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Research Highlights 

 

 

 

 Comparing participants’ choices in a rewarded rapid reaching task with those 

that would be optimal for maximizing reward, we found that unlike adults, 

children aged 6 to 11 years followed “risk-seeking” strategies leading to loss 

of points 

 

 Children’s errors were not explained by distorted estimates of value or 

probability, but may reflect changes in action-selection criteria or protracted 

development of the ability to integrate value and probability information when 

planning movements 

 

 The finding that the developing system favours risky visuomotor choices 

forms a first step towards understanding how children deal with risk in 

everyday activities, when suboptimal visuomotor choices can have dangerous 

consequences 

 

 Children’s risky visuomotor decisions mirror those reported for non-motor 

gambles, raising the possibility that common processes underlie development 

across decision-making domains 
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Abstract 

 

Many everyday actions are implicit gambles because imprecisions in our visuomotor 

systems place probabilities on our success or failure. Choosing optimal action 

strategies involves weighting the costs and gains of potential outcomes by their 

corresponding probabilities, and requires stable representations of one’s own 

imprecisions. How this ability is acquired during development in childhood when 

visuomotor skills change drastically is unknown. In a rewarded rapid reaching task, 6- 

to 11-year-old children followed “risk-seeking” strategies leading to overly high 

point-loss. Adults’ performance, in contrast, was close to optimal. Children’s errors 

were not explained by distorted estimates of value or probability, but may reflect 

different action selection criteria or immature integration of value and probability 

information while planning movements. These findings provide a starting point for 

understanding children’s risk-taking in everyday visuomotor situations when 

suboptimal choices can be dangerous. Moreover, children’s risky visuomotor 

decisions mirror those reported for non-motor gambles, raising the possibility that 

common processes underlie development across decision-making domains. 
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Introduction 

Whether crossing a busy road, throwing a ball into a basket, or reaching for 

one cup without knocking another over, humans continuously make risky visuo-motor 

decisions. The best action strategies maximise the probabilities of desirable outcomes 

while minimising those of negative ones. For example, we would like to get across 

the road promptly, but without being hit by a car. Identifying efficient trade-offs 

between potential risks and rewards in everyday behaviour can be highly adaptive. 

Solving this problem is complex, however. It involves correctly judging one’s own 

capabilities – for example, the probability of a reach missing its target – and 

combining this estimate with information about costs and gains in the environment. 

Nevertheless, laboratory tasks measuring adults’ performance have often found them 

to be ideal in this respect, maximising their gains on rewarded tasks by taking into 

account their own visuomotor capabilities (e.g., Battaglia & Schrater, 2007; 

Trommershäuser, Gepshtein, Maloney, Landy, & Banks, 2005; Trommershäuser, 

Landy, & Maloney, 2006). It is currently not known how and when during life 

efficient visuomotor decision-making develops. For a developing system rapidly 

changing in its physical size, speed, precision, and neural processing (Haywood & 

Getchell, 2009), it is likely to be especially difficult to form and use stable internal 

models of the body’s visuomotor capabilities to optimise performance. To advance 

understanding of the development of optimal visuomotor decision-making during 

childhood, we measured action choices in 6- to 11-year-olds and adults during a 

rewarded rapid reaching task. Participants’ actual action choices were compared with 

those that would achieve the optimal trade-off between the risks and rewards 

available in the task. 

Visuomotor risk stems from the uncertainty inherent to perception and motor 

control. For example, a paper ball thrown at a basket may land anywhere along a 
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bivariate probability distribution around the aiming point due to noise in location 

estimates of the arm, hand, ball and basket, and in the neural signals that activate 

muscles for motor execution (Körding & Wolpert, 2006). Variations in ball end-

points, which depend on the total magnitude of this noise, place a probability on each 

possible action outcome (i.e., missing or hitting the basket). The formal structure of 

risky visuomotor tasks can therefore be equated to that of gambling tasks, often used 

in the field of economic decision-making (Trommershäuser, Maloney, & Landy, 

2008). In both types of task, subjects choose between lotteries with given outcome 

values and probabilities. However, in gambling tasks, chances of winning are stated 

explicitly, whilst in visuomotor tasks, they are determined implicitly by noise 

(variability) in the sensorimotor system. Like an optimal gambler, an optimal action 

planner should choose the lottery or action strategy with the largest expected gain.  

Trommershäuser, Maloney, & Landy (2003a; 2003b; 2008) developed an 

experimental task that captures the problems faced in everyday visuomotor decision-

making. It allows cost- and risk factors to be quantified, and gain-maximising choices 

to be identified. Participants make time-constrained manual reaches towards a target 

circle to win points, whilst avoiding a partially overlapping penalty circle that incurs 

point loss. Because of the time constraint, movements are imprecise, so reaches aimed 

too close to the penalty circle may accidentally land inside it. To score highly, 

participants need to shift their reaches some way from the penalty, but no so far that 

they miss out on potential rewards from the target. For each participant, the optimal 

(gain-maximising) aiming point can be calculated and compared to their actual aiming 

point. This predicted optimal aiming point depends on each individual’s own pointing 

precision, and varies when penalty values and spatial layouts of the stimulus 

configuration are altered. Trommershauser at al. (2003a; 2003b) showed that adults 
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were able to identify the near optimal solution to this problem and aim for screen 

locations that maximised expected winnings.  

How and when during development are veridical representations of bodily 

abilities – a prerequisite for identifying gain-maximising actions – formed? Infants 

and children continuously engage in risky visuomotor behaviour and thus have many 

opportunities to learn how physical limitations affect the results of their actions (von 

Hofsten, 2004). Indeed, in their first weeks of walking infants do not discriminate 

between safe and dangerous slopes and will walk down both while more experienced 

14-month-olds will avoid the impossible ones (Adolph, Bertenthal, Boker, Goldfield, 

& Gibson, 1997; Adolph, Tamis-LeMonda, Ishak, Karasik, & Lobo, 2008). Abilities 

to calibrate actions correctly to objects and affordances continue to develop through 

childhood. DeLoache, Uttal, & Rosengren (2004) showed that 17 to 30 month-old 

infants sometimes made serious attempts to perform impossible actions on miniature 

objects such as trying to climb into a toy car or to put on dolls’ clothes. Similarly, 

infants and even children up to age 7 years attempt to reach towards targets through 

openings that are too small for their hand (Ishak, Franchak, & Adolph, 2014). It is 

unclear whether selection of inappropriate actions in these studies reflects children’s 

overestimation of their own abilities, or differences in how averse they are to failing 

(e.g., getting stuck). In line with the latter possibility, 17-month-old infants attempted 

to walk through impossibly small openings if the penalty of failing was getting stuck, 

but became overly conservative if failure meant falling off a table (Franchak & 

Adolph, 2012). This suggests some knowledge both of own physical capabilities and 

of “costs” associated with different courses of action in early childhood. Similarly, 

Bayless & Schlottmann (2010) showed that children aged 5 to 7 years made distorted 

but sensible judgements about their abilities to roll marbles through goals of different 

sizes. Moreover, they rated harder marble rolling games with lower prizes as less 
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pleasurable (Bayless & Schlottmann, 2010). By 7 years of age, children thus seem to 

possess a basic understanding of how a smaller chance of success and a lower reward 

(or higher penalty) combine to predict a worse outcome.  

For making optimal visuomotor choices, however, changes in probability and 

reward must not only be taken into account, but precisely estimated. Optimal (gain-

maximising) decisions across different conditions in a visuomotor task require precise 

online estimation of different outcome probabilities (e.g. the chance of missing), and 

the correct weighting of outcome rewards by these estimates to trade off potential 

gains and losses. Research on sensory cue integration suggests that it is only at around 

age 8-10 years that children learn to take their own perceptual uncertainty into 

account to optimise their perceptual decisions (Gori, Del Viva, Sandini, & Burr, 2008; 

Nardini, Jones, Bedford, & Braddick, 2008; Nardini, Bedford, & Mareschal, 2010; 

Petrini, Remark, Smith, & Nardini, 2014). It is possible that children also learn to take 

their own visuomotor certainty into account to optimise their movement decisions 

around this age. To test this, we employed a child-friendly version of the rapid-

reaching task developed by Trommershauser et al. (2003a; 2003b) in children aged 6 

to 10 years and adults. This task allowed us to measure how participants’ action 

choices deviate from those predicted by an optimal action planner that maximises 

expected gain. The ways in which performance deviates from these optimal 

predictions provide clues about the causes of these deviations and the mechanisms 

that may drive shifts from immature to optimal visuomotor strategy selection.  



 8 

Methods 

Participants 

Participants were children aged 6 to 11 years and adults: fifteen 6 and 7-year-

olds (mean age = 7.6, SD = 0.3 years, 7 males), eighteen 8 and 9-year-olds (mean age = 

9.0, SD = 0.4 years, 10 males), fifteen 10 and 11-year-olds (mean age = 10.8, SD = 0.5 

years, 7 males), and fifteen adults (mean age = 22.4, SD = 2.5 years, 7 males). All but 

three were right-handed. During training, subjects learned to limit their time-outs 

(failures to reach the screen to late) to 5% of the trials or less (see Supplemental 

Methods). Those who timed-out more frequently during the main task could be trading 

off speed for accuracy, potentially leaving more time to make online reach adjustments 

towards the target. This would confound measures of visuomotor strategy selection with 

movement corrections after the decision process. Therefore, additional subjects with 

>5% “time out” errors (see Procedure) were excluded from the analyses (three adults, 

three 10 and 11-year-olds: seven 8 and 9-year-olds: 7, six 6 and 7-year-olds). Some 

time-outs were likely caused by occasional lapses in attention rather than trading off 

speed for accuracy (this would not affect aiming strategy). Because sustained attention 

develops with age, this probably contributes to higher exclusion-rates in younger 

groups.  All participants had normal or corrected-to-normal vision and no known 

neurological or psychological disorders.  

 

Apparatus  

Participants sat in front of a 24-inch monitor with integrated touch sensors 

(Iiyama ProLite T2451MTS MultiTouch screen, with 521 x 293mm display area and 

1920 x 1080 resolution), at 26cm distance for adults, 20cm for children. A wireless 

numeric keypad was mounted on the table, centred before the monitor 6 cm from the 
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participant’s trunk (see Figure 1A). Tasks were run using Matlab 7.1 (R2010a) with 

Psychophysics Toolbox (Brainard, 1997)  

 

Design and Stimuli 

Stimulus configurations consisted of a target circle with a green outline and a 

partially overlapping penalty circle, each with a 0.90 cm (33 pixel) radius. Target 

circles were unfilled, while penalty circles were filled with a darker shade of their 

yellow, blue or grey outline colour (see Figure 1A). A blue 114.2 x 80.6 mm frame at 

the screen centre indicated where the circles would appear. To prevent use of pre-

planned movements, on each trial the whole stimulus configuration was “jittered” 

around the frame’s centre, with horizontal and vertical offsets drawn independently 

from a uniform ±44 mm distribution. We varied whether the horizontally displaced 

penalty circle was located near to or far from the reward (1 versus 1.5 circle-radius 

displacement), and whether hitting it incurred a small or large point loss (1 versus 5 

points), resulting in four conditions: “near 1”, “far 1”, “near 5”, and “far 5”. For half 

of each age group the low penalty was presented for the first half of the task, for the 

others the high penalty was first. Distinct penalty colours signified different values; 

blue for 1, yellow for 5 and grey for 0 in training. Near and far offsets were presented 

equally often in random order within blocks. To keep trial numbers to a child-friendly 

minimum, the left / right positioning of circles was counterbalanced across 

participants. Half in each age group had far penalty offsets on the left and near offsets 

on the right; for the others these positions were reversed.  

 

Procedure 

Training phase 
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Time limits ensured that subjects made ballistic reaching movements without 

online corrections. To allow for individual differences in reach reaction times, a pre-

experimental training phase included a selection procedure that established individual 

time limits. In 13-15 blocks of 20 trials, participants attempted to hit targets under 

time limits that decreased when they performed to criterion (see Supplemental 

methods). Training trials were identical to experimental trials described below, except 

that target hits did not count towards the final score, and the (grey) penalty circle was 

irrelevant.  

 

 

 

Figure 1. A) A 9-year-old girl demonstrates a typical trial sequence. The blue penalty circle 

in the example has a gain of -1, and a 1.5 X radius offset from target center (“far 1” 

condition). B) The current total score (which could be negative) was displayed graphically 

throughout the session. The brown area is “the ground”, the blue area “the sky”. For each 

point gained, a coin appeared (left example). For each point lost, a coin was removed. For 

every 20 coins (denoted by a red line), subjects won a token that could be exchanged for toys 

(or £0.50 for adults) at the end. If the total score became negative, each lost point would 

create a “hole” in the ground (right example). Before getting back into the sky, coins had to 

be won to fill up the holes.  
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Experimental phase  

Each training trial started with a central fixation cross. Participants pressed the 

“Enter” key with the index finger of their dominant hand to trigger presentation of the 

blue frame (see Figure 1A). The stimulus configuration appeared inside the frame 

after 500 ms of pressing. Participants then released the key and touched the screen 

with the same finger. If they released less than 100 ms after target onset (anticipation) 

the trial was aborted. Touching the target circle within the time limit gave a reward of 

1 point. Touching the penalty within the time limit incurred a loss of 1 or 5 points. For 

the overlapping region of penalty and target, the reward and penalty were summed. A 

touch anywhere else on the screen was a “miss” (no gain or loss). A “time out” 

incurred 7-point loss and a waiting period of 20 seconds. Participants were simply 

instructed to obtain as many points as possible. 

There were 10 blocks of 20 trials, a total of 50 per condition. Penalties and 

payoffs were explained before the first and sixth block when penalty rules changed. 

Before each block, participants were asked to repeat these back to ensure that all 

remembered the current outcome values. Running scores were displayed graphically 

in a chart on the screen (Figure 1B). As a motivation for maximising their points, 

participants received a prize token for every 20 points they earned. At the end of the 

session, each token was converted to £0.50 for adults or exchanged for small prizes 

for children. Subjects also performed three additional tasks that measured their 

understanding of the point system of the experiment (number line and multiplication 

task), and their explicit knowledge of their own visuomotor ability (hit probability 

task). 
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Number line task (measuring value distortion) 

All subjects took part in a pencil-and-paper number-line task. On each trial, subjects 

used a pencil to indicate, with a line, where on a bar of length 10 cm a number would 

fall. The left and right ends of the bar were labelled 0 and 10 respectively, and the 

numbers 1-5 were tested 10 times each, with numbers randomised within each block. 

The marked locations were measured and compared with the locations predicted by a 

linear representation of the number line (e.g. the number 4 would fall at 0.4 of the 

length of the 10cm line, at 4cm). 

 

Multiplication task (measuring value distortion) 

All subjects took part in a 2-alternative forced choice task with 35 trials. On each trial 

they chose between a pair of values (7 repetitions of 5 pairs). Each pair consisted of 

the standard value of “5 points x 1”, and a comparison in which “1 point” was 

multiplied with the values 3 to 7 (“1 point x 3”, “1 point x 4”, etc.). For each pair, 

subjects were asked to select the value they would prefer to lose (the correct answer 

was the lower value). For example: would you prefer to lose 5 points once (5 x 1), or 

to lose 1 point four times (1 x 4)? The task was described in terms of losses to best 

match the penalty situation in the main experiment. To make the problem concrete, 

subjects received 10 stickers or snacks and were informed that one of their answers, 

randomly drawn at the end of the task, would determine how many they would have 

to give back. For each age group and comparison value, we counted how often the 

constant sum was chosen over the variable sum. We used the standard psychophysical 

method of fitting a cumulative Gaussian distribution through the resulting proportions 

(using the Psignifit toolbox for Matlab), and determining the Point of Subjective 

Equality (PSE); see Figure 6B. The PSE is the point along the X-axis at which the 

comparison and standard are chosen with equal (0.5) probability, and therefore 
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measures the point at which they are, on average, judged to be equal. Deviations of 

the PSE from the correct value of 5 (1 x 5) thus provide information about systematic 

under- or overestimations of the value of losing 5 points relative to the value of losing 

1 point multiple times.  

 

Hit probability task (measuring probability distortion) 

In a hit probability task, subjects were presented with 5 circle sizes in a display such 

as the one used in the experiment. In 10 blocks, all circles were presented in random 

order (50 repetitions in total). The circles were presented in isolation (without an 

overlapping penalty circle), and their locations were jittered as in the experiment. 

Circle sizes were scaled individually for each subject based on their own visuomotor 

variance measured during the main task. The five circle sizes seen by each subject 

corresponded to hit probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9. On each trial, subjects 

judged “how many times out of 10” they would successfully hit the circle, from the 

same position and with the same time constraint as in the main experiment. This 

provided their estimated probability of hitting (e.g. “5 out of 10” = 0.5). Judged 

probabilities were averaged over 10 repetitions (50 trials in total). Mean judged 

probabilities were averaged across all subjects in an age group, and compared with 

the true probabilities (95% error bars).  

 

Analysis 

Measures  

On each trial, reaction time (target onset to screen touch), touched horizontal 

(X) and vertical (Y) screen position, and score were recorded. “Time out” trials were 

excluded from the analysis (see Table 1 for details). For model predictions (see 

below), the scatter of movement end-points was fitted by a bivariate Gaussian 
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distribution. Outlying data points can strongly influence these distributions and model 

predictions. Outliers were therefore excluded using the Minimum Covariance 

Determination (MCD) procedure (Rousseeuw, 1984) (~5% of trials excluded in all 

age groups); see Supplemental Material for details. Mean reaction time, aiming-point 

(mean X, mean Y), horizontal and vertical variance (varX and varY), and total score 

were computed for each subject and condition using the remaining data.  

 

 
 Adult 

N=15 
age = 22.4 

(2.5) 

10-11 
N=15 

age = 10.8 
(0.47) 

8-9 
N=18 

age = 9.0 
(0.35) 

6-7 
N=15 

age = 7.6 
(0.34) 

Time Limit (secs):     

Mean: 0.66 (0.04)* 0.75 (0.06) 0.78 (0.05) 0.83 (0.04) 

Range: 0.60 – 0.75 0.65 – 0.85 0.70 – 0.85 0.75 – 0.9 

Nr Time Outs: 4 (2.2)* 7.2 (2.1) 5.3 (2.8) 6.5 (2.6) 

Reaction Time (secs): 0.53 (0.04)* 0.59 (0.05) 0.61 (0.04) 0.64 (0.05) 

Vertical Aim Points (cm) -0.03 (0.1)* -0.12 (0.1) -0.06 (0.1) -0.006 (0.1) 

Deviation from Xmg (cm) 0.11 (0.07)  0.18 (0.1) 0.16 (0.1) 0.13 (0.1) 

Variance (cm):     

Horizontal: 2.44 (0.82)* 2.51 (0.93) 2.96 (1.3) 3.69 (1.4) 

Vertical: 4.11 (1.51)* 3.31 (1.25) 4.21 (2.08) 5.05 (2.27) 
 

 

 

Table 1. Descriptive experimental data displayed per age group. Stars in adult column 

indicate that age difference across all groups is significant at p<0.05 
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Model Predictions 

The aiming location XmgYmg that would maximise expected gain given the 

visuomotor precision varX, varY, was computed for each subject and condition 

following the ideal actor / observer model described in Trommershauser et al. (2003a, 

2003b). 4x4 (Age x Condition) ANOVAs revealed that there were no significant 

differences in X or Y variance across conditions, a pattern consistent across age 

groups (largest F Condition and Condition x Age <1.62, p = 0.194). Variance 

estimates for each subject were therefore obtained by pooling data across conditions. 

The expected consequences of aiming towards any given location on the screen were 

modelled as depending on a bivariate Gaussian distribution described by each 

participant’s own X and Y variance. The gain expected from pointing at any location 

is given by a weighted sum of all the possible outcomes, in which each outcome (e.g. 

+1, -5, 0) is multiplied by the probability of a reach landing in a location with this 

outcome. For each participant and condition, we computed the “gain landscape” 

describing the gain expected from aiming for each pixel in a 200x200 grid around the 

target centre (Figure 2); see the Supplemental Material for details. The optimal aiming 

coordinate Xmg,Ymg is at the peak (maximum) of this landscape (Figure 2A, and Figure 

2B, cyan squares), and its height represents the optimal-predicted average gain. In 

Figure 2B, each condition’s gain landscape is overlaid with the stimulus configuration 

(circles), and the empirical distribution of movement end-points from the same 

example adult participant whose X and Y variance was used to calculate the 

landscape. In this participant, the optimal prediction (cyan circle) changes across 

conditions, and the mean of the empirical points (red triangle) follows it closely. 
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Figure 2. A) Gain landscapes from example subject presented with “near” targets on the left 

and “far” targets on the right. These plots show the raw data as collected. For further 

analysis, X-coordinates were flipped into a common orientation so that shifts from the target 

centre away from the penalty area were always positive. For each condition, expected points 

per trial are displayed for each possible aiming location in a 200-pixel square around the 

centre of the target circle. The X-coordinate with the highest expected gain is at the peak of 

each landscape. B) Contour plots of the same data, with overlaid stimuli (large circles). A 

blue square indicates the peak of each gain landscape. Movement end-points on individual 

trials are plotted as black dots, and their means are indicated by red triangles. This subject’s 

mean aiming points fell close to gain maximizing coordinates (blue circles) for all conditions, 

showing that their visuomotor strategies were near-optimal.  
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Results 

 

Reaction times and end-point variances 

Reaction times decreased significantly with age, as revealed by Age x 

Condition ANOVAs (Age: F(3,59)=30.7, p<0.01) and in accordance with age-related 

shortening of individual time-limits (Age: F(3,59)=13.6, p <0.01; see Table 1). Age x 

Condition ANOVAs showed that horizontal and vertical variance also varied with age 

(X: F(3,59)=5.77 ,p=0.002; Y: F(3,59)=3.58, p=0.019), with significantly larger 

variances than adults only for 6- to 7-year-old children for both X and Y (p<0.05 in 

Sidak-corrected post-hoc comparisons; see Table 1). 

 

Do vertical aiming points maximise expected gain? 

The Y-coordinate with the highest predicted score fell at the centre of the 

stimulus configuration (Y0) for all conditions. Accordingly, the height of subjects’ 

aiming-points did not vary by condition (Condition, F(3,57)=1.62, p=0.19; Condition 

x Age. F(9,17)=1.43, p=0.18). Aiming-points did, however, vary significantly with 

Age (F(3,59)=3.58, p=0.019); see Table 1. Post-hoc tests revealed that while adults 

and 6 and 7-year-olds had mean Y-coordinates indistinguishable from the optimal Y0 

(adults: t(14)=-1.44, 6-7: t(14)=-0.33), both p values >0.1), 8 and 9-year-olds and 10 

and 11-year-olds tended to aim slightly below this point (10-11: t(14)=-8.4, p < 0.001; 

8 to 9: t(17)=-2.6, p=0.02). 

 

Do horizontal aiming points maximise expected gain? 

Adults 

To test whether adults were able to find their own gain-maximising coordinate 

by weighting outcome values by their probabilities, we compared their actual and 
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predicted optimal aiming-points (Figure 3). A linear regression (R
2
=0.523, 

F(1,58)=63.51, p<0.001) found a slope of 0.97 and intercept of 0.01 (Figure 3, dashed 

line). These regression parameters closely match those of the identity line with slope 

1 and intercept 0. Adults’ mean X-coordinates thus fell on average extremely close to 

the corresponding predicted gain-maximising coordinates. To find this coordinate in 

each condition’s gain-landscape, subjects should shift their horizontal aiming-points 

further from the target centre when penalty values increase and when penalty and 

target circles are closer together. A 2x2 (Value x Offset) ANOVA revealed that adults 

indeed made these adjustments across conditions (Value, F(1,14)=20.45, p<0.001;  

Offset: F(1,14)=22.7, p < 0.001; interaction not significant, F(1,14)=2.52, p=0.134). 

Moreover, adults shifted by the correct distance to maximise their expected gain given 

their own visuomotor precision; an ANOVA comparing actual and optimal aiming-

points across the four conditions showed that adults’ mean X-coordinates were 

statistically indistinguishable from their gain-maximising X-coordinates (main effect 

of actual-optimal, F(1,14)=0.024, p=0.88; actual-optimal x condition interaction, 

F(1.55,21.7)= 0.058, p=0.91).  

Children 

With age, movement end-points shifted closer towards the gain-maximising 

X-coordinates, and regression slopes for optimal vs actual points (Figure 3) clearly 

became steeper and closer to the identity line. Means (large circles) below the identity 

line indicate that children’s aiming points were on average placed too close to the 

penalty circle to land on the gain-maximising coordinate.  
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Figure 3. Empirical mean X-coordinates (Touched Locations) are plotted against the 

predicted gain-maximising X coordinates (Max Gain Locations) of each condition and 

subject in each age group. Condition means (95% c.i. error bars) are indicated by larger 

symbols. For points falling along the dashed identity line (intercept 0, slope 1), the touched 

and max gain location were identical, so visuomotor strategies were optimal. Points below 

the line are those of subjects who did not place their aiming points far enough from the 

penalty circle to maximise their expected gain; those above the line were placed too far. 

Regression lines were fitted to all data points to visualise differences in movement strategies 

across age. Slopes smaller than one reflect a tendency to undershoot the optimal aiming 

location. 
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A 3-way Actual-Optimal x Condition x Age ANOVA confirmed that distances 

between actual and optimal aiming-points become smaller with age from childhood to 

adulthood (main effect of Actual-Optimal: F(1,59)=54.38, p<0.001; Actual-Optimal x 

Age interaction, F(3,59)=6.68, p = 0.001). Distances between actual and optimal 

aiming-points also varied with condition; they were larger in those conditions for 

which the gain-maximising coordinate required a larger shift from the target centre; 

see Figure 3 (Actual-Optimal x Condition interaction: F(1.4,80.1)=5.9, p=0.01; this 

effect did not depend on age: F(4.1,80.1)=0.78, p=0.54). Follow-up ANOVAs 

revealed that even by ages 10 and 11 years, children’s mean X-coordinates still 

significantly undershot the predicted gain-maximizing location (Actual-Optimal x 

Condition interaction at 10-11 years: F(1,14)=29.28, p<0.001; 8-9 years: 

F(1,17)=18.23, p=0.001; 6-7 years F(1,14)=44.15,p<0.001). Thus, even in relatively 

late childhood, movement strategies were suboptimal, and carried unnecessarily high 

risks of touching the penalty. 

While children up to age 10 and 11 years systematically mis-localised the 

gain-maximising coordinate, some sensitivity to gain landscape changes across 

conditions was already evident by 6 and 7 years. As Figure 3 shows, the order of 

condition means along the y-axis is consistent across groups, so, like adults, children 

shifted their aims away from the target centre as a function of both penalty value and 

offset. ANOVAs found significant effects of both factors at all ages: for Value, 10-11 

years: F(1,14)=7.68, p=0.02; 8-9 years: F(1,17)=23.61, p<0.01 ; 6-7 years 

F(1,14)=5.15, p=0.04; for Offset, 10-11 years: F(1,14)=5.53, p=0.03; 8-9 years: 

F(1,17)=6.87, p=0.02; 6-7 years: F(1,14)=5.63,p=0.03); no interaction in any group, 

largest F=0.20, p = 0.63). The deviation between the optimal and actual aiming point 

in childhood did not significantly depend on whether the low or high penalty was 

presented first (2x2 ANOVAs for Penalty Order x Actual vs Optimal X-coordinate: 
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“near 1”: F(1,42)=3.49, p=0.069, “far 1” F(1,42)=0.79, p=0.38, “near 5”: 

F(1,42)=0.001, p=0.97  “far 5”: F(1,42)=0.19, p=0.67). It is therefore unlikely that 

these sub-optimal aiming strategies were due to rule switching difficulties when 

penalties changed halfway through the task.  

 

Computing versus learning the best action strategy 

Gain-maximising coordinates can be computed directly by weighting outcome 

values by their visuomotor noise-dependent probabilities to estimate the peak of the 

gain landscape (see Figure 2). However, they can also be found by searching for 

aiming points with higher rewards (reinforcement learning). Regression lines fitted 

across the trial time series of each condition for each individual subject revealed 

remarkably consistent aiming strategies throughout the task (one-sample t-tests of 

slope versus 0: All p-values>0.05, with Sidak-correction for 252 comparisons; except 

for one 10 to 11-year-old in the “near 1” condition). So, in line with previous findings 

(Trommershäuser et al., 2003a; 2003b), both adults and children seem to select their 

action strategy early on without apparent learning. 

 

Effects of movement strategies on scores 

Subjects were not explicitly instructed to aim for gain-maximising 

coordinates, but only to score as many points as possible. A crucial question, 

therefore, is whether children’s deviations from gain-maximising X-coordinates did 

indeed result in reduced scores. Otherwise, children might have had little reason to 

choose closer-to-optimal strategies. Solid curves in Figure 4 display for each subject 

and condition how predicted scores decrease as aiming-points depart from the gain- 

maximising coordinate (Xmg, dashed line, at zero on the X-axis). The data points plot 

distances between participants’ actual and gain-maximising X-coordinates against 
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their obtained rewards (mean points per trial). Obtained and model-predicted scores 

are likely to differ somewhat due to noise, since movement end-points are “sampled” 

probabilistically from a subject’s visuomotor distribution. However, most data-points 

fall within the range of the predicted curves, revealing a correspondence between 

model predictions and task performance.  
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Figure 4. Top row: mean deviations from the gain maximising X coordinate (set to x=0, 

indicated by dotted lines). Error bars are 95% confidence intervals. Positive (right) and 

negative (left) deviations reflect, respectively, mean aiming points falling too far away from, 

or too close to the penalty area to land on the gain-maximising coordinate. Bottom four 

rows: curves plot predicted scores for each subject across aiming points deviating relative to 

the optimal aiming location (dotted line, 0 deviation). Numbers next to dotted lines are the 

mean optimal aiming point (in cm, with respect to the target centre) for the age group and 

condition. Scattered data points are individual subjects’ actual deviations from Xmaxgain 

plotted against their actual obtained points per trial. 
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Expected gain curves are asymmetrical, with lower predicted scores for 

movement end-points undershooting the gain-maximising coordinate (left of the peak) 

than for those shifting too far (right of the peak) by the same distance. In childhood 

(three bottom rows), many end-points fall left of the peak (closer to the penalty), at X-

coordinates with relatively lower predicted scores. Obtained scores are accordingly 

lower. In contrast, adult movement end-points (second row in Figure 4) are clustered 

around the peaks of the gain landscapes, along aiming locations with high associated 

gain. Note however, that scores are not only determined by whether movement end-

points undershoot or overshoot the peak on average (each group’s bias), but also by 

how this varies across individuals (each group’s variance). These deviations from the 

optimal aiming point are captured by the points and error bars in Figure 4 (top panel), 

the spread of data points in Figures 3 and 4, and the absolute deviation from Xmg in 

Table 2. The spread of end points in adults reveals that even some mature subjects 

missed their optimal coordinate by some distance. Indeed, mean absolute deviations 

from the gain-maximising location in Table 2 are smallest in adults, but only slightly 

smaller than in children. Consequently, even adults may not score 100% of their 

predicted maximum on average. Tukey’s Posthoc Tests revealed that adults have 

smaller mean absolute deviations than 8 and 9- and 10 and 11-year-olds (p = 0.35 and 

0.01 respectively), but not than 6 and 7-year-olds (p = 0.42). Therefore, any 

differences in score between the oldest and youngest groups will mainly be due to a 

different directional bias in movement selection (i.e., aiming too close to penalty at 

ages 6-7). 

To test whether age groups differed significantly in their abilities to maximise 

gain, scores were expressed as percentages of the predicted maximum score (Figure 

5) and compared in a 2-way ANOVA (Condition x Age). In line with the more sub-

optimal aiming-points selected at younger ages, scoring efficiency decreased 
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significantly with age (F(3,59)=5.07, p = 0.003), but this effect was modulated by 

condition (Age x Condition: F(3.8,73.9)=2.91, p = 0.03). Follow-up ANOVAs showed 

that scores only significantly differed by age in the “near 5” condition with the 

steepest gain landscape; “near 5” condition: F(3,59)=3.78, p=0.015, all other 

conditions: largest F <1.44, p = 0.24). In the “near 5” condition, all three child groups 

scored significantly below their optimal predictions (10-11 years: t(14)= -4.20, p = 

0.01 8-9 years: t(17)=-2.56, p =0.02, 6-7 years: t(14)=-3.20, p=0.006). Adults showed 

a non-significant trend towards a sub-optimal mean score in this condition (t(14)=-

1.89, p = 0.08).  

In sum, these findings clearly show that children aged 6 to 11 years chose 

reaching strategies with an overly high risk of hitting the penalty circle, and that this 

had detrimental effects on the rewards they obtained. For example, 6 and 7-year-olds 

won less than 50% of their potential points in the most challenging condition (Figure 

5). Additional control tasks were conducted to understand why children aimed so 

“dangerously” close to the penalty area (a risk-seeking strategy)  
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Figure 5: Mean (95% c.i. bars) of individuals’ actual scores expressed as a percentage of 

their own highest expected (optimally-predicted) scores. At 100%, obtained and highest 

expected scores are identical.  
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Do younger subjects distort outcome values? 

Young children often show nonlinearities in their understanding of number, 

typically underestimating larger values (Booth & Siegler, 2006). In the reaching task, 

this could lead to underestimation of the severity of larger penalties (5 points) and to 

subsequent underestimation of the shift in pointing required to maximise expected 

gain - the reaching pattern found in childhood. To test if value distortion explained 

children’s reaching behaviour, two measures of value representation were obtained. In 

a number line task, subjects indicated where the numbers 1 to 5 belong on a number 

line between 0 and 10; see Supplemental Methods for details. Younger subjects’ 

responses were compressed towards the lower end of the scale, indicating 

underestimation of numerical distance (Figure 6A). Accordingly, the root of the mean 

squared error (RMSE) of indicated versus true numerical distance became smaller 

with age (r=-0.60, p<0.001). However, this summary measure of numerical distance 

distortion did not predict subjects’ visuomotor strategies: the correlation of RMSE 

with absolute deviation between Xmean and Xopt was not significant for any single 

condition, or for the mean of all conditions (r<0.09, p<0.47), and hence did not 

explain performance on the reaching task. 
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Figure 6. A) Mean (95 c.i.  error bars) estimated numerical distance on number line is 

plotted against true numerical distance for each group. The dashed identity line indicates 

accurate numerical distance representation. Data points under this line reflect 

underestimation of true numerical distance. B) Mean proportion of times the variable sum 

(x-axis) was preferred over the standard sum (5pts x 1) when asked “which amount would 

you rather lose?” Cumulative Gaussians are fitted through the data points of each group. 

Points of subjective equality (dashed lines) measure how many multiples of 1 subjects were 

as willing to lose as a single 5. C) For each group, mean (95 c.i.  error bars) estimated 

probabilities of hitting circles of different sizes are plotted against their true probabilities of 

hitting these circles. The dashed identity line indicates accurate probability estimates. Data 

points under this line reflect underestimation of own precision, and points above the line 

overestimation. 
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Correct value comparisons between gains and losses crucially relied on 

understanding the relative value of quantities 1 and 5. Therefore, in a multiplication 

task, subjects judged whether they would rather lose 5 points once, or 1 point multiple 

times (e.g. 1 point, 6 times); see Supplemental Methods for details. Cumulative 

Gaussians were fitted to proportions of trials on which participants preferred to lose 

the variable multiple (e.g. 1 point, 6 times) over losing 5 points; Figure 6B. The point 

of subjective equality (PSEs) of these functions, at which the probability of answering 

either way is 0.5, measures the multiple of 1 that participants are as willing to lose as 

a single 5. The PSE in Figure 6B falls very close to the correct multiple of 5 for all 

age groups (adults: 5.02, 10-11: 4.95, 8-9: 4.95, 6-7: 5.00), revealing that the impact 

of losing 5 points compared to winning multiples of 1 point was judged close to 

accurately at all ages. Both tasks thus suggest that point value distortions are an 

unlikely cause of the sub-optimal reaching choices in childhood.  

 

Do younger subjects distort outcome probabilities? 

Forming stable representations of visuomotor skills still under development 

might be challenging; if younger subjects distorted outcome probabilities by 

underestimating their own pointing variance varX, this would lead them to 

underestimate the shift from penalty required to maximise their winnings. To test if 

probability distortions explained children’s tendency to undershoot the gain-

maximising coordinate, subjects’ understanding of their own visuomotor precision 

was measured after the main experiment. Participants gave verbal estimates of how 

many times out of 10 they could hit target circles of different sizes with the same 

setup and time limit as in the reaching task; see Supplemental Methods for details. In 

Figure 6C, mean judged probabilities are plotted against true probabilities of hitting 

each circle. As visualised in the graph, explicit judgments of visuomotor skill were on 
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average close to accurate at all ages, with slight tendencies to overestimate small 

probabilities and to underestimate large probabilities. Importantly, younger subjects 

did not overestimate their chances of hitting target circles compared with adults, but 

showed similar probability distortions. This is in line with other findings of adult-like 

event probability judgements in childhood (Boyer, 2006; Moutsiana et al., 2013). 

There was no evidence for overly high confidence in own visuomotor precision in 

childhood, suggesting that this factor cannot explain the development of optimal 

visuomotor decision-making. 

 

Discussion 

To advance understanding of when and how optimal visuomotor decision-

making develops in childhood, 6- to 11-year-olds and adults were asked to rapidly 

reach towards targets to win as many points as possible, whilst avoiding touching an 

overlapping penalty area. Because time was limited, movement end-points were 

imprecise, placing probabilities on missing or hitting the target and penalty. The 

implicit task was to locate the aiming point giving the highest expected score by 

accounting for this imprecision. By quizzing subjects about the point rules between 

blocks, we ensured that all could remember these throughout the experiment. To 

maximise their expected winnings, subjects should shift their aiming points further 

from the penalty area when penalties were greater and closer to the target. The precise 

amount of shift required to optimise performance depended on each participant’s own 

visuomotor precision.  

Sensitivity to changes in gain landscapes across conditions was already 

present at 6 and 7 years; all age groups adjusted their movement end points in 

response to changes in both penalty value and offset. However, the ability to correctly 

determine the exact degree of adjustment required to maximise expected gain, 
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depending on these factors and on participants’ own visuomotor precision, did not 

develop until much later. Unlike adults, even the oldest (10 and 11 year-old) group of 

children still differed significantly from optimal. Children of all ages displayed a 

group-level tendency to place movement end-points too close to the penalty circle to 

maximise their scores (see Figure 3) resulting in larger deviations from the gain-

maximising strategy in childhood. Choosing end-points too close to the penalty region 

can be described as risk-seeking, because this comes with overly high risks of hitting 

the penalty circle and losing points. This sub-optimal strategy had a dramatic impact 

on the rewards won in the study, particularly in the “near 5” condition, which 

presented the steepest gain landscape (Figure 4). Here children’s systematic 

“undershoot” incurred a heavy penalty (Figure 4); unlike adults, who obtained on 

average >90% of their theoretical maximum score, 6 and 7-year-old children obtained 

as little as ~40% (Figure 5).  

What can explain the shift from overly risky visuomotor decision-making in 

childhood to close to optimal visuomotor decision-making in adulthood? The most 

punishing condition (near 5) only comprised 25% of the trials. Did children stick with 

risk-seeking strategies because they were not sufficiently motivated to optimise their 

scores? This is not supported by the data; ANOVAs revealed that children were 

sufficiently motivated to change their aiming strategy across conditions - only, they 

systematically placed their new aiming points too close to the penalty area. Further 

analyses revealed that this was not due to difficulties with switching between penalty 

rules or slower learning of where in the display most points could be won at younger 

ages. The patterns of children’s errors could reflect specific distortions in estimates of 

outcome values or probabilities (underestimation and overestimation respectively). 

However, control tasks measuring value representation and understanding of own 

visuomotor precision (Figure 6A-C) provided no evidence for such distortions. While 
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more research is needed to investigate how children represent the outcomes of their 

actions and the associated probabilities, these measures strongly suggest that their 

suboptimal visuomotor decisions in this reaching task were not driven by inaccurate 

value or probability estimates. Children’s risky aiming strategies therefore likely 

reflect immature decision-making processes. 

This leaves us with two interesting explanations. Firstly, sub-optimal reaching 

might result from incorrect computation of the optimal strategy by weighting of 

outcome values by probabilities. Immature weighted averaging would be in line with 

recent developmental studies showing that abilities to average multiple sensory 

estimates to make optimal perceptual decisions are still developing until the 8
th

-11
th

 

year of life (Gori et al., 2008; M. Nardini et al., 2010). Those results come from un-

rewarded psychophysical tasks, and the present findings raise the possibility that 

mechanisms driving this development may also affect visuomotor processing in 

relation to external cost factors.  

Alternatively, children might be able to compute the gain-maximising strategy, 

but not employ this information to optimise performance. Instead, they might pursue 

goals other than maximising gain, such as striving for variation in the results of their 

reaches or fulfilling a desire to hit the target as often as possible, irrespective of 

overall winnings. Both could lead to avoidance of more conservative strategies with 

higher score expectations (for similar explanations of risk-taking in rhesus monkeys, 

see Hayden, Heilbronner, Nair, & Platt, 2008). Preferring risky actions could be 

adaptive for a developing system, in creating more opportunities to learn about 

consequences of behaviour (Schneider, Hanne, & Lehmann, 1989). Children’s 

visuomotor strategies could thus be gain-maximising in the long run, if the future gain 

provided by learning outweighs the rewards lost during the experimental task.  
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To better understand the underlying representations and mechanisms, future 

studies should compare how the expected gain of an embodied gamble is represented 

in the developing brain. In adults, for example, increasing the expected value of a 

“classic” gamble yields parametric activation increases in brain regions associated 

with reward and decision-making, such as the ventral striatum and orbitofrontal 

cortex (e.g., Peters & Büchel, 2010; Rolls, McCabe, & Redoute, 2008). In 

adolescents, some of these areas are overly responsive to expected gain in line with 

their behavioural preference for risky gambles (Barkley-Levenson & Galván, 2014). 

If children are still developing the ability to combine visuomotor and cost information 

into an accurate expected gain estimate, similar age-differences should be present in 

brain areas representing the expected gain of a visuomotor choice.  

This work significantly extends findings from other decision-making domains; 

It was recently proposed that classical and visuomotor decision-making rely on 

different neural mechanisms because adults show near-optimal performance in the 

visuomotor domain but display well-known value and probability distortions when 

making equivalent choices in a gambling task (Wu, Delgado, & Maloney, 2009). This 

dissociation has been called into question however, and differences in performance 

have instead been ascribed to differences in task (Jarvstad, Hahn, Rushton, & Warren, 

2013). In line with current findings in the visuomotor domain, children’s choices 

during classic gambles have also been characterised as risk-seeking (Harbaugh, 

Krause, & Vesterlund, 2002; Levin, Hart, Weller, & Harshman, 2007; Paulsen, Platt, 

Huettel, & Brannon, 2011). This raises the intriguing possibility of a common 

developmental mechanism configuring both classic- and visuomotor decision-making. 

If development were indeed linked across domains, this would provide strong 

evidence for a shared underlying process. An important next step would therefore be 
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to directly compare the development of classic and embodied gambling within 

subjects using well-matched tasks.  

 In sum, we found a clear, age-related shift towards more optimal visuomotor 

decision-making across childhood and adulthood, with overly risk-seeking action 

selection between ages 6 to 11 years. Choosing actions with overly high risks of 

negative results in real-life visuomotor tasks can clearly be dangerous, and could be a 

factor significantly contributing to higher accident rates in childhood (Kingma, 1994; 

Sethi, 2008).  
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Supplementary Methods  

 
 

Time limit selection procedure during practice 

After an initial block allowing unlimited time, participants were introduced to 

a time limit of 1 second for the following block. In this and in subsequent training 

blocks, participants were encouraged to hit targets within the time limit. Following a 

block in which subjects attained a 90% (18/20) or better hit rate, and did not “time 

out” (exceed the time limit), the time limit decreased; first to 0.9 and then further in 

0.05-second intervals. Otherwise, the same time was repeated for the next block. The 

time limit reached two blocks before the end was repeated for the final two training 

blocks and used in the experiment. In total, there were 13 blocks for adults and 15 

blocks for children. 

 

 

Removal of outliers  

 

The FAST-MCD algorithm (Rousseeuw & Driessen, 1999) as implemented in 

the Libra toolbox for Matlab (Verboven & Hubert, 2005) was used to remove outliers 

from the response distribution. Specifically, the “robust” Mahalanobis distance of 

each data point was computed based on robust estimates of the mean and covariance 

matrix (assuming 1% of aberrant responses; α = 0.99), and significant outliers 

(exceeding a cut-off distance of   = 2.72) were identified for exclusion. 

Percentage of outliers adults: 5.1% (SD: 1.1%), 10-11 years: 5.1% (SD: 1.2%), 8-9 

years: 5.3% (SD: 1.1%), 6-7 years: 5% (SD: 1%). 

 

 

Computing individual gain landscapes 
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The probability of hitting a circular area with radius R when aiming at point 

XpYq on the screen with distance D from the circle centre can be calculated by 

centring the subject’s bivariate Gaussian response distribution on the XpYq coordinate, 

and calculating the area under the distribution overlapping with the circle. The 

integral of the response distribution across the penalty circle and target circle was thus 

computed for each possible aiming point XpYq inside a 200x200 pixel square around 

the target centre. The aiming point XmgYmg that maximizes expected gain for a given 

condition is the point with the highest expected score per trial, given by Ptarget * gain 

target + Ppenalty * gain penalty. Expected point loss due to timing out can be ignored, 

assuming that time out probabilities are roughly equivalent across all aiming 

locations. 

 

Number line task (measuring value distortion) 

All subjects took part in a pencil-and-paper number-line task. On each trial, subjects 

were asked to use a pencil to indicate, with a line, where on a bar of length 10 cm a 

number would fall. The left and right ends of the bar were labelled 0 and 10 

respectively, and the numbers 1-5 were tested 10 times each, with numbers 

randomised within each block. The marked locations were measured and compared 

with the locations predicted by a linear representation of the number line (e.g. the 

number 4 would fall at 0.4 of the length of the 10cm line, at 4cm). 

 

Multiplication task (measuring value distortion) 

All subjects took part in a 2-alternative forced choice task with 35 trials. On each trial 

subjects made a judgment about a pair of values (there were 7 repetitions of 5 pairs). 

Each pair consisted of the standard value of “5 points x 1”, and a comparison in which 

“1 point” was multiplied with the values 3 to 7 (“1 point x 3”, “1 point x 4”, etc). For 
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each pair, subjects were asked to select the value they would prefer to lose (the correct 

answer was therefore the lower value). For example: would you prefer to lose 5 points 

once (5 x 1), or to lose 1 point four times (1 x 4)? The task was described in terms of 

losses to best match the penalty situation in the main experiment. To make the 

problem concrete, subjects received 10 stickers or snacks and were informed that one 

of their answers, randomly drawn at the end of the task, would determine how many 

they would have to give back. For each age group and comparison value, we counted 

how often the constant sum was chosen over the variable sum. We used the standard 

psychophysical method of fitting a cumulative Gaussian distribution through the 

resulting proportions (using the Psignifit toolbox for Matlab), and determining the 

Point of Subjective Equality (PSE); see Figure 6B. The PSE is the point along the X-

axis at which the comparison and standard are chosen with equal (0.5) probability, 

and therefore measures the point at which they are, on average, judged to be equal. 

Deviations of the PSE from the correct value of 5 (1 x 5) thus provide information 

about systematic under- or overestimations of the value of losing 5 points relative to 

the value of losing 1 point multiple times.  

 

Hit probability task (measuring probability distortion) 

Subjects were presented with 5 circle sizes in a display like that used in the 

experiment. In 10 blocks, all circles were presented in random order (50 repetitions in 

total). The circles were presented in isolation (without an overlapping penalty circle), 

and their locations were jittered as in the experiment. Circle sizes were scaled 

individually for each subject based on their own visuomotor variance measured 

during the main task. The five circle sizes seen by each subject corresponded to hit 

probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9. On each trial, subjects judged “how many 

times out of 10” they would successfully hit the circle, from the same position and 
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with the same time constraint used in the main experiment. This provided their 

estimate of probability of hitting (e.g. “5 out of 10” = 0.5). These judged probabilities 

were averaged over 10 trials. Mean judged probabilities were averaged across all 

subjects in an age group, and plotted (Fig. 6C) with 95% error bars against the true 

probabilities for comparison with the identity (1:1) line.  
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