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Abstract

Many everyday actions are implicit gambles because imprecisions in our visuomotor systems place probabilities on our success or
failure. Choosing optimal action strategies involves weighting the costs and gains of potential outcomes by their corresponding
probabilities, and requires stable representations of one’s own imprecisions. How this ability is acquired during development in
childhood when visuomotor skills change drastically is unknown. In a rewarded rapid reaching task, 6- to 11-year-old children
followed ‘risk-seeking’ strategies leading to overly high point-loss. Adults’ performance, in contrast, was close to optimal.
Children’s errors were not explained by distorted estimates of value or probability, but may reflect different action selection
criteria or immature integration of value and probability information while planning movements. These findings provide a
starting point for understanding children’s risk-taking in everyday visuomotor situations when suboptimal choices can be
dangerous. Moreover, children’s risky visuomotor decisions mirror those reported for non-motor gambles, raising the possibility
that common processes underlie development across decision-making domains.

Research highlights

e Comparing participants’ choices in a rewarded rapid
reaching task with those that would be optimal for
maximizing reward, we found that unlike adults,
children aged 6 to 11 years followed ‘risk-seeking’
strategies leading to loss of points.

e Children’s errors were not explained by distorted
estimates of value or probability, but may reflect
changes in action-selection criteria or protracted
development of the ability to integrate value and
probability information when planning movements.

e The finding that the developing system favours risky
visuomotor choices forms a first step towards
understanding how children deal with risk in every-
day activities, when suboptimal visuomotor choices
can have dangerous consequences.

e Children’s risky visuomotor decisions mirror those
reported for non-motor gambles, raising the possi-
bility that common processes underlie development
across decision-making domains.

Introduction

Whether crossing a busy road, throwing a ball into a
basket, or reaching for one cup without knocking
another over, humans continuously make risky visuo-
motor decisions. The best action strategies maximize the
probabilities of desirable outcomes while minimizing
those of negative ones. For example, we would like to get
across the road promptly, but without being hit by a car.
Identifying efficient trade-offs between potential risks
and rewards in everyday behaviour can be highly
adaptive. Solving this problem is complex, however. It
involves correctly judging one’s own capabilities — for
example, the probability of a reach missing its target —
and combining this estimate with information about
costs and gains in the environment. Nevertheless, labo-
ratory tasks measuring adults’ performance have often
found them to be ideal in this respect, maximizing their
gains on rewarded tasks by taking into account their own
visuomotor capabilities (e.g. Battaglia & Schrater, 2007;
Trommershauser, Gepshtein, Maloney, Landy & Banks,
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2005; Trommershduser, Landy & Maloney, 2006). It is
currently not known how and when during life efficient
visuomotor decision-making develops. For a developing
system rapidly changing in its physical size, speed,
precision, and neural processing (Haywood & Getchell,
2009), it is likely to be especially difficult to form and use
stable internal models of the body’s visuomotor capa-
bilities to optimize performance. To advance under-
standing of the development of optimal visuomotor
decision-making during childhood, we measured action
choices in 6- to Ill-year-olds and adults during a
rewarded rapid reaching task. Participants’ actual action
choices were compared with those that would achieve the
optimal trade-off between the risks and rewards available
in the task.

Visuomotor risk stems from the uncertainty inherent
to perception and motor control. For example, a paper
ball thrown at a basket may land anywhere along a
bivariate probability distribution around the aiming-
point due to noise in location estimates of the arm, hand,
ball and basket, and in the neural signals that activate
muscles for motor execution (Kording & Wolpert, 20006).
Variations in ball end-points, which depend on the total
magnitude of this noise, place a probability on each
possible action outcome (i.e. missing or hitting the
basket). The formal structure of risky visuomotor tasks
can therefore be equated to that of gambling tasks, often
used in the field of economic decision-making (Trom-
mershiuser, Maloney & Landy, 2008). In both types of
task, subjects choose between lotteries with given
outcome values and probabilities. However, in gambling
tasks, the chances of winning are stated explicitly, whilst
in visuomotor tasks, they are determined implicitly by
noise (variability) in the sensorimotor system. Like an
optimal gambler, an optimal action planner should
choose the lottery or action strategy with the largest
expected gain.

Trommershauser, Maloney and Landy (2003a, 2003b,
2008) developed an experimental task that captures the
problems faced in everyday visuomotor decision-making.
It allows cost and risk factors to be quantified, and gain-
maximizing choices to be identified. Participants make
time-constrained manual reaches towards a target circle
to win points, whilst avoiding a partially overlapping
penalty circle that incurs point loss. Because of the time
constraint, movements are imprecise, so reaches aimed
too close to the penalty circle may accidentally land
inside it. To score highly, participants need to shift their
reaches some way from the penalty, but not so far that
they miss out on potential rewards from the target.
For each participant, the optimal (gain-maximizing)
aiming-point can be calculated and compared to their
actual aiming-point. This predicted optimal aiming-

point depends on each individual’s own pointing
precision, and varies when penalty values and spatial
layouts of the stimulus configuration are altered.
Trommershauser at al. (2003a, 2003b) showed that
adults were able to identify the near optimal solution
to this problem and aim for screen locations that
maximized expected winnings.

How and when during development are veridical
representations of bodily abilities — a prerequisite for
identifying gain-maximizing actions — formed? Infants
and children continuously engage in risky visuomotor
behaviour and thus have many opportunities to learn
how physical limitations affect the results of their actions
(Von Hofsten, 2004). Indeed, in their first weeks of
walking infants do not discriminate between safe and
dangerous slopes and will walk down both, while more
experienced 14-month-olds will avoid the impossible
ones (Adolph, Bertenthal, Boker, Goldfield & Gibson,
1997; Adolph, Tamis-LeMonda, Ishak, Karasik & Lobo,
2008). Abilities to calibrate actions correctly to objects
and affordances continue to develop through childhood.
DeLoache, Uttal and Rosengren (2004) showed that
17- to 30-month-old infants sometimes made serious
attempts to perform impossible actions on miniature
objects such as trying to climb into a toy car or to put on
dolls’ clothes. Similarly, infants and even children up to
age 7 years attempt to reach towards targets through
openings that are too small for their hand (Ishak,
Franchak & Adolph, 2014). It is unclear whether
selection of inappropriate actions in these studies reflects
children’s overestimation of their own abilities or differ-
ences in how averse they are to failing (e.g. getting stuck).
In line with the latter possibility, 17-month-old infants
attempted to walk through impossibly small openings if
the penalty of failing was getting stuck, but became
overly conservative if failure meant falling off a table
(Franchak & Adolph, 2012). This suggests some knowl-
edge both of own physical capabilities and of ‘costs’
associated with different courses of action in early
childhood. Similarly, Bayless and Schlottmann (2010)
showed that children aged 5 to 7 years made distorted
but sensible judgements about their abilities to roll
marbles through goals of different sizes. Moreover, they
rated harder marble rolling games with lower prizes as
less pleasurable (Bayless & Schlottmann, 2010). By 7
years of age, children thus seem to possess a basic
understanding of how a smaller chance of success and a
lower reward (or higher penalty) combine to predict a
worse outcome.

For making optimal visuomotor choices, however,
changes in probability and reward must not only be
taken into account, but precisely estimated. Optimal
(gain-maximizing) decisions across different conditions
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in a visuomotor task require precise online estimation of
different outcome probabilities (e.g. the chance of
missing), and the correct weighting of outcome rewards
by these estimates to trade off potential gains and losses.
Research on sensory cue integration suggests that it is
only at around age 8-10 years that children learn to take
their own perceptual uncertainty into account to opti-
mize their perceptual decisions (Gori, Del Viva, Sandini
& Burr, 2008; Nardini, Jones, Bedford & Braddick, 2008;
Nardini, Bedford & Mareschal, 2010; Petrini, Remark,
Smith & Nardini, 2014). It is possible that children also
learn to take their own visuomotor certainty into
account to optimize their movement decisions around
this age. To test this, we employed a child-friendly
version of the rapid-reaching task developed by Trom-
mershauser et al. (2003a, 2003b) in children aged 6 to 10
years and adults. This task allowed us to measure how
participants’ action choices deviate from those predicted
by an optimal action planner that maximizes expected
gain. The ways in which performance deviates from these
optimal predictions provide clues about the causes of
these deviations and the mechanisms that may drive
shifts from immature to optimal visuomotor strategy
selection.

Methods

Participants

Participants were children aged 6 to 11 years and adults:
15 6- and 7-year-olds (mean age = 7.6, SD = 0.3 years, 7
males), 18 8- and 9-year-olds (mean age = 9.0, SD = 0.4
years, 10 males), 15 10- and 11-year-olds (mean age =
10.8, SD = 0.5 years, 7 males), and 15 adults (mean age =
22.4, SD = 2.5 years, 7 males). All but three were right-
handed. During training, subjects learned to limit their
time-outs (failures to reach the screen on time) to 5% of
the trials or less (see Supplemental Methods). Those who
timed-out more frequently during the main task could be
trading off speed for accuracy, potentially leaving more
time to make online reach adjustments towards the
target. This would confound measures of visuomotor
strategy selection with movement corrections affer the
decision process. Therefore, additional subjects with >5%
‘time-out’ errors (see Procedure) were excluded from the
analyses (three adults, three 10- and 11-year-olds, seven
8- and 9-year-olds, and six 6- and 7-year-olds). Some
time-outs were likely caused by occasional lapses in
attention rather than trading off speed for accuracy (this
would not affect aiming strategy). Because sustained
attention develops with age, this probably contributes to
higher exclusion rates in younger groups. All participants
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had normal or corrected-to-normal vision and no known
neurological or psychological disorders.

Apparatus

Participants sat in front of a 24-inch monitor with
integrated touch sensors (liyama ProLite T2451MTS
MultiTouch screen, with 521 x 293 mm display area and
1920 x 1080 resolution), at 26 cm distance for adults, 20
cm for children. A wireless numeric keypad was mounted
on the table, centred before the monitor 6 cm from the
participant’s trunk (see Figure 1A). Tasks were run
using Matlab 7.1 (R2010a) with Psychophysics Toolbox
(Brainard, 1997).

Design and stimuli

Stimulus configurations consisted of a target circle with a
green outline and a partially overlapping penalty circle,
each with a 0.90 cm (33 pixel) radius. Target circles were
unfilled, while penalty circles were filled with a darker
shade of their yellow, blue or grey outline colour (see
Figure 1A). A blue 114.2 x 80.6 mm frame at the screen
centre indicated where the circles would appear. To
prevent use of pre-planned movements, on each trial the
whole stimulus configuration was ‘jittered” around the
frame’s centre, with horizontal and vertical offsets drawn
independently from a uniform +44 mm distribution. We
varied whether the horizontally displaced penalty circle
was located near to or far from the reward (1 versus 1.5
circle-radius displacement), and whether hitting it
incurred a small or large point loss (1 versus 5 points),
resulting in four conditions: ‘near 1°, ‘far 1’, ‘near 5’,
and ‘far 5°. For half of each age group the low penalty
was presented for the first half of the task, and for the
others the high penalty was first. Distinct penalty
colours signified different values; blue for 1, yellow for
5 and grey for 0 in training. Near and far offsets were
presented equally often in random order within blocks.
To keep trial numbers to a child-friendly minimum, the
left / right positioning of circles was counterbalanced
across participants. Half in each age group had far
penalty offsets on the left and near offsets on the right;
for the others these positions were reversed.

Procedure

Training phase

Time limits ensured that subjects made ballistic reaching
movements without online corrections. To allow for
individual differences in reach reaction times, a pre-
experimental training phase included a selection procedure
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Figure 1 (A) A 9-year-old girl demonstrates a typical trial sequence. The blue penalty circle in the example has a gain of —1, and a
1.5 x radius offset from target centre (‘far 1’ condition). (B) The current total score (which could be negative) was displayed
graphically throughout the session. The brown area is ‘the ground’, the blue area ‘the sky’. For each point gained, a coin appeared
(left example). For each point lost, a coin was removed. For every 20 coins (denoted by a red line), subjects won a token that could
be exchanged for toys (or £0.50 for adults) at the end. If the total score became negative, each lost point would create a *hole” in the
ground (right example). Before getting back into the sky, coins had to be won to fill up the holes.

that established individual time limits. In 13-15 blocks of
20 trials, participants attempted to hit targets under time
limits that decreased when they performed to criterion (see
Supplemental Methods). Training trials were identical to
the experimental trials described below, except that target
hits did not count towards the final score, and the (grey)
penalty circle was irrelevant.

Experimental phase

Each training trial started with a central fixation cross.
Participants pressed the ‘Enter’ key with the index finger
of their dominant hand to trigger presentation of the
blue frame (see Figure 1A). The stimulus configuration
appeared inside the frame after 500 ms of pressing.
Participants then released the key and touched the screen
with the same finger. If they released less than 100 ms
after target onset (anticipation) the trial was aborted.
Touching the target circle within the time limit gave a
reward of 1 point. Touching the penalty within the time
limit incurred a loss of 1 or 5 points. For the overlapping
region of penalty and target, the reward and penalty
were summed. A touch anywhere else on the screen was a
‘miss’ (no gain or loss). A ‘time-out’ incurred a 7-point
loss and a waiting period of 20 seconds. Participants were
simply instructed to obtain as many points as possible.

There were 10 blocks of 20 trials, a total of 50 per
condition. Penalties and payoffs were explained before
the first and sixth block when penalty rules changed.
Before each block, participants were asked to repeat
these back to ensure that all remembered the current

outcome values. Running scores were displayed graph-
ically in a chart on the screen (Figure 1B). As a
motivation for maximizing their points, participants
received a prize token for every 20 points they earned. At
the end of the session, each token was converted to £0.50
for adults or exchanged for small prizes for children.
Subjects also performed three additional tasks that
measured their understanding of the point system of
the experiment (number line and multiplication task), and
their explicit knowledge of their own visuomotor ability
(hit probability task).

Number line task (measuring value distortion)

All subjects took part in a pencil-and-paper number line
task. On each trial, subjects used a pencil to indicate,
with a line, where on a bar of length 10 cm a number
would fall. The left and right ends of the bar were
labelled 0 and 10, respectively, and the numbers 1-5 were
tested 10 times each, with numbers randomized within
each block. The marked locations were measured and
compared with the locations predicted by a linear
representation of the number line (e.g. the number 4
would fall at 0.4 of the length of the 10 cm line, at 4 cm).

Multiplication task (measuring value distortion)

All subjects took part in a two-alternative forced choice
task with 35 trials. On each trial they chose between a
pair of values (7 repetitions of 5 pairs). Each pair
consisted of the standard value of ‘5 points x 1°, and a
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comparison in which ‘1 point’ was multiplied with the
values 3 to 7 (‘1 point x 3°, ‘1 point x 4, etc.). For each
pair, subjects were asked to select the value they would
prefer to lose (the correct answer was the lower value).
For example: would you prefer to lose 5 points once (5 x
1), or to lose 1 point four times (1 x 4)? The task was
described in terms of losses to best match the penalty
situation in the main experiment. To make the problem
concrete, subjects received 10 stickers or snacks and were
informed that one of their answers, randomly drawn at
the end of the task, would determine how many they
would have to give back. For each age group and
comparison value, we counted how often the constant
sum was chosen over the variable sum. We used the
standard psychophysical method of fitting a cumulative
Gaussian distribution through the resulting proportions
(using the Psignifit toolbox for Matlab), and determining
the Point of Subjective Equality (PSE); see Figure 6B.
The PSE is the point along the x-axis at which the
comparison and standard are chosen with equal (0.5)
probability, and therefore measures the point at which
they are, on average, judged to be equal. Deviations of
the PSE from the correct value of 5 (1 x 5) thus provide
information about systematic under- or overestimations
of the value of losing 5 points relative to the value of
losing 1 point multiple times.

Hit probability task (measuring probability distortion)

In a hit probability task, subjects were presented with
five circle sizes in a display such as the one used in the
experiment. In 10 blocks, all circles were presented in
random order (50 repetitions in total). The circles were
presented in isolation (without an overlapping penalty
circle), and their locations were jittered as in the
experiment. Circle sizes were scaled individually for each
subject based on their own visuomotor variance mea-
sured during the main task. The five circle sizes seen by

Table 1
is significant at p < .05
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each subject corresponded to hit probabilities of 0.1, 0.3,
0.5, 0.7, and 0.9. On each trial, subjects judged ‘how
many times out of 10’ they would successfully hit the
circle, from the same position and with the same time
constraint as in the main experiment. This provided their
estimated probability of hitting (e.g. ‘5 out of 10 = 0.5).
Judged probabilities were averaged over 10 repetitions
(50 trials in total). Mean judged probabilities were
averaged across all subjects in an age group, and
compared with the true probabilities (95% error bars).

Analysis

Measures

On each trial, reaction time (target onset to screen
touch), touched horizontal (X) and vertical (Y) screen
position, and score were recorded. ‘Time-out’ trials were
excluded from the analysis (see Table 1 for details). For
model predictions (see below), the scatter of movement
end-points was fitted by a bivariate Gaussian distribu-
tion. Outlying data points can strongly influence these
distributions and model predictions. Outliers were there-
fore excluded using the Minimum Covariance Determi-
nation (MCD) procedure (Rousseeuw, 1984) (~5% of
trials excluded in all age groups); see Supplemental
Material for details. Mean reaction time, aiming-point
(mean X, mean Y), horizontal and vertical variance (varX
and varY), and total score were computed for each
subject and condition using the remaining data.

Model predictions

The aiming location XY, that would maximize
expected gain given that the visuomotor precision varX,
varY was computed for each subject and condition
following the ideal actor / observer model described in

Trommershauser et al. (2003a, 2003b). 4 x 4 (Age x

Descriptive experimental data displayed per age group. Stars in adult column indicate that age difference across all groups

Adult
N=15
age =224 (2.5)

N=15
age = 10.8 (0.47)

10-11 8-9 6-7
N=18 N=15
age = 9.0 (0.35) age = 7.6 (0.34)

Time limit (secs)

Mean 0.66 (0.04)*

Range 0.60 — 0.75
No. time outs 4 (2.2)*
Reaction time (secs) 0.53 (0.04)*
Vertical aim points (cm) —0.03 (0.1)*
Deviation from X,,, (cm) 0.11 (0.07)
Variance (cm)

Horizontal 2.44 (0.82)*

Vertical 4.11 (1.51)*

0.75 (0.06) 0.78 (0.05) 0.83 (0.04)
0.65—0.85 0.70 — 0.85 0.75-0.9
7.2 2.1) 53 (2.8) 6.5 (2.6)
0.59 (0.05) 0.61 (0.04) 0.64 (0.05)
—0.12 (0.1) ~0.06 (0.1) —0.006 (0.1)
0.18 (0.1) 0.16 (0.1) 0.13 (0.1)
2.51 (0.93) 2.96 (1.3) 3.69 (1.4)
3.31 (1.25) 4.21 (2.08) 5.05 (2.27)

© 2015 The Authors. Developmental Science Published by John Wiley & Sons Ltd.



432  Tessa Dekker and Marko Nardini

Condition) ANOVAs revealed that there were no signif-
icant differences in X or Y variance across conditions, a
pattern consistent across age groups (largest F for
Condition and Condition x Age <1.62, p = .194).
Variance estimates for each subject were therefore
obtained by pooling data across conditions. The
expected consequences of aiming towards any given
location on the screen were modelled as depending on a
bivariate Gaussian distribution described by each par-
ticipant’s own X and Y variance. The gain expected from
pointing at any location is given by a weighted sum of all
the possible outcomes, in which each outcome (e.g. +1,
—5, 0) is multiplied by the probability of a reach landing
in a location with this outcome. For each participant and
condition, we computed the ‘gain landscape’ describing
the gain expected from aiming for each pixel in a 200 x
200 grid around the target centre (Figure 2); see the
Supplemental Material for details. The optimal aiming
coordinate X,,,,7Y,,, is at the peak (maximum) of this
landscape (Figure 2A, and Figure 2B, cyan squares),
and its height represents the optimal-predicted average
gain. In Figure 2B, each condition’s gain landscape is
overlaid with the stimulus configuration (circles), and the
empirical distribution of movement end-points from the
same example adult participant whose X and Y variance

@@ , near 1 far 1

o

L

2

}'f%} 2%

points per trial

0
X (cm)

a4 0 1
X (cm)

was used to calculate the landscape. In this participant,
the optimal prediction (cyan circle) changes across
conditions, and the mean of the empirical points (red
triangle) follows it closely.

Results

Reaction times and end-point variances

Reaction times decreased significantly with age, as
revealed by Age x Condition ANOVAs (Age: F(3, 59)
= 30.7, p < .01) and in accordance with age-related
shortening of individual time-limits (Age: F(3, 59) = 13.6,
p <.01; see Table 1). Age x Condition ANOVAs showed
that horizontal and vertical variance also varied with age
(X: F(3,59)=5.77, p=.002; Y: F(3, 59) =3.58, p=.019),
with significantly larger variances than adults only for
6- to 7-year-old children for both X and Y (p < .05 in
Sidak-corrected post-hoc comparisons; see Table 1).

Do vertical aiming-points maximize expected gain?

The Y-coordinate with the highest predicted score fell at
the centre of the stimulus configuration (Y,) for all

near 5 1 far 5

cooo

el 5

i
o hN

B XY
A XYmean
o XY,
— target
— lose 1
lose 5

X (ucm) X (cm)

Figure 2 (A) Gain landscapes from example subject presented with ‘near’ targets on the left and ‘far’ targets on the right. These plots
show the raw data as collected. For further analysis, X-coordinates were flipped into a common orientation so that shifts from the
target centre away from the penalty area were always positive. For each condition, expected points per trial are displayed for each
possible aiming location in a 200-pixel square around the centre of the target circle. The X-coordinate with the highest expected gain
is at the peak of each landscape. (B) Contour plots of the same data, with overlaid stimuli (large circles). A blue square indicates the
peak of each gain landscape. Movement end-points on individual trials are plotted as black dots, and their means are indicated by
red triangles. This subject’s mean aiming-points fell close to gain-maximizing coordinates (blue circles) for all conditions, showing
that their visuomotor strategies were near-optimal.
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conditions. Accordingly, the height of subjects’ aiming-
points did not vary by condition (Condition: F(3, 57) =
1.62, p = .19; Condition x Age: F(9, 17) = 1.43, p = .18).
Aiming-points did, however, vary significantly with Age (F
(3,59)=3.58, p=.019); see Table 1. Post-hoc tests revealed
that while adults and 6- and 7-year-olds had mean
Y-coordinates indistinguishable from the optimal Y
(adults: #(14) = —1.44, 6-7: t(14) = —0.33), both p-values
> 1), 8-and 9-year-olds and 10- and 11-year-olds tended to
aim slightly below this point (10-11: #(14) = —8.4, p <.001;
8-9:t(17)=-2.6, p=.02).

Do horizontal aiming-points maximize expected gain?

Adults

To test whether adults were able to find their own gain-
maximizing coordinate by weighting outcome values by
their probabilities, we compared their actual and pre-
dicted optimal aiming-points (Figure 3). A linear regres-

£ 1| adults 11 10-11 //‘
o n=15 =418 .
c 2
2
= 05 0.5 & far1
Q v far5
= @ near 1
2 M near 5
< --- optimal
s 0 0 7 — actual
e} Y = 0.68*X
0 0.5 1
£ 1 |
L
c
o
§ 0.5
o
-
o]
2
= © 7Y = 0.59*X+0.06 Y = 0.54*X+0.08

0 0.5 1 0 0.5 1
Max Gain Location (cm) Max Gain Location (cm)

Figure 3 Empirical mean X-coordinates (Touched Locations)
are plotted against the predicted gain-maximizing X-
coordinates (Max Gain Locations) of each condition and
subject in each age group. Condition means (95% Cl error
bars) are indicated by larger symbols. For points falling along
the dashed identity line (intercept O, slope 1), the touched and
max gain location were identical, so visuomotor strategies
were optimal. Points below the line are those of subjects who
did not place their aiming-points far enough from the penalty
circle to maximize their expected gain; those above the line
were placed too far. Regression lines were fitted to all data
points to visualize differences in movement strategies across
age. Slopes smaller than 1 reflect a tendency to undershoot the
optimal aiming location.
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sion (R*=0.523, F(1, 58) = 63.51, p < .001) found a slope
of 0.97 and intercept of 0.01 (Figure 3, dashed line).
These regression parameters closely match those of the
identity line with slope 1 and intercept 0. Adults’ mean
X-coordinates thus fell on average extremely close to the
corresponding predicted gain-maximizing coordinates.
To find this coordinate in each condition’s gain land-
scape, subjects should shift their horizontal aiming-
points further from the target centre when penalty values
increase and when penalty and target circles are closer
together. A 2 x 2 (Value x Offset) ANOVA revealed that
adults indeed made these adjustments across conditions
(Value: F(1, 14) = 20.45, p < .001; Offset: F(1, 14)=22.7,
p <.001; interaction not significant, F(1, 14) =2.52, p =
.134). Moreover, adults shifted by the correct distance to
maximize their expected gain given their own visuomotor
precision; an ANOVA comparing actual and optimal
aiming-points across the four conditions showed that
adults’ mean X-coordinates were statistically indistin-
guishable from their gain-maximizing X-coordinates
(main effect of actual-optimal, F(1, 14) = 0.024, p =
.88; actual-optimal x condition interaction: F(1.55, 21.7)
=0.058, p = 91).

Children

With age, movement end-points shifted closer towards
the gain-maximizing X-coordinates, and regression
slopes for optimal vs. actual points (Figure 3) clearly
became steeper and closer to the identity line. Means
(large circles) below the identity line indicate that
children’s aiming-points were on average placed too
close to the penalty circle to land on the gain-maximizing
coordinate.

A three-way Actual-Optimal x Condition x Age
ANOVA confirmed that distances between actual and
optimal aiming-points become smaller with age from
childhood to adulthood (main effect of Actual-Optimal:
F(1, 59) = 5438, p < .001; Actual-Optimal x Age
interaction: F(3, 59) = 6.68, p = .001). Distances between
actual and optimal aiming-points also varied with
condition; they were larger in those conditions for which
the gain-maximizing coordinate required a larger shift
from the target centre; see Figure 3 (Actual-Optimal x
Condition interaction: F(1.4, 80.1) = 5.9, p = .01; this
effect did not depend on age: F(4.1, 80.1) =0.78, p = .54).
Follow-up ANOVAs revealed that even by ages 10 and 11
years, children’s mean X-coordinates still significantly
undershot the predicted gain-maximizing location
(Actual-Optimal x Condition interaction at 10-11 years:
F(1, 14)=29.28, p <.001; 8-9 years: F(1, 17)=18.23, p =
.001; 6-7 years: F(1, 14) = 44.15, p <.001). Thus, even in
relatively late childhood, movement strategies were

© 2015 The Authors. Developmental Science Published by John Wiley & Sons Ltd.



434  Tessa Dekker and Marko Nardini

suboptimal, and carried unnecessarily high risks of
touching the penalty.

While children up to age 10 and 11 years systemati-
cally mis-localized the gain-maximizing coordinate, some
sensitivity to gain landscape changes across conditions
was already evident by 6 and 7 years. As Figure 3 shows,
the order of condition means along the y-axis is
consistent across groups, so, like adults, children shifted
their aims away from the target centre as a function of
both penalty value and offset. ANOVAs found signifi-
cant effects of both factors at all ages: for Value, 10-11
years: F(1, 14)=7.68, p=.02; 8-9 years: F(1, 17)=23.61,
p < .01; 6-7 years: F(1, 14) = 5.15, p = .04; for Offset,
10-11 years: F(1, 14) = 5.53, p=.03; 8-9 years: F(1, 17) =
6.87, p = .02; 6-7 years: F(1, 14) = 5.63, p = .03); no
interaction in any group, largest F = 0.20, p = .63. The
deviation between the optimal and actual aiming-point
in childhood did not significantly depend on whether the
low or high penalty was presented first (2 x 2 ANOVAs
for Penalty Order x Actual vs. Optimal X-coordinate:
‘near 1”: F(1, 42) =3.49, p = .069, “far 1’: F(1, 42) =0.79,
p=".38, ‘near 5’: F(1,42)=0.001, p=.97 ‘far 5°: F(1, 42)
= 0.19, p = .67). It is therefore unlikely that these sub-
optimal aiming strategies were due to rule switching
difficulties when penalties changed halfway through the
task.

Computing versus learning the best action strategy

Gain-maximizing coordinates can be computed directly
by weighting outcome values by their visuomotor noise-
dependent probabilities to estimate the peak of the gain
landscape (see Figure 2). However, they can also be
found by searching for aiming-points with higher
rewards (reinforcement learning). Regression lines fitted
across the trial time series of each condition for each
individual subject revealed remarkably consistent aiming
strategies throughout the task (one-sample f-tests of
slope versus 0: All p-values > .05, with Sidak-correction
for 252 comparisons; except for one 10- to 11-year-old in
the ‘near 1’ condition). So, in line with previous findings
(Trommershauser et al., 2003a, 2003b), both adults and
children seem to select their action strategy early on
without apparent learning.

Effects of movement strategies on scores

Subjects were not explicitly instructed to aim for gain-
maximizing coordinates, but only to score as many
points as possible. A crucial question, therefore, is
whether children’s deviations from gain-maximizing
X-coordinates did indeed result in reduced scores.
Otherwise, children might have had little reason to choose

closer-to-optimal strategies. Solid curves in Figure 4
display for each subject and condition how predicted
scores decrease as aiming-points depart from the gain-
maximizing coordinate (X),,, dashed line, at zero on the
x-axis). The data points plot distances between partici-
pants’ actual and gain-maximizing X-coordinates against
their obtained rewards (mean points per trial). Obtained
and model-predicted scores are likely to differ somewhat
due to noise, since movement end-points are ‘sampled’
probabilistically from a subject’s visuomotor distribution.
However, most data points fall within the range of the
predicted curves, revealing a correspondence between
model predictions and task performance.

Expected gain curves are asymmetrical, with lower
predicted scores for movement end-points undershooting
the gain-maximizing coordinate (left of the peak) than
for those shifting too far (right of the peak) by the same
distance. In childhood (three bottom rows), many end-
points fall left of the peak (closer to the penalty), at X-
coordinates with relatively lower predicted scores.
Obtained scores are accordingly lower. In contrast, adult
movement end-points (second row in Figure 4) are
clustered around the peaks of the gain landscapes, along
aiming locations with high associated gain. Note, how-
ever, that scores are not only determined by whether
movement end-points undershoot or overshoot the peak
on average (each group’s bias), but also by how this
varies across individuals (each group’s variance). These
deviations from the optimal aiming-point are captured
by the points and error bars in Figure 4 (top panel), the
spread of data points in Figures 3 and 4, and the
absolute deviation from X, in Table 1. The spread of
end-points in adults reveals that even some mature
subjects missed their optimal coordinate by some
distance. Indeed, mean absolute deviations from the
gain-maximizing location in Table 1 are smallest in
adults, but only slightly smaller than in children.
Consequently, even adults may not score 100% of their
predicted maximum on average. Tukey’s post-hoc tests
revealed that adults have smaller mean absolute devia-
tions than 8- and 9- and 10- and 11-year-olds (p = .35
and .01, respectively), but not than 6- and 7-year-olds (p
= .42). Therefore, any differences in score between the
oldest and youngest groups will be mainly due to a
different directional bias in movement selection (i.e.
aiming too close to penalty at ages 6-7).

To test whether age groups differed significantly in
their abilities to maximize gain, scores were expressed as
percentages of the predicted maximum score (Figure 5)
and compared in a two-way ANOVA (Condition x Age).
In line with the more sub-optimal aiming-points selected
at younger ages, scoring efficiency decreased significantly
with age (F(3, 59) = 5.07, p = .003), but this effect was
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Figure 4 Top row: mean deviations from the gain-maximizing X-coordinate (set to x = 0, indicated by dotted lines). Error bars are
95% confidence intervals. Positive (right) and negative (left) deviations reflect, respectively, mean aiming-points falling too far away
from, or too close to, the penalty area to land on the gain-maximizing coordinate. Bottom four rows: curves plot predicted scores for
each subject across aiming-points deviating relative to the optimal aiming location (dotted line, O deviation). Numbers next to dotted
lines are the mean optimal aiming-point (in cm, with respect to the target centre) for the age group and condition. Scattered data
points are individual subjects’ actual deviations from Xpaxgain plotted against their actual obtained points per trial.

modulated by condition (Age x Condition: F(3.8, 73.9)
=2.91, p =.03). Follow-up ANOVAs showed that scores
only significantly differed by age in the ‘near 5’ condition
with the steepest gain landscape; ‘near 5° condition: F(3,
59)=13.78, p=.015, all other conditions: largest F'< 1.44,
p =.24). In the ‘near 5’ condition, all three child groups
scored significantly below their optimal predictions (10—
11 years: #(14) = —4.20, p = .01 8-9 years: t(17) = —2.56, p
=.02, 6-7 years: t(14) = —3.20, p = .006). Adults showed
a non-significant trend towards a sub-optimal mean
score in this condition (#(14) = —1.89, p = .08).

In sum, these findings clearly show that children aged
6 to 11 years chose reaching strategies with an overly
high risk of hitting the penalty circle, and that this had

detrimental effects on the rewards they obtained. For
example, 6- and 7-year-olds won less than 50% of their
potential points in the most challenging condition
(Figure 5). Additional control tasks were conducted to
understand why children aimed so ‘dangerously’ close to
the penalty area (a risk-seeking strategy).

Do younger subjects distort outcome values?

Young children often show nonlinearities in their under-
standing of number, typically underestimating larger
values (Booth & Siegler, 2006). In the reaching task, this
could lead to underestimation of the severity of larger
penalties (5 points) and to subsequent underestimation of
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the shift in pointing required to maximize expected gain —
the reaching pattern found in childhood. To test whether
value distortion explained children’s reaching behaviour,
two measures of value representation were obtained. In a
number line task, subjects indicated where the numbers 1
to 5 belonged on a number line between 0 and 10; see
Supplemental Methods for details. Younger subjects’
responses were compressed towards the lower end of the
scale, indicating underestimation of numerical distance
(Figure 6A). Accordingly, the root of the mean squared
error (RMSE) of indicated versus true numerical distance
became smaller with age (r = —0.60, p < .001). However,
this summary measure of numerical distance distortion
did not predict subjects’ visuomotor strategies: the
correlation of RMSE with absolute deviation between
Xyean and X,,, was not significant for any single

(a) number line task

condition, or for the mean of all conditions (r < 0.09,
p < .47), and hence did not explain performance on the
reaching task.

Correct value comparisons between gains and losses
crucially relied on understanding the relative value of
quantities 1 and 5. Therefore, in a multiplication task,
subjects judged whether they would rather lose 5 points
once, or 1 point multiple times (e.g. 1 point, 6 times); see
Supplemental Methods for details. Cumulative Gaussians
were fitted to proportions of trials on which participants
preferred to lose the variable multiple (e.g. 1 point, 6
times) over losing 5 points; Figure 6B. The point of
subjective equality (PSEs) of these functions, at which the
probability of answering either way is 0.5, measures the
multiple of 1 that participants are as willing to lose as a
single 5. The PSE in Figure 6B falls very close to the
correct multiple of 5 for all age groups (adults: 5.02, 10—
11:4.95,8-9:4.95, 6-7: 5.00), revealing that the impact of
losing 5 points compared to winning multiples of 1 point
was judged close to accurately at all ages. Both tasks thus
suggest that point value distortions are an unlikely cause
of the sub-optimal reaching choices in childhood.

Do younger subjects distort outcome probabilities?

Forming stable representations of developing visuomotor
skills might be challenging; if younger subjects distorted
outcome probabilities by underestimating their own
pointing variance varX, this would lead them to under-
estimate the shift from penalty required to maximize their
winnings. To test whether probability distortions
explained children’s tendency to undershoot the gain-
maximizing coordinate, understanding of own
visuomotor precision was measured after the main
experiment. Participants gave verbal estimates of how

(c) hit probability task

(b% value multiply task

c
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Figure 6 (A) Mean (95 Cl error bars) estimated numerical distance on number line is plotted against true numerical distance for
each group. The dashed identity line indicates accurate numerical distance representation. Data points under this line reflect
underestimation of true numerical distance. (B) Mean proportion of times the variable sum (x-axis) was preferred over the standard
sum (5pts x 1) when asked ‘which amount would you rather lose?” Cumulative Gaussians are fitted through the data points of each
group. Points of subjective equality (dashed lines) measure how many multiples of 1 subjects were as willing to lose as a single 5. (C)
For each group, mean (95 Cl error bars) estimated probabilities of hitting circles of different sizes are plotted against their true
probabilities of hitting these circles. The dashed identity line indicates accurate probability estimates. Data points under this line
reflect underestimation of own precision, and points above the line overestimation.
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many times out of 10 they could hit target circles of
different sizes with the same setup and time limit as in the
reaching task; see Supplemental Methods for details. In
Figure 6C, mean judged probabilities are plotted against
true probabilities of hitting each circle. As visualized in
the graph, explicit judgements of visuomotor skill were on
average close to accurate at all ages, with slight tendencies
to overestimate small probabilities and to underestimate
large probabilities. Importantly, younger subjects did not
overestimate their chances of hitting target circles com-
pared with adults, but showed similar probability distor-
tions. This is in line with other findings of adult-like event
probability judgements in childhood (Boyer, 2006; Mout-
siana, Garrett, Clarke, Lotto, Blakemore et al., 2013).
There was no evidence for overly high confidence in own
visuomotor precision in childhood, suggesting that this
factor cannot explain the development of optimal visuo-
motor decision-making.

Discussion

To advance understanding of when and how optimal
visuomotor decision-making develops in childhood, 6- to
11-year-olds and adults were asked to rapidly reach
towards targets to win as many points as possible, whilst
avoiding touching an overlapping penalty area. Because
time was limited, movement end-points were imprecise,
placing probabilities on missing or hitting the target and
penalty. The implicit task was to locate the aiming-point
giving the highest expected score by accounting for this
imprecision. By quizzing subjects about the point rules
between blocks, we ensured that all could remember
these throughout the experiment. To maximize their
expected winnings, subjects should shift their aiming-
points further from the penalty area when penalties were
greater and closer to the target. The precise amount of
shift required to optimize performance depended on
each participant’s own visuomotor precision.
Sensitivity to changes in gain landscapes across
conditions was already present at 6 and 7 years; all age
groups adjusted their movement end-points in response
to changes in both penalty value and offset. However,
the ability to correctly determine the exact degree of
adjustment required to maximize expected gain, depend-
ing on these factors and on participants’ own visuomotor
precision, did not develop until much later. Unlike
adults, even the oldest (10- and 11-year-old) group of
children still differed significantly from optimal. Chil-
dren of all ages displayed a group-level tendency to place
movement end-points too close to the penalty circle to
maximize their scores (see Figure 3), resulting in larger
deviations from the gain-maximizing strategy in child-
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hood. Choosing end-points too close to the penalty
region can be described as risk-seeking because this
comes with overly high risks of hitting the penalty circle
and losing points. This sub-optimal strategy had a
dramatic impact on the rewards won in the study,
particularly in the ‘near 5° condition, which presented
the steepest gain landscape (Figure 4). Here children’s
systematic ‘undershoot’ incurred a heavy penalty (Fig-
ure 4); unlike adults, who obtained on average >90% of
their theoretical maximum score, 6- and 7-year-old
children obtained as little as ~40% (Figure 5).

What can explain the shift from overly risky visuomotor
decision-making in childhood to close to optimal visuo-
motor decision-making in adulthood? The most punish-
ing condition (near 5) only comprised 25% of the trials.
Did children stick with risk-seeking strategies because
they were not sufficiently motivated to optimize their
scores? This is not supported by the data; ANOVAs
revealed that children were sufficiently motivated to
change their aiming strategy across conditions — except
that they systematically placed their new aiming-points
too close to the penalty area. Further analyses revealed
that this was not due to difficulties with switching between
penalty rules or slower learning of where in the display
most points could be won at younger ages. The patterns of
children’s errors could reflect specific distortions in
estimates of outcome values or probabilities (underesti-
mation and overestimation, respectively). However,
control tasks measuring value representation and under-
standing of own visuomotor precision (Figure 6A—C)
provided no evidence for such distortions. While more
research is needed to investigate how children represent
the outcomes of their actions and the associated proba-
bilities, these measures strongly suggest that their subop-
timal visuomotor decisions in this reaching task were not
driven by inaccurate value or probability estimates.
Children’s risky aiming strategies therefore likely reflect
immature decision-making processes.

This leaves us with two interesting explanations.
Firstly, sub-optimal reaching might result from incorrect
computation of the optimal strategy by weighting of
outcome values by probabilities. Immature weighted
averaging would be in line with recent developmental
studies showing that abilities to average multiple sensory
estimates to make optimal perceptual decisions are still
developing until the 8th—11th year of life (Gori et al.,
2008; Nardini et al., 2010). Those results come from un-
rewarded psychophysical tasks, and the present findings
raise the possibility that mechanisms driving this devel-
opment may also affect visuomotor processing in rela-
tion to external cost factors.

Alternatively, children might be able to compute
the gain-maximizing strategy, but not employ this
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information to optimize performance. Instead, they
might pursue goals other than maximizing gain, such
as striving for variation in the results of their reaches or
fulfilling a desire to hit the target as often as possible,
irrespective of overall winnings. Both could lead to
avoidance of more conservative strategies with higher
score expectations (for similar explanations of risk-
taking in rhesus monkeys, see Hayden, Heilbronner, Nair
& Platt, 2008). Preferring risky actions could be adaptive
for a developing system, in creating more opportunities
to learn about consequences of behaviour (Schneider,
Hanne & Lehmann, 1989). Children’s visuomotor strat-
egies could thus be gain-maximizing in the long run if the
future gain provided by learning outweighs the rewards
lost during the experimental task.

To better understand the underlying representations
and mechanisms, future studies should compare how the
expected gain of an embodied gamble is represented in
the developing brain. In adults, for example, increasing
the expected value of a ‘classic’ gamble yields parametric
activation increases in brain regions associated with
reward and decision-making, such as the ventral stria-
tum and orbitofrontal cortex (e.g. Peters & Biichel, 2010;
Rolls, McCabe & Redoute, 2008). In adolescents, some
of these areas are overly responsive to expected gain in
line with their behavioural preference for risky gambles
(Barkley-Levenson & Galvan, 2014). If children are still
developing the ability to combine visuomotor and cost
information into an accurate expected gain estimate,
similar age differences should be present in brain areas
representing the expected gain of a visuomotor choice.

This work significantly extends findings from other
decision-making domains. It was recently proposed that
classical and visuomotor decision-making rely on different
neural mechanisms because adults show near-optimal
performance in the visuomotor domain but display well-
known value and probability distortions when making
equivalent choices in a gambling task (Wu, Delgado &
Maloney, 2009). This dissociation has been called into
question, however, and differences in performance have
instead been ascribed to differences in task (Jarvstad,
Hahn, Rushton & Warren, 2013). In line with current
findings in the visuomotor domain, children’s choices
during classic gambles have also been characterized as
risk-seeking (Harbaugh, Krause & Vesterlund, 2002;
Levin, Hart, Weller & Harshman, 2007; Paulsen, Platt,
Huettel & Brannon, 2011). This raises the intriguing
possibility of a common developmental mechanism con-
figuring both classic and visuomotor decision-making. If
development were indeed linked across domains, this
would provide strong evidence for a shared underlying
process. An important next step would therefore be to
directly compare the development of classic and

visuomotor gambling within subjects using well-matched
tasks.

In sum, we found a clear, age-related shift towards
more optimal visuomotor decision-making across child-
hood and adulthood, with overly risk-seeking action
selection between ages 6 and 11 years. Choosing actions
with overly high risks of negative results in real-life
visuomotor tasks can clearly be dangerous, and could be
a factor significantly contributing to higher accident
rates in childhood (Kingma, 1994; Sethi, 2008).
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