in n-hexane, 

2.95 mL, 4.72 mmol) by boiling for 2 h in n-hexane (12 mL). The mixture was heated for 

another 3 h at reflux temperature and filtered subsequently. The filter cake was washed with 

n-hexane (25 mL), and the collected filtrates were freed from volatiles in vacuo. Purification 

of the residue was achieved by short-path distillation at 310
-3

 mbar followed by 

crystallization at –20 °C from dichloromethane (50 mL), to afford colourless crystals 21. 

Yield: 0.13 g (8 %). Found: C, 60.95; H, 5.32; N, 7.32 %; C38H38B12H4 ∙ CH2Cl2 requires C, 

61.20; H, 5.27; N, 7.32 %; 
1
H NMR (CDCl3):  [ppm] = 1.2 - 2.5 (m, br, 10 H, BH), 6.35 (m, 

4 H, H4´,7´), 6.83 (m, 4 H, H6´,7´), 7.14 (dd, 
3
J = 7.5 Hz, 

4
J = 1.9 Hz, 8 H, Hortho), 7.42 (m, 

12 H, Hmeta, Hpara); 
1
H{

11
B} NMR (CDCl3):  [ppm] = 1.84 (s, 10 H, BH); 13

C{
1
H} NMR 

(CDCl3):  [ppm] = 75.5 (br s, C1), 110.7 (s, C4´,7´), 120.4 (s, C5´,6´), 127.7 (s, Cpara), 129.2 

(s, Cmeta), 129.9 (s, Cortho), 138.3 (s, C8´,9´), 140.0 (s, Cipso);
 11

B{
1
H} NMR (CDCl3):  [ppm] 

= –11.7 (10 B, B2-11), 23.7 (2 B, B2',2''); MS (EI): m/z = 680.4 (M
+
), 340.2 (M

2+
). 

 

2-tert-Butyl-1,3-diethyl-1,3,2-benzodiazaborole (22): An equimolar amount of tert-

butyllithium solution (1.6 M in n-pentane, 2.00 mL, 3.20 mmol) was added dropwise to a 

solution of 2-bromo-1,3-diethyl-1,3,2-benzodiazaborole (0.81 g, 3.20 mmol) in n-pentane (30 

mL). After 45 minutes stirring at ambient temperature the mixture was filtered and the filtrate 

was freed from volatiles in vacuo. 2-tert-Butyl-1,3-diethyl-1,3,2-benzodiazaborole 22 was 

obtained as a colourless solid. Yield: 0.53 g (72 %). Further purification was achieved by 

recrystallisation from n-pentane. Found: C, 73.09; H, 10.55; N, 12.23 %; C14H23BN2 requires 

C, 73.06; H, 10.07; N, 12.17 %; 
1
H NMR (C6D6):  [ppm] = 1.07 (t, 

3
JH,H = 7.1Hz, 6 H, 

NCH2CH3), 1.22 (s, 9 H, C(CH3)3), 3.65 (q, 
3
JH,H = 7.1Hz, 4 H, NCH2CH3), 6.91 (m, 2 H, 

H4,7), 7.11 (m, 2 H, H5,6);
 13

C{
1
H} NMR (C6D6):  [ppm] = 15.6 (s, NCH2CH3), 29.9 (s, 



28 

 

C(CH3)3), 37.6 (s, NCH2CH3), 108.3 (s, C4,7), 118.7 (s, C5,6), 137.6 (s, C8,9); the CCH3 

peak was not observed – calculated at 21.6 ppm; 
11

B{
1
H} NMR (C6D6):  [ppm] = 30.5 (s); 

MS (EI): m/z = 230.2 (M
+
), 215.1 (M

+
-Me), 201.1 (M

+
-Et). 

 

2-tert-Butyl-1,3-diphenyl-1,3,2-benzodiazaborole (23): A tert-butyllithium solution (1.6 M 

in n-pentane, 1.40 mL, 2.24 mmol) was added dropwise to a solution of 2-bromo-1,3-

diphenyl-1,3,2-benzodiazaborole (0.71 g, 2.02 mmol) in benzene (4.5 mL). After stirring for 1 

h the mixture was filtered and the filter-cake was extracted with n-pentane (5 mL). The 

combined filtrates were freed from volatile materials in vacuo and the remainder was purified 

by short-path distillation at 510
-3

 mbar by means of a flame. The sublimate was taken up in a 

mixture of dichloromethane (5 mL) and n-hexane (6 mL) and the resulting solution was 

concentrated in vacuo until the onset of precipitation. Colourless crystals of 23 were grown 

from this mixture at –30 °C. Yield: 0.23 g (35 %). Found: C, 80.73; H, 7.11; N, 8.55 %; 

C22H23BN2 requires C, 80.99; H, 7.11; N, 8.59 %; 
1
H NMR (CDCl3):  [ppm] = 0.90 (s, 9 H, 

C(CH3)3), 6.56 (m, 2 H, H4,7), 6.88 (m, 2 H, H5,6), 7.36 (d, 
3
JHH = 5.0 Hz, 4 H, Hortho), 7.40 

(t, 
3
JHH = 7.5 Hz, 2 H, Hpara), 7.49 (dd, 

3
JHH = 7.5 Hz, 

3
JHH = 5.0 Hz, 4 H, Hmeta);

 13
C{

1
H} 

NMR (CDCl3):  [ppm] = 30.4 (s, C(CH3)3), 109.8 (s, C4,7), 119.4 (s, C5,6), 127.2 (s, Cpara), 

129.3 (s, Cmeta), 129.5 (s, Cortho), 139.1 (s, C8,9), 142.1 (s, Cipso), the CCH3 peak was not 

observed – calculated at 20.8 ppm; 
11

B{
1
H} NMR (CDCl3):  [ppm] = 31.4 (s); MS (EI): m/z 

= 326.2 (M
+
), 311.1 (M

+
–Me). 

 

Photophysical measurements 

For all solution state measurements, samples were placed in quartz cuvettes of 10  10 mm 

(Hellma type 111-QS, suprasil, optical precision). Cyclohexane was used as received from 

commercial sources (p. a. quality), the other solvents were dried by standard methods prior to 

use. Concentrations varied from 20 to 70 µM according to their optical density. Solid samples 

were prepared by vacuum sublimation on quartz plates (35  10  1 mm) using standard 

Schlenk equipment and conditions. Each plate was placed in a 100 mL round bottom flask 

and a crystal of the sample, placed underneath it, was sublimed. Absorption was measured 

with a UV/VIS double-beam spectrometer (Shimadzu UV-2550), using the solvent as a 

reference. 

The output of a continuous Xe-lamp (75 W, LOT Oriel) was wavelength-separated by a first 

monochromator (Spectra Pro ARC-175, 1800 l/mm grating, Blaze 250 nm) and then used to 

irradiate a sample. The fluorescence was collected by mirror optics at right angles and imaged 
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on the entrance slit of a second spectrometer while compensating astigmatism at the same 

time. The signal was detected by a back-thinned CCD camera (RoperScientific, 1024 \ 256 

pixels) in the exit plane of the spectrometer. The resulting images were spatially and 

spectrally resolved. As the next step, an averaged fluorescence spectrum was calculated from 

the raw images and stored in the computer. This process was repeated for different excitation 

wavelengths. The result is a two-dimensional fluorescence pattern with the y-axis 

corresponding to the excitation, and the x-axis to the emission wavelength. The wavelength 

range is ex = 230-430 nm (in 1 nm increments) for the UV light and em = 305-894 nm for 

the detector. The time to acquire a complete EES is typically less than 15 min. Post-

processing of the EES includes subtraction of the dark current background, conversion of 

pixel to wavelength scales, and multiplication with a reference file to take the varying lamp 

intensity as well as grating and detection efficiency into account. The quantum yields were 

determined against POPOP (p-bis-5-phenyl-oxazolyl(2)-benzene) (ΦF = 0.93) as the standard. 

 

The solid-state fluorescence was measured by addition of an integrating sphere (Labsphere, 

coated with Spectralon, Ø 12.5 cm) to the existing experimental setup. At the exit slit of the 

first monochromator the exciting light was transferred into a quartz fiber (LOT Oriel, 

LLB592). It passed a condensor lens and illuminated a 1 cm
2
 area on the sample in the centre 

of the sphere. The emission and exciting light was imaged by a second quartz fiber on the 

entrance slit of the detection monochromator. The optics for correction of astigmatism was 

passed by the light on this way. 

 

Post-processing of the spectra was done as described above. The measurement and calculation 

of quantum yields was performed according to the method described by Mello.
32

 Stokes shifts 

were calculated from excitation and emission maxima, which were extracted from spectra that 

were converted from wavelength to wavenumbers beforehand. 

 

Luminescence lifetimes of solid 16 - 21 were measured with a time-correlated single-photon 

counting apparatus (TCSPC, Horiba Jobin Yvon FluoroHub, light source: Nano-LED280, 

detector: Photomultiplier TBX).  

 

Electrochemistry 

Cyclic voltammetry measurements were carried out using an EcoChemie Autolab PG-STAT 

30 potentiostat at 298 K with a platinum or glassy carbon working electrode and platinum 



30 

 

wires as counter and reference electrodes in a nitrogen-containing glove box with 0.1 M 

n
Bu4NPF6 in dichloromethane or acetonitrile. Scan rates of 100 mV s

-1
 and analyte 

concentrations of 10
-3

 M were used. The ferrocene/ferrocenium FcH/FcH
+
 couple served as 

internal reference at 0.0 V for potential measurements. Cyclic voltammetry simulations were 

carried out with the ESP software.
33 

 

 

Crystallographic studies 

Single crystals were coated with a layer of hydrocarbon oil and attached to a glass fiber. 

Crystallographic data were collected with a Nonius KappaCCD or a Bruker KAPPA APEX II 

diffractometer with Mo-K radiation (graphite monochromator,  = 0.71073 Å) at 100 K. 

Crystallographic programs used for structure solution and refinement were from SHELX-97.
34

 

The structures were solved by direct methods and were refined by using full-matrix least 

squares on F
2
 of all unique reflections with anisotropic thermal parameters for all non-

hydrogen atoms, except disordered atoms in 17, 19 and 21. All hydrogen atoms were refined 

isotropically for 16, 21 and 23. For 17, 18 and 19 only the hydrogen atoms bonded to the 

carborane unit were refined isotropically, the other hydrogen atoms were refined using a 

riding model with U(H) = 1.5 Ueq for CH3 groups and U(H) = 1.2 Ueq for all others. 

Crystallographic data for the compounds are listed in Table S1. CCDC-847434 (16), CCDC-

847435 (17), CCDC-847436 (18), CCDC-847437 (19), CCDC-929985 (21) and CCDC-

929986 (23), contain the supplementary crystallographic data for this paper. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif 

 

Computational details 

All computations were carried out with the Gaussian 09 package.
35

 The model geometries 

were fully optimized with the B3LYP functional
36

 with no symmetry constraints using the 6-

31G* basis set
37 

for all atoms. Frequency calculations on these optimized geometries (16-23) 

revealed no imaginary frequencies. Computed absorption data were obtained from TD-DFT
38

 

calculations on S0 geometries whereas computed emission data were derived from the S1 

geometries. The MO diagrams and MO compositions were generated with the Gabedit
39

 and 

GaussSum
40

 packages respectively. Calculated 
11

B, 
13

C and 
1
H NMR chemical shifts obtained 

at GIAO
41

-B3LYP/6-31G*//B3LYP/6-31G* on the optimized geometries were referenced to 

BF3∙OEt2 for 
11

B: δ (
11

B) = 111.7 - σ(
11

B) and referenced to TMS for 
13

C: δ (
13

C) = 189.4 - 

http://www.ccdc.cam.ac.uk/data_request/cif
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σ(
13

C)
 
and 

1
H: δ (

1
H) = 32.39 - σ(

1
H). Computed NMR values reported here were averaged 

where possible.  
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