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In very high energy scattering events, production of multiple Higgs and electroweak gauge bosons
becomes possible. Indeed the perturbative cross section for these processes grows with increasing energy,
eventually violating perturbative unitarity. In addition to perturbative unitarity we also examine constraints
on high multiplicity processes arising from experimentally measured quantities. These include the shape of
the Z-peak and upper limits on scattering cross sections of cosmic rays. We find that the rate of high
multiplicity electroweak processes will exceed these upper limits at energies not significantly above what
can be currently tested experimentally. This leaves two options: (1) The electroweak sector becomes truly
nonperturbative in this regime or (2) additional physics beyond the standard model is needed. In both cases
novel physics phenomena must set in before these energies are reached. Based on the measured Higgs mass
we estimate the critical energy to be in the range of 103 TeV but we also point out that it can potentially be
significantly less than that.
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I. INTRODUCTION

Already before turning on the LHC we knew we would
find something new. Famously the argument [1] was that
either there is a Higgs boson with a mass below ∼1 TeV,
new physics beyond the standard model, or scattering
processes between electroweak gauge bosons becomes
nonperturbative. One of the three options had to be realized
because otherwise perturbative cross sections for
VV → VV scattering would violate unitarity. Indeed this
question has been answered by the observation of a Higgs
boson at 125 GeV.
Of course one can now ask whether the standard model

including the Higgs is valid and perturbative up to
arbitrarily high energies. The measured Higgs mass of
125 GeV already points to the possibility that the Higgs
potential becomes metastable at a scale of about 1010 GeV,
unless new stabilizing effects appear [2]. However, this
scale is unobtainable in particle collider experiments.
Building on previous results [3–12] (for reviews see

[13,14]) we argue that perturbative unitarity, now for
H → nH þmV or V → nH þmV production with
nþm ⋙ 1, provides once again a limit on the onset of
new phenomena—either nonperturbative behavior or new
physics beyond the standard model. Using the measured
value of the Higgs mass we find that this must happen at
energies lower than 1570 TeV for a very conservative
estimate of the cross section, and at energies ≲812 TeV for
a more realistic one. We will also show how with a more

speculative and optimistic interpretation, the limit might be
lowered to ≲35 TeV.
The standard unitarity and perturbativity arguments are

formal statements which involve unknown, possibly large
constants. Therefore we also consider two more physical
arguments. The first considers the spectral representation
of the propagator in terms of 1 → n matrix elements.
Considering the experimentally tested and testable low
energy behavior of the propagator we can infer a limit on
the maximal size of matrix elements. An even more direct
bound can be obtained by looking at the cross section of the
process VV → nH þmV with both V on shell. This is a
proper physical scattering process. We argue that this cross
section rises rapidly with energy and at a reasonably low
energy even exceeds the size of the Universe. Now, if any
combination of suitable particles, such as protons, exceeds
the required center of mass energy, it would immediately
scatter and be turned into many Higgses and vector bosons
with lower energies, thereby providing an effective limit on
the maximal energy of cosmic rays which is not observed.
We slightly refine this argument based on the observed flux
of cosmic rays and find the scale for new phenomena to be
≲830 TeV (≲1590 TeV for a more conservative estimate
of the cross section).
All these estimates are based on relatively conservative

approximations for the cross sections. As we discuss in the
conclusions the onset of new phenomena can occur con-
siderably earlier.
This note is structured as follows. In Sec. II we discuss

limits on rising scattering amplitudes and cross sections
from unitarity, perturbativity, the low energy behavior of
the propagator and cosmic ray physics. In Sec. III we apply
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these limits in a somewhat naive manner to derive a first
estimate of the scale at which new physical phenomena
must occur. To do this we consider the production of a large
number of Higgses but also combinations of Higgs and
vector bosons. We turn to more proper physical scattering
processes needed for the limit based on cosmic rays in
Sec. IV. We conclude in Sec. V with a discussion on
possible implications for observation and experiment.

II. LIMITS ON LARGE AND RISING AMPLITUDES
AND CROSS SECTIONS

A. Unitarity and perturbativity arguments

For any process unitarity is nothing but the statement
that the probability of something happening should not
exceed 1,

1 ≥
X
n≠a

jMða → nÞj2: ð2:1Þ

In other words the sum over all matrix elements squared
should not exceed 1.

For the matrix elements this can be seen from the optical
theorem (which follows directly from the unitarity of the
S-matrix and the definition of the matrix elements),

2Im½Mða→ aÞ� ¼
X
n

jMða→ nÞj2

¼ jMða→ aÞj2 þ
X
n≠a

jMða→ nÞj2: ð2:2Þ

This can be rewritten to read

− ðIm½Mða → aÞ� − 1Þ2 − ðRe½Mða → aÞ�Þ2 þ 1

¼
X
n≠a

jMða → nÞj2 ð2:3Þ

which leads to the limit Eq. (2.1).
For scattering processes one could be tempted to equate

the right-hand side with the phase space integrated matrix
elements for n particle final states, starting from an a
particle state,

X
n

Z
dΠjMj2 ¼

X
n

�Yn
i¼1

Z
d3pi

ð2πÞ3Ei

�
jMðk1;…; ka → p1;…; pnÞj2ð2πÞ4δ

�X
ki −

X
pi

�
: ð2:4Þ

One could now naively apply the limit Eq. (2.1) to this
expression. We call this “naive unitarity” limit,

X
n

Z
dΠjMj2 ≤ 1: ð2:5Þ

However for infinite volumes and times there are
normalization issues and the naive unitarity limit is not
strict. To see this let us consider the scattering of two
particles. The elastic part can be decomposed into partial
waves corresponding to angular momentum eigenstates; it
then reads

Melasticð2 → 2Þ
¼

X
l

16πð2lþ 1ÞalPlðcosðθÞÞ; ð2:6Þ

where Pl are Legendre polynomials and al is the partial
wave amplitude.
We can now insert this into Eq. (2.2). On the left-hand

side of Eq. (2.2) we have the amplitude for no change to the
state at all; therefore θ ¼ 0. On the right-hand side for the
elastic part we can integrate over the scattering angle. This
yields

2Im

�
16π

X
l

ð2lþ 1Þal
�
¼ 32π

X
l

ð2lþ 1Þjalj2 þ
X

n;inelastic

Z
dΠjMj2: ð2:7Þ

The sum over l has infinitely many terms. Therefore the simple argument does not work. This can be seen by bringing all
elastic terms to the right-hand side,

32π
X
l

ð2lþ 1Þ
�
−
�
Imal −

1

2

�
2

− ðRealÞ2 þ
1

4

�
¼

X
n;inelastic

Z
dΠjMj2: ð2:8Þ

Each partial wave can now ideally contributeþ1=4 and the sum can reach arbitrary values. Accordingly the inelastic part is
not directly constrained. Nevertheless, if we could argue that only a finite number of partial lmax waves contributes, we
would have
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X
n;inelastic

Z
dΠjMj2 ≤ 8πðlmax þ 1Þ2: ð2:9Þ

Up to a (potentially large or even infinite) factor
8πðlmax þ 1Þ2, this is the naive unitarity bound.
An alternative argument can be made that at least

perturbativity breaks down in some sense. The cross section
for a typical tree-level 2 → 2 scattering process is

σtyp ∼
g2

4π

1

s
; ð2:10Þ

with some coupling g which should be small. Roughly
speaking this scattering becomes nonperturbative for

g ∼ 4π: ð2:11Þ
We can now compare this to the total inelastic cross section,

σinelastic ¼
1

2s

X
n;inelastic

Z
dΠjMj2: ð2:12Þ

They are of similar size for

X
n;inelastic

Z
dΠjMj2 ∼ 8π; so that σinelastic ∼

4π

s
:

ð2:13Þ
When the bound (2.13) is saturated it is reasonable to
expect that some nonperturbative behavior sets in.
Another similar well-motivated limit1 can be written

down for the WW cross section in the gauge-Higgs theory,

in terms of the “geometric” cross section for scattering of
two vector bosons of the transverse size ∼1=MW ,

σWW ≲ 4π2

M2
W
: ð2:14Þ

Essentially vector bosons undergo weak scattering only
when within a distance of ∼1=MW from each other because
their masses ensure that weak interactions are short range.
When the predicted cross section exceeds this bound,
something nontrivial or nonperturbative should happen
to either fix it or explain the effect. In practical terms,
both these perturbative unitarity limits will lead to similar
energy upper bounds on the growing cross sections at high
multiplicity.

B. Low energy behavior of the propagator
and optimal truncation

The unitarity limits we have discussed so far are some-
what formal in the sense that they are not directly linked
with observation. Let us therefore look at more phenom-
enological arguments.
An observable quantity is the propagator in momentum

space,

ΔðpÞ ¼
Z

d4x expðipxÞh0jTϕðxÞϕð0Þj0i

¼
Z

∞

0

ds
ρðsÞ
p2 − s

; ð2:15Þ

where we have used the Källén-Lehmann spectral repre-
sentation, and ρðsÞ is the spectral density,

ρðsÞ ¼
X
n

jh0jϕjnij2δ
� ffiffiffi

s
p

−
Xn
i¼1

pi

�

¼
X
n

Z
dΠjMð1 → nÞj2ðsÞ ¼ Zδðs −m2

ϕÞ þ
X
n≥2

Z
dΠjMð1 → nÞj2ðsÞ: ð2:16Þ

The right-hand side therefore contains exactly the phase
space integrated matrix elements for off-shell 1 → n
processes with energy

ffiffiffi
s

p
. Plugging (2.16) into the equa-

tion for the propagator we obtain

ΔðpÞ ¼ Zϕ

p2 −m2
ϕ

þ
X
n≥2

Z
∞

ðnmϕÞ2
ds

R
dΠjMð1 → nÞj2ðsÞ

p2 − s
:

ð2:17Þ
For jp2j < 4m2

ϕ the second term on the right-hand side
gives a nonsingular contribution to the propagator; the

residue of the propagator pole is entirely determined by the
first term.
The probability rates for 1 → n processes thus appear in

(2.17) as the higher order corrections to the propagator. One
can now argue [14] that to guarantee perturbativity, or more
precisely asymptotic behavior of the perturbation series, the
higher order terms in n on the right-hand side of (2.17)
should not be too large. Indeed a common heuristic [15]
suggests that the optimal point for the truncation of an
asymptotic series is at the order which gives the smallest
contribution, i.e. just before the higher order terms start to
grow (and ultimately diverge). In our case this would be
at the point where for a given energy the phase space
integrated matrix elements on the right-hand side of1We thank Gavin Salam for pointing this out to us.
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Eq. (2.16) start to grow with n. The lowest energy when this
happens would give us the scale where a nonperturbative
repair mechanism should set in.
However, if there is no repair mechanism within the

theory, there is no obvious reason why the new effects
should set in at the “optimal truncation point.” Indeed repair
by new physics could set in earlier or later than that.
Nevertheless, the cure must happen before it spoils current

observations and experiments. So let us now turn to such
more direct limits.
High multiplicity processes start to contribute only at

high energies. Indeed a process 1 → n only sets in at an
energy

ffiffiffi
s

p ¼ nmϕ with mϕ being the mass of the produced

particle. Let us now consider the contribution of such a
process to the propagator,

Z
∞

ðnmϕÞ2
ds

R
dΠjMð1 → nÞj2ðsÞ

p2 − s
≈ −

1

m2
ϕ

�
m2

ϕ

Z
∞

ðnmϕÞ2
ds

R
dΠjMð1 → nÞj2ðsÞ

s

�

−
p2

m4
ϕ

�
m4

ϕ

Z
∞

ðnmϕÞ2
ds

R
dΠjMð1 → nÞj2ðsÞ

s2

�
þ…:

¼ 1

m2
ϕ

C1 þ
p2

m4
ϕ

C2 þ… ð2:18Þ

On the right-hand side we have expanded in powers of p2

and this expansion should be reasonable as long as
p2 ≪ ðnmϕÞ2.
For small momenta p2 ∼m2

ϕ we should not observe
strong deviations from the perturbative behavior

ΔðpÞperturbative ∼
1

p2 −m2
ϕ

: ð2:19Þ

Let us consider only the deviation from this behavior
caused by the 1 → n process for a given fixed n,

ΔðpÞ ¼ ΔðpÞperturbative þ
1

m2
ϕ

C1 þ
p2

m4
ϕ

C2;

for p2 ≪ ðnmϕÞ2: ð2:20Þ

The last two terms on the right-hand side should be small in
order not to be in conflict with present experiments.
To quantify this, let us consider the case where ϕ is the

Z-boson. Taking into account the Z-width ΓZ the relevant
observable is essentially the absolute value of the propa-
gator squared which should give us the Breit-Wigner shape
of the Z-boson, observed at LEP,

σðEÞ ∼ 1

ðE2 −m2
ZÞ2 þm2

ZΓ2
Z
þ 2Re

� 1
m2

Z
C1 þ E2

m4
Z
C2

ðm2
Z − E2Þ þ imZΓZ

�

þ
�

1

m2
Z
C1 þ

E2

m4
Z
C2

�
2

; ð2:21Þ

where σðEÞ is, e.g., the cross section for eþe− → hadrons
near the Z-peak.
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FIG. 1 (color online). The Breit-Wigner form of the Z-peak (normalized to 1) and modifications caused by unsuppressed high
multiplicity processes. The black curve shows the standard Breit-Wigner shape, red corresponds to C1 ¼ 2; C2 ¼ 0 and blue to
C1 ¼ 2; C2 ¼ 2. The left panel shows the immediate vicinity of the Z-mass. A larger region is shown in the right panel. Such large
deviations are excluded by observation [16].
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In Fig. 1 we show the deviations caused to the Breit-
Wigner shape for different C1 ∼ C2 ∼ 1. Such strong devia-
tions are in conflict with the experiment [16]. Accordingly
we can limit

jC1j ¼
����m2

ϕ

Z
∞

ðnmϕÞ2
ds

R
dΠjMð1 → nÞj2ðsÞ

s

����≲ 1

jC2j ¼
����m4

ϕ

Z
∞

ðnmϕÞ2
ds

R
dΠjMð1 → nÞj2ðsÞ

s2

����≲ 1: ð2:22Þ

C. Cosmic ray limit

The considerations above based on the shape of the
resonance have provided indirect constraints on the high
multiplicity processes which in this context appear as
higher order corrections. Yet, if we consider direct tree-
level scattering with high multiplicity–2 → n–events, they
are the leading order contribution. We would like to obtain
a direct limit on the cross sections and consequently on the
matrix elements for such processes.
Observations tell us that there is a significant flux of

cosmic rays arriving at Earth from essentially all possible
directions. The main components are typically protons and
heavier nuclei.
Now, let us assume that the effective cross section for the

inelastic scattering of two cosmic rays is of the size of the
Universe. Then two cosmic rays flying in opposite direc-
tions could never pass each other without undergoing an
inelastic scattering, thereby loosing a significant amount of
energy. This severely limits the distance a cosmic ray can
travel. Even if there was only one cosmic ray per year flying
in a certain direction, a cosmic ray traveling in the opposite
direction would typically scatter every year, thereby losing
its energy. In consequence high energy cosmic rays would
be severely attenuated in conflict with observation.
More quantitatively the flux of cosmic rays is usually

given as

F ¼ dN
dtdAdΩdE

; ð2:23Þ

i.e. it is the number of cosmic rays dN, per time dt, per area
dA and per spatial angle dΩ.
A cosmic ray traveling in a fixed direction now sees an

incoming density of cosmic rays flying in essentially the
opposite direction and with roughly the same energy,

ρincoming ∼ FΔΩΔE: ð2:24Þ

Accordingly the mean free path is

lMFP ∼
1

σðEÞρincoming
¼ 1

σðEÞ
1

FΔΩΔE
; ð2:25Þ

and cosmic rays sourced at distances greater than lMFP
would be severely attenuated. We can therefore limit the
maximal allowed cross section for a given energy E as

σðEÞ ≲ 1

lMFPFΔEΔΩ
: ð2:26Þ

Using the measured flux of cosmic rays (cf. e.g. [17]) and
very conservative values for ΔE ∼ 1 GeV and ΔΩ ∼
10−4 sr as well as lMFP ∼ 1 lightyear we find the limit
on the cross sections shown in the left panel of Fig. 2.
With

X
n;inelastic

Z
dΠjMj2 ¼ 2sσinelastic ð2:27Þ

we can translate this into the limits on the integrated matrix
elements shown in the right panel of Fig. 2.
This limit on the matrix elements is many orders of

magnitude weaker than the naive perturbative unitarity
limit. But as we will see below, the cross sections for high
multiplicity Higgs and vector boson production rise so
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FIG. 2 (color online). Limits on the cross section and phase space integrated matrix element from the observation of cosmic rays.
Assuming a minimal source distance of incoming cosmic rays of ≳1 lightyear.
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rapidly that this has actually only a relatively small impact
on the energy scale at which new phenomena must occur.
Our limit from cosmic rays is strictly speaking a limit on

the 2 → n matrix elements, for on-shell initial states. In the
following section we ignore the limitation, looking at
simpler 1 → n matrix elements. We return with more
details on the 2 → n case in Sec. IV.

III. THE SCALE WHEN NEW PHYSICAL
PHENOMENA MUST OCCUR

Let us now apply the limits derived in the previous
section to matrix elements for multiple Higgs and vector
boson production. It has already been noted in [3–12] that
these matrix elements grow rapidly signaling a breakdown

in perturbation theory. Indeed as argued above some form
of new phenomenon—either nonperturbative behavior, or
the appearance of physics beyond the standard model—
must occur before the integrated matrix exceed their limits.
The simplest case is the matrix element for H → nH

processes (where the initialH is off shell). At tree level one
can obtain this amplitude purely from scalar field theory. In
[8] a lower limit on the phase space integrated matrix
element squared for this process has been obtained,

Z
dΠjMj2 ≳ exp

�
32π2

3λ
f

�
; ð3:1Þ

where the function

f ¼ αν

�
logðαÞ þ logðνÞ − 1þ log

�Z
ω

1

dz expð−zτÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p �
− 2 logðωÞ

�
þ ατ ð3:2Þ

has to be evaluated at τ and ω which solve

ν ¼
R
ω
1 dz expð−zτÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
R
ω
1 dz expð−zτÞz

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p ;

0 ¼
Z

ω

1

dz expð−zτÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
−
1

2
expð−ωτÞω

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 1

p
:

ð3:3Þ

Moreover we have

α ¼ E
mh

3λ

32π2
; ν ¼ nmh

E
: ð3:4Þ

Numerically one can determine that f exceeds zero for
a suitable choice of ν for α ¼ 15.4 and it exceeds
40 log½10� × 3λ=ð32π2Þ for the slightly larger value of
α ¼ 15.6. According to Eq. (3.1) at these points the phase
space integrated matrix elements exceed the naive unitarity
limit ∼1 and the cosmic ray limit ∼1040, respectively. This
corresponds to required energies of

E≲ 1570 TeV naive unitarity limit

E≲ 1590 TeV cosmic ray limit: ð3:5Þ

The naive unitarity limit is in agreement with the estimate
performed in [8].
Note that the rapid rise in cross section with energy

ensures that there is little difference between the naive
estimate and the observations based cosmic ray limit. The
maximal energy arising from constraints on the propagator
lies in between the two.
As argued in the previous section there also exists a

lower characteristic energy scale which marks the onset of
nonperturbative behavior according to the heuristic optimal
truncation rule for asymptotic series. This is determined as
follows. At a fixed energy value one can check whether the
nþ 1-particle process has a larger rate than the n-particle
process. The lowest energy when this happens determines
the scale in question. Using the estimate for the matrix
elements as before we obtain

E≲ 970 TeV asymptotic series truncation heuristic:

ð3:6Þ

In [10] a better estimate for the phase space integrated
matrix element in unbroken scalar ϕ4 has been obtained.
This result has then been extended to the spontaneously
broken gauge-Higgs system [11,12],

Z
dΠjMj2ðH → nH þmVÞ ∼ exp

�
2 logðκmdðn;mÞÞ þ n log

�
λn
4

�
þm log

�
λm
4

�

þ n
2

�
3 log

�
εh
3π

�
þ 1

�
þm

2

�
3 log

�
εV
3π

�
þ 1

�
−
25

12
nεh − 3.15mεV

�
: ð3:7Þ
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Here, the dðn;mÞ are coefficients, typically bigger than 1
that have to be determined by a algorithm similar to the one
discussed in the next section and

κ ¼ g

2
ffiffiffiffiffi
2λ

p ¼ mV

mh
∼ 80=125 ∼ 0.65: ð3:8Þ

εh and εV denote the average fraction of kinetic particle
carried by the Higgs and vector bosons, respectively. They
are related to the total energy via

E ¼ nð1þ εhÞmh þmð1þ εVÞmV: ð3:9Þ

In particular for pure Higgs production we can use
dðn; 0Þ ¼ 1. Using this a new estimate can be obtained by
maximizing the exponent for a fixed total energy and
determining when the value at the maximum exceeds the
limits set by the considerations of the previous section. This
yields the significantly lower values,

E≲ 812 TeV naive unitarity limit

E≲ 830 TeV cosmic limit

E≲ 299 TeV asymptotic series truncation heuristic:

ð3:10Þ

We have checked that, unless there is a strong growth in the
coefficients dðn;mÞ, the limit is not improved by consid-
ering the production of a large number of vector bosons.
The estimates (3.10) follow from using Eq. (3.7) which

has been derived in the nonrelativistic limit where ε is
small. More precisely the expression for the cross sec-
tion (3.7) is justified in the double scaling limit ε → 0,
nε ¼ fixed. We have extrapolated these expressions to the
regime of moderate ε≃ 1 without taking into account
unknown corrections of order ε2 and beyond. There is an
inherent sensitivity to higher orders in ε. Specifically,
adding a term ∼nε2 with a coefficient of order 1 in the
exponent of the cross section formula can lower the energy
scale for the onset of new phenomena down to below
100 TeV,

E≲ 100 TeV ∼ nε2 factor effect: ð3:11Þ

We further comment on this in the conclusions.
Before drawing definitive conclusions from the tree-level

formulas we have been using, one should also consider the
effect of loop corrections.2 In the scalar sector of the theory
it was argued in [9] that the leading one-loop correction to
the high multiplicity amplitude on the threshold, computed
in [18],

MðH → nHÞthr:treeþ1 loop ¼ n!ð2vÞ1−n
�
1þ nðn − 1Þ

ffiffiffi
3

p
λ

8π

�
;

ð3:12Þ

in fact exponentiates, so that we have

jMj2ðH → nHÞthr: ¼ jMj2ðH → nHÞtree

× exp

� ffiffiffi
3

p

4π
λn2 þOððλnÞ2Þ

�
: ð3:13Þ

This expression holds in the limit λ → 0, n → ∞ with λn2

being fixed. Of course, the higher order corrections ∼nλ are
important, as we are interested in multiplicities n ∼ 1=λ,
and we should stress that such exponential enhancement is
only guaranteed at the leading order in n2λ. Furthermore we
have no control over the momentum dependence of these
loop corrections for amplitudes away from the multiparticle
threshold. But taken at face value, (3.13) leads to an
exponential enhancement of our tree-level cross section

formula (3.7) by a factor e
ffiffi
3

p
4π λn

2

. Using such ∼þ λn2

corrections to the exponent we obtain the limit

E≲ 35 TeV naive loop factor effect; ð3:14Þ

which seems very promising for applications at the pro-
posed Future Circular Collider (FCC). However, we stress
again that in the relevant for us high energy, high
multiplicity regime the employed approximation is ques-
tionable and improved calculations are clearly needed.

IV. PHYSICAL 2 → n SCATTERING PROCESSES

Our discussion in the previous section had a slight
deficiency. We were considering the phase space integrated
matrix elements for an initial state of a single highly off-
shell boson. In reality one should look at physical scattering
processes which are 2 → n with two on-shell initial
particles. Indeed, the most convincing limit on the matrix
elements arising from the cosmic ray argument directly
relies on such 2 → n scattering processes.
In the simplest case of pure ϕ4 scalar field theory, both in

the unbroken and in the broken phase, it is actually known
that tree-level amplitudes on the multiparticle threshold for
2 → n processes are exactly vanishing [18–22]. Indeed some
of this may even survive beyond tree level [21]. If this were
the case in the standard model, the conclusions drawn from
the single particle state would loose their power. However,
pure scalar field theory is a very special case [20,23,24]. In
the standard model nullification of the threshold amplitudes
in the two-particle scatterings occurs only for particular
values of the ratio between the particle masses.
We now consider a specific standard model 2 → n

process where two transverse on-shell vector bosons
scatter to produce a large number of Higgs bosons. For

2We thank Martin Bauer and Tilman Plehn for discussions on
this point.
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pure multi-Higgs production one can upgrade the matrix
element from H → nH to VV → nH simply by producing
the off-shell Higgs boson from two initial vector bosons
(first diagram in Fig. 3). However, the corresponding
diagrams can then interfere with diagrams where multiple
Higgses are radiated off the vector bosons (second and third
diagram in Fig. 3). This interference could be destructive
(we have negative t-channel propagators), which is exactly
what happens in the pure scalar ϕ4 case.
Therefore let us extend the arguments used in [7] to allow

for a physical 2V initial state in order to take all relevant
diagrams into account. As explained in [11] [cf. Eqs. (2.14)
and (3.9)] the matrix element for the process V → V þ nH
with n on-shell Higgses can be obtained from the solution to
the classical equation of motion,

d2t A ¼ −
g2

4
h2A; ð4:1Þ

with

h2 ¼ v2
�
1þ z

2v

1 − z
2v

�
2

¼ v2
�
1þ 4

X∞
k¼1

kzk
�
;

where z ¼ z0 expðimhtÞ: ð4:2Þ

We can now expand

A ¼
X
k

an

�
z
2v

�
n
: ð4:3Þ

The matrix elements can be obtained by taking n derivatives
with respect to z of this generating function A [7,11],

M ¼ n!ð2vÞ−nan: ð4:4Þ

To include a nonvanishing 3-momentum flowing
through the vector bosons (the Higgses remain on shell)
we simply have to add the kinetic energy of the vector
bosons to this equation (this is similar to the technique used
in [20]). This is most simple for the case of transverse
gauge bosons in which case we have

d2t A ¼ −
�
~p2 þ g2

4
h2
�
A: ð4:5Þ

When solving the equation we have to take into account
that the second vector boson is actually an incoming
particle and is also on shell. It therefore contributes
negatively to the energy. We therefore have to solve

−ðnmh − EVÞ2A ¼ −
�
~p2 þ g2

4
h2
�
A ð4:6Þ

with the on-shell conditions,

EV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

V

q
¼ n

2
mh: ð4:7Þ

The latter holds because the two vector bosons together
have to provide the energy to produce the n Higgses.
Comparing coefficients of zn on both sides of the

equation we find the relation

al ¼
4κ2

l2 − 2EVl

Xl−1
k¼1

kak: ð4:8Þ

In the last step when l ¼ n one encounters a divergence. This
arises from the fact that the vector boson is then on shell.
This is exactly the propagator one has to amputatewhen using
the Lehmann–Symanzik–Zimmermann reduction formula.
Accordingly in the last step one simply multiplies by 4κ2.
To facilitate fast computation this can be rewritten in

terms of the recursion relations,

bk ¼ bk−1 þ ck−1 þ ak−1

ck ¼ ck−1 þ ak−1

ak ¼
4κ2

k2 − 2EVk
bk; ð4:9Þ

with the initial values,

b0 ¼ 0; c0 ¼ 0; a0 ¼ 1: ð4:10Þ
In the last step one has to multiply bn only by 4κ2. The
resulting coefficients an for a large range of values n are
shown in Fig. 4. We can see that with increasing n, an
grows approximately linearly. The dominant behavior is
therefore the factorial growth of the amplitude inherent in

FIG. 3. Diagrams contributing to the VV → 2H process. The first diagram can be directly obtained by attaching aH → 2H diagram to
the two vector bosons. It interferes, however, with diagrams where the two Higgses are directly radiated off the vector bosons (second
and third diagram).
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Eq. (4.4). In consequence the estimates for the scale where
new phenomena set in (obtained in the previous section)
continue to hold in the more physical situation with two on-
shell particles in the initial state.
Finally let us note that the dependence on κ is quite

strong. Indeed for the value κ ¼ 1=
ffiffiffi
2

p
we have complete

destructive interference in agreement with what has been
observed in [21]. We discuss this further in the conclusions.

V. CONCLUSIONS

At very high energies it becomes energetically possible
to produce multiple Higgs and vector bosons. The naive
expectation is that, as we increase the particle number these
events become more and more unlikely because perturba-
tively adding more particles in the final state means that we
have to multiply by higher powers of the small coupling
constant. However, it has been shown [3–12] that the
amplitudes contributing to such processes grow factorially
with the number of particles thereby overcoming any
suppression of the small coupling, as long as the number
of particles is large enough. Therefore at some point the
corresponding cross sections start to grow and can indeed
become very large. In this context the fundamental question
is what this implies for the health of the SM and
importantly also for potential observable effects.
Indeed rapidly growing cross sections are in conflict with

arguments based on unitarity and perturbativity (Sec. II A).
But as we have shown in this paper at an only slightly
higher scale they also are in conflict with existing

measurements of the Z-peak (Sec. II B) and with observa-
tions of cosmic rays (Sec. II C). Therefore the perturbative
treatment of the SM exhibits not simply a formal math-
ematical breakdown but will also be in conflict with
observation. We are therefore left with two options:

(i) At high energies (multiplicities) the SM is funda-
mentally nonperturbative.

(ii) New physics beyond the SM has to set in before the
cross sections become too large.

In either case this requires new physics phenomena below
the scale of the breakdown. In this sense the situation is
reminiscent of the unitarity bound on WW scattering that
told us that either a Higgs, new physics or nonperturbative
behavior must be found below a scale of ∼1 TeV.
For practical purposes there are two crucial questions.

The first is at what scale do we expect new phenomena, the
second is what one would actually observe.
Based on the measured Higgs mass and using a lower

estimate on the phase space integrated matrix elements [8],
one finds that new phenomena must set in at scales below
≲1600 TeV. This is a very conservative upper bound.
Using expressions for the cross sections obtained in the
nonrelativistic regime, we find a scale of ≲830 TeV when
cross sections exceed observational limits. Furthermore,
already below that scale at energies of order ∼300 TeV the
cross sections exhibit peculiar behavior in the sense that
higher order/higher multiplicity processes are larger than
lower multiplicity ones. It seems therefore quite plausible
that new phenomena must set in before that scale.
The nonrelativistic approximation may still be too

pessimistic. In unbroken scalar ϕ4 theory, corrections to
the nonrelativistic approximation have been calculated and
they tend to increase the cross section [14,25,26]. Adding a
term ∼nε2 in the exponent of Eq. (3.7) with a coefficient
≃1 as motivated by results obtained in ϕ4 theory, and going
to the moderately relativistic regime the breakdown scale
can be lowered below 100 TeV. This would bring it into the
region probed by a future high energy proton machine such
as the FCC. We have also considered the effects of loop
corrections by adding the ∼þ λn2 term to the exponent of
the tree-level cross section which lowered the limit on the
energy scale to below 35 TeV. The summary of our energy
upper bounds (using the cosmic limit on the matrix
elements3) is as follows:

E≲ 1590 TeV upper limit from conservative 1 → n kinematics

E≲ 830 TeV nonrelativistic kinematics

E≲ 100 TeV include ∼ nε2 factor effect

E≲ 35 TeV include naive loop factor effect: ð5:1Þ

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

n

a n

FIG. 4 (color online). Matrix element coefficients an for
VV → nH.

3Estimates based on the asymptotic series heuristic are typically lower by a factor of a few.
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However, we stress that in deriving the last two numbers we
employed some rather simplistic approximations. Indeed,
even before we switch on the ∼nε2 or loop-level correc-
tions, we note that the full momentum dependence of tree-
level 2 → n rates is not known; we have used instead the
1 → n expressions. Improved calculations are clearly
needed.
We should not forget that the arguments we use only give

us upper limits for the scale when new physics phenomena
must set in. They can indeed set in significantly earlier, as
was the case with the Higgs mass which is way below its
unitarity limit. In any case even if we take the largest of the
numbers above, the given scales are many orders of
magnitude smaller than any other indication of a break-
down in the SM such as Landau poles, the Planck scale or
the scale at which the Higgs potential becomes metastable.
Let us now turn to the question of what this implies for

observation. As already mentioned the crucial energy scale
is quite low possibly even in the reach of future circular
hadron colliders. This opens exciting new possibilities. The
next question concerns, of course, the size of the new
effects. If the observational limits from the Z-peak or the
cosmic rays are even close to being saturated cross sections
for new phenomena are very large and would lead to quite
spectacular effects. Indeed the cross sections would then be
so large that for a hadron collider such as the FCC, the
suppression of high energy events by the fall in the particle
distribution functions could be overcome and one could
essentially utilize the full energy of the protons in each
collision. On the other hand at the present state one cannot
exclude the possibility that the SM is repaired “in secret”:
nonperturbative effects start to suppress the factorial growth
of cross sections at or around the point when cross sections
are minimal. If this is the only place where such repairs set
in, effects would be unobservably small. Yet, it seems
unlikely that such repairs only happen in a place we cannot
observe. To clarify this further studies are needed to
determine if and how nonperturbative effects can cure
the factorial growth of cross sections and what observable
facts are associated with it.
Let us now engage in a bit of speculation. It has already

been noted [20,23,24] that for certain special values of
the masses tree-level threshold amplitudes for physical
high multiplicity 2 → n processes vanish. For example
for VV → nH one of these special values is
κ ¼ mV=mh ¼ g=ð2 ffiffiffiffiffi

2λ
p Þ ¼ 1=

ffiffiffi
2

p ¼ 0.71. At the electro-
weak scale κ ¼ 0.65 for mV ¼ mW ≈ 80 GeV or using
mV ¼ mZ ≈ 91 GeV it is 0.73. This is close but still
somewhat off the magic value 1=

ffiffiffi
2

p
. The renormalization

group evolving the couplings to higher energy scales κ

grows and starting from the W-boson value 0.65 it reaches
0.71 well before the perturbative breakdown. This could
hint towards a potential repair mechanism4 arising from
special values of the coupling constants (cf. also
[20,23,24]). At the same time one would still need a
qualitative change compared to the standard perturbative
behavior since κ passes through the magic value quite
quickly and factorial growth would resume and soon
overpower everything.
Perhaps even more speculatively one can also surmise

that the rising cross sections indicate a more fundamental
defect in the gauge-Higgs sector indicating the need for
physics beyond the standard model at a quite low scale. Of
course the growth in cross sections and amplitudes could
simply be the usual behavior of asymptotic series
[15,27,28] that should only be used until a finite order
and then be replaced by a different approximation scheme.
Looking only at the spectral representation of the full
propagator this could indeed be what one would expect,
since the multiparticle amplitudes correspond to higher and
higher order corrections in the perturbative calculation. In
[29] some evidence for a self-healing behavior of the
propagator has been found in lattice calculations for a
super-renormalizable three-dimensional scalar field theory.
Nevertheless let us note that for real high multiplicity
processes the tree-level amplitudes we have considered
correspond to the leading order behavior. It is also
interesting to compare to another system where high
multiplicity amplitudes have been calculated, unbroken
non-Abelian gauge theories. In these systems the leading
order behavior in the number of colors features a cancella-
tion such that the high multiplicity minimal helicity
violating amplitudes do not grow factorially [30,31].
This is in stark contrast to the gauge-Higgs system. This
could be a hint to a crucial difference between the two
systems and a potential deep problem in the gauge-Higgs
system.
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4It should be noted that in a diagram describing a single
multiparticle process one would expect the coupling constants to
be evaluated at different scales depending on the flow of energy
and momentum through the respective vertex. So effectively one
does not have a single value of κ in any given diagram.
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