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A Conjugate Class of Utility Functions for Sequential
Decision Problems

Brett Houlding,1 Frank P.A. Coolen2, Donnacha Bolger1.

The use of the conjugacy property for members of the exponential family of distributions
is commonplace within Bayesian statistical analysis, allowing for tractable and simple
solutions to problems of inference. However, despite a shared motivation, there has been
little previous development of a similar property for using utility functions within a
Bayesian decision analysis. As such, this paper explores a class of utility functions that
appear to be reasonable for modeling the preferences of a decision maker in many real-life
situations, but which also permit a tractable and simple analysis within sequential decision
problems.
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1. INTRODUCTION

We consider the problem a Decision Maker (DM)
faces when seeking the optimal selection strategy
within a Bayesian sequential decision problem. Such
a situation is a form of dynamic programming prob-
lem, the solution to which involves the use of back-
ward induction and Bellman’s Equation (Bellman
1952, 1957). However, this technique requires that
the DM evaluate a nested sequence of maximizations
and integrations, with the latter not necessarily
having closed form solutions. Sequential decision
problems occur naturally and commonly (e.g., Cox,
2012), and hence appropriate methodologies are
applicable in a wide range of realistic problems,
such as in the area of clinical trials within Medical
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Statistics (see Brockwell & Kadane, 2003), in trade-
off problems between cost and performance within
complicated systems (Muller, 1999 or Benjaafar
et. al,, 1995), and in portfolio management in an
economic framework (Guler, 2007).

In general, we can express the problem in the
following manner: a DM is facing a sequential
problem of length n in which a decision di ∈
D must be selected at each decision epoch i =
1, . . . , n. The DM’s objective is to select decisions
so as to maximise the utility of the entire sequence
d1, . . . , dn, and this is assumed to depend on the
value of an a priori uncertain parameter θ. In the
following work we shall assume that this unknown
θ will remain constant over time, i.e., it is a static
rather than a dynamic parameter. The DM has
assigned or obtained a prior distribution P (θ) for
θ and may learn about its true value by observing
return variable ri following decision selection di
subject to the likelihood P (ri|di, θ). As such, the
DM may influence the information they receive
concerning the parameter θ by making suitable
decision selections d1, . . . , dn−1 (the DM will also
learn about θ following decision dn, but as there
will be no further decision to be made within the
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problem’s planned horizon, such information will not
be of use and will thus not be considered).

An example of such a situation exists when
each decision selection di results in a return ri ∈
R with probability Pdi(ri|θ) ≡ P (ri|di, θ). In this
case we may assume that the DM has a known
utility function u for the return stream r1, . . . , rn,
which may then be converted to a utility function
U over the decision sequence d1, . . . , dn via the
expected utility representation, i.e., U(d1, . . . , dn) =
E[u(r1, . . . , rn)], with this expectation taken with
respect to the return stream r1, . . . , rn. In the
remainder of the material presented we will use the
notation U to represent both the utility of a decision
sequence for a given value of the parameter θ, and
for the expected utility of a decision sequence with
respect to beliefs over θ.

In this case the optimal decision for selection in
epoch i, denoted πi, will be a function of the history
hi of the previously made decisions and their ob-
served returns, i.e., hi = {(d1, r1), . . . , (di−1, ri−1)}.
Implementation of Bellman’s Equation then leads
to the following optimal decision selection strategy
(where for notational convenience we have set Ui =
U(d1, . . . , di, πi+1(hi+1), . . . , πn(hn))):

πi(hi) = arg max
di∈D

Ehi+1|hi,di

[· · ·Ehn|hn−1,πn−1(hn−1)[Ui]]

for i = 1, . . . , n− 1, (1)

πn(hn) = arg max
dn∈D

Un. (2)

Equation (1) contains a nested sequence of
expectations, each of which requires the DM to
consider a distribution of the form Phj |hj−1,dj−1

.
This conditioning argument implies that the only
remaining uncertainty in hj is with respect to the
outcome rj−1 that will occur following selection of
decision dj−1. It should also be noted that Equations
(1) and (2) need to be evaluated for all possible
histories hi for all possible i, hence explaining why
sequential decision problems suffer from the so-called
‘curse of dimensionality’.

Apart from the maximisation step, which can
be readily solved if there are only a relatively
small number of options within the set of possible
decisions D, problems in solving Equation (1) arise
when the DM’s beliefs are represented by non-
discrete probability distributions. In such a situation
Equation (1) requires that the DM evaluate a nested
series of integrals, where in each case other than the

innermost integral, the integrand is the product of
the inner integral and the appropriate probability
distribution. The innermost integrand, however, is
the product of the appropriate probability distribu-
tion and the DM’s utility function for this problem.
As such the solution to such a nested series of
integrals will not generally be available in closed
form.

One approach to resolving this problem is to
determine sufficiently accurate approximations by
using techniques from numerical analysis such as
discretisation, or possibly by using Monte Carlo
methods akin to Brennan et al. (2007), Berry et
al. (2010) and Muller (1999). However, despite
continued advances in computational power, the
problem concerning the solution of such a nested
series of integrals still persists due to a need for fast
and accurate solutions to high dimensional problems
of interest. Attempts have been made to decrease this
computation time, notably by Brockwell & Kadane
(2003), who suggest gridding on sufficient statistics
of exponential family members, and creating an
algorithm which is linear in the number of sequential
stages involved in the decision making procedure,
diminishing the curse of dimensionality somewhat,
and providing an approximate solution to the
sequential decision problem considered. Yet despite
this, there remains motivation to search for classes of
utility functions that are both reasonable and flexible
for representing the DM’s true preferences in various
situations, but which also allow closed form solutions
to the nested series of integrals when the DM’s
beliefs are represented by appropriate probability
distributions.

The remainder of this paper is as follows:
in Section 2 we discuss the concept of conjugate
utility as first considered by Lindley (1976), drawing
comparison with the much more commonly used
concept of conjugate probability distributions, and
highlighting the problem with a straightforward
sequential extension. In Section 3 we introduce a
polynomial class of utility functions that is conjugate
to certain probability distributions and which is also
quite flexible for representing preferences. Section 4
demonstrates the effectiveness of this utility class in
a couple of examples, whilst Section 5 concludes.

2. CONJUGATE UTILITY

The concept of conjugate utility originates from
Lindley (1976), but subsequently appears to have
received little further development, with the only
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notable instances being Novick and Lindley (1978)
which considered use of utility functions as a
mixture of k conjugate utility forms in a particular
educational environment, and Islam (2011) which
formally extends Lindley’s conjugate functions to a
bivariate setting. General research has been carried
out in trying to find a suitable class of utility
functions to ease the decision making process in
different strands of decision theory, for instance by
LiCalzi & Sorato (2006) who advocated the use of
HARA (Hyperbolic Absolute Risk Aversion) utility
functions, which are those functions u(r) such that

−u
′′(r)
u′(r) = 1

a+br for a, b ∈ R, i.e., the coefficient of

absolute risk aversion is the reciprocal of a linear
function of r. This approach is noteworthy in its
applicability both to the normative decision making
approach of expected utility theory (Von Neumann
& Morgenstern, 1947), and also to the descriptive
decision making methodology of Prospect Theory
(Kahneman & Tversky, 1979).

Lindley’s motivation was to explore a related
idea to that of the conjugate prior in Bayesian
statistical inference, but where instead a so-called
‘conjugate’ family of utility functions is sought with
the property that they are both suitably ‘matched’ to
a probability structure and realistic for application.
This latter requirement is key, as unlike a probability
distribution the only constraint placed upon a utility
function is that it be a bounded function of its
arguments. It is therefore quite easy to determine
a utility form that satisfies any specified ‘matching’
criteria, but unless these functions represent a
reasonable model of the actual subjective preferences
of the DM, they will be unsuitable for inclusion in
any meaningful decision analysis.

The idea of the conjugate prior for probability
parameters in Bayesian statistical analysis was
introduced by Raiffa & Schlaifer (1961), and is
now a commonly used concept. In this setting a
class of prior probability distributions P (θ) is said
to be conjugate to a class of likelihood functions
P (r|θ) if the resulting posterior distributions P (θ|r)
are in the same family as P (θ), i.e., if both
P (θ|r) and P (θ) have the same algebraic form as a
function of θ. A particular result of this definition
is that all members of the exponential family of
probability distributions have conjugate priors. The
exponential family is a particularly important class
of probability distributions that is commonly used
in statistical modelling. In the Appendix we present
a brief overview of conjugate updating in the case

of exponential family members, as well as providing
a brief overview of the work of Lindley (1976) in
choosing an appropriate form of utility function to
use in conjunction with a data generating mechanism
from the exponential family.

Unfortunately, the techniques and ideas used
within Lindley’s utility class of do not readily
generalise to allow exact expected utility calculations
within a sequential decision problem. In order to
provide a demonstration of this consider a sequential
problem of length n = 2 and the following likeli-
hood for decision return with normalising constant
G(θ, di):

P (ri|di, θ) = G(θ, di)H(ri, di)e
θri . (3)

Equation (3) is a simple generalisation of an expo-
nential family member, as defined in the Appendix,
which ensures that, regardless of decision di, the
density itself will be a member of the exponential
family. However, the actual density that Equation
(3) represents is allowed to depend on the particular
di selected. This is an important distinction from the
work of Lindley that is necessary if the theory is to
be applicable for sequential problems of interest.

Given suitable hyper-parameters n0, r0 =
(r01, . . . , r0n0

), and d0 = (d01, . . . , d0n0
), a natural

conjugate prior for this likelihood is the following,
where the notation x[j] will be used to denote the j-
th element in x, and K(n0, r0,d0) is the normalising
constant:

P (θ|n0, r0,d0) = K(n0, r0,d0)
( n0∏
i=1

G(θ,d0[i])
)
×

eθ
∑n0

i=1 r0[i]. (4)

Here d0 denotes a collection of n0 hypothetical
decisions, with r0 the corresponding collection of n0
hypothetical returns resulting from these. This may
be seen as analogous to, for instance, the choosing of
hyperparameters for a Beta prior distribution, with
these hyperparameters indicative of the number of
hypothetical successes and failures witnessed in a
collection of hypothetical trials, with an increased
number of trials symptomatic of an increased
confidence in the prior. After having selected decision
d1 the DM will observe return r1 and update beliefs
over θ to the following (where r1 = (r01, . . . , r0n0

, r1)
and d1 = (d01, . . . , d0n0

, d1)):
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P (θ|r1, d1, n0, r0,d0) =K(n0 + 1, r1,d1)

×
( n0+1∏

i=1

G(θ,d1[i])
)

× eθ
∑n0+1

i=1 r1[i]. (5)

In generalising Lindley’s utility form we make
the requirement that a utility function for a decision
stream does indeed depend on all the decisions
within that stream. As such, one possibility is to
consider a utility function that is a product of un-
normalised densities of the form given in Lindley
(1976), discussed in the Appendix (with the number
of terms within the product being determined by the
length of the decision sequence). In the two-period
sequential problem this leads to the following, which
is a sequential extension of that proposed by Lindley:

U(d1, d2, θ)=F (d1, d2)G(θ, d1)n1(d1)G(θ, d2)n2(d2) ×
eθ(n1(d1)f1(d1)+n2(d2)f2(d2)). (6)

Hence, when preferences are as stipulated in
Equation (6), the expected utility of a decision d
will have a known ‘closed’ form when beliefs over
the uncertain parameter follow a distribution of the
exponential family. This can also be said for the
utility family derived by Lindley, which is included
as Equation (25) in our Appendix. We argue that the
utility family of Equation (6) may be reasonable for
representing preferences, and Lindley (1976) provides
discussion of scenarios and special occasions in which
its use may be appropriate. Given that the utility
form of Equation (6) follows the formula of an un-
normalised density, it will in general be most useful
when corresponding to the un-normalised density of
a uni-modal distribution with mode θ. In this case
the utility of a decision will be measured by how
accurately its value approximates the true value of
the uncertain parameter θ. Note that this is not the
only possibility for generalising Lindley’s utility form
for the case of a sequential problem; an alternative
would be to use a sum of un-normalised densities
rather than a product. Nevertheless, both choices
suffer from the same problem and so we restrict
attention to the product form of Equation (6). In
what follows we assume that the returns r1, . . . , rn
are conditionally independent given the parameter
θ, which follows from our earlier comment about the
static nature of θ.

Once decision d1 has been selected and r1
returned, the DM will have updated beliefs to be

as in Equation (5). Decision d2 will then be selected
so as to maximise the following (where r′2 is the
vector consisting of r1 followed by n1(d1) repetitions
of f1(d1) and by n2(d2) repetitions of f2(d2), whilst
d2 is the vector consisting of d1 followed by n1(d1)
repetitions of d1 and by n2(d2) repetitions of d2):

U(d1, d2|r1)=
∫
F (d1, d2)G(θ, d1)n1(d1)G(θ, d2)n2(d2)

× eθ(n1(d1)f1(d1)+n2(d2)f2(d2))

× K(n0 + 1, r1,d1)
( n0+1∏

i=1

G(θ,d1[i])
)

× eθ
∑n0+1

i=1 r1[i]dθ,

=
F (d1, d2)K(n0 + 1, r1,d1)

K(n0 + n1(d1) + n2(d2) + 1, r′2,d2)
.(7)

Once the DM knows how they will select decision
d2 for any given values of d1 and r1 (with this
d2 found by application of Equation (2), namely
that π2(r1, d1) = arg maxd2 U(d1, d2|r1)), attention
will be focused on the selection of decision d1. By
Equation (1) this is found through the following:

π1 = arg max
d1∈D

Er1|d1 [Eθ|r1,d1 [U(d1, π2(r1, d1), θ)]].(8)

The problem in generalising Lindley’s utility form

for sequential decision problems now occurs. Whilst
the utility form of Equation (6) ensures that the term
Eθ[U(d1, π2(r1, d1), θ)] may be determined exactly, it
does not guarantee that the expectation of this term
with respect to the predictive distribution of r1 has a
closed form solution. The solution to the integral of
the product of Eθ[U(d1, π2(r1, d1), θ)] and P (r1|d1)
will in general depend on the specific functions in-
cluded in both the exponential family expression and
the selected sequential utility function, despite the
fact that P (r1|d1) can be expressed exactly (another
result that follows from the use of exponential family
distributions), in the form given below in Equation
(9):

P (r1|d1) =
H(r1, d1)K(n0, r0,d0)

K(n0 + 1, r1,d1)
. (9)

Using the notation where r′1 is the vector consisting
of r0 followed by n1(d1) repetitions of f1(d1) and
by n2(π2(r1, d1)) repetitions of f2(π2(r1, d1)), whilst
d′1 is the vector consisting of d0 followed by n1(d1)
repetitions of d1 and by n2(d2) repetitions of
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π2(r1, d1), the DM should select π1 via the following:

π1 = arg max
d1∈D

K(n0, r0,d0)

∫ F (d1, π2(r1, d1))H(r1, d1)

K(n0 + n1(d1) + n2(d2) + 1, r′1,d
′
1)
dr1. (10)

The problem in solving Equation (10) arises because
the integral it contains does not have a general closed
form solution. Whilst the integral may be solved for
certain and specific functions F , H and K, nothing
in their definition ensures that this will always be the
case.

3. THE POLYNOMIAL UTILITY CLASS

As an alternative to the un-normalised expo-
nential family distribution form for utility that is
suggested by Lindley, we now consider the use of a
polynomial utility class. As will be demonstrated in
the remainder, the proposed polynomial utility class
allows closed form solutions to sequential decision
problems when beliefs are represented by Normal
distributions, whilst it is simultaneously flexible
enough to be an adequate representation of beliefs
in a variety of situations.

First assume that prior beliefs over θ are such
that this parameter follows a Normal distribution
with mean µ and variance σ2. Furthermore, we
assume that the distribution of return ri also follows
a Normal distribution (Markowitz (2012) discusses
the use of this assumption, as well as that of
quadratic utility functions, which we shall soon see
are a subset of our polynomial utility class) with
unknown mean µdi(θ) = αdiθ + βdi (αdi and βdi
being known constants) and known variance σ2

di
.

In the case of an unknown mean but known
variance, the Normal distribution is a member
of the exponential family of distributions that
is conjugate with itself. Hence returns r1, . . . , rn
are observed following the selection of decisions
d1, . . . , dn, respectively, posterior beliefs for θ can
be easily determined given the following respective
likelihood and prior forms:

Pd1,...,dn(r1,. . . , rn|θ)=
n∏
i=1

Pdi(ri|θ)

∝ exp

{
−

n∑
i=1

(ri − µdi(θ))2

2σ2
di

}
,(11)

P (θ) ∝ exp

{
− (θ − µ)2

2σ2

}
. (12)

Using Normal-Normal conjugacy to combine these
lead to posterior beliefs for θ which follow a Normal
distribution with mean νn and variance η2n, where
these parameters are specified by the following:

νn =
µ+ σ2

∑n
i=1

αdi
(ri−βdi

)

σ2
di

1 + σ2
∑n
i=1

α2
di

σ2
di

, (13)

η2n =
σ2

1 + σ2
∑n
i=1

α2
di

σ2
di

. (14)

Now consider the following polynomial utility form,
which is independent of θ given the return stream:

u(r1, . . . , rn) =

m1∑
k1=0

m2∑
k2=0

· · ·
mn∑
kn=0

(
ak1,k2,...,kn

× rk11 r
k2
2 · · · rknn

)
. (15)

When beliefs over decision return follow a Nor-
mal distribution, this polynomial utility for return
streams leads to the following utility for decision
streams, given our aforementioned assumption that
returns are conditionally independent of each other
given θ. Note that here once again the expectation
is taken with respect to the return stream r1, . . . , rn,
yielding the following:

U(d1, . . . , dn|θ) =Er1,...,rn|d1,...,dn,θ[u(r1, . . . , rn|θ)]
=Er1,...,rn|d1,...,dn,θ[u(r1, . . . , rn)],

=

m1∑
k1=0

· · ·
mn∑
kn=0

ak1,...,kn

×
n∏
i=1

∫
rkii P (ri|di, θ)dri. (16)

The solution to the integrals on the right hand
side of Equation (16) are the raw moments of
the Normal distribution (see Table I below for the
first five), which can be readily expressed in closed
form by making an appropriate substitution and
expressing them in terms of Gaussian Integrals, (see,
e.g., Papoulis 1991). In particular for the Normal
distribution, the raw moments are of the following
polynomial form (for suitable constants aij and k ∈
N):

X|µ, σ ∼ N (µ, σ2)⇒ E[Xk] =

∫
xkP (x|µ, σ2)dx

=

k∑
i=0

bkiµ
iσk−i. (17)
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Table I . Raw Moments of the Normal Distribution

Order Raw Moments

1 µ
2 µ2 + σ2

3 µ3 + 3µσ2

4 µ4 + 6µ2σ2 + 3σ4

5 µ5 + 10µ3σ2 + 15µσ4

The polynomial utility class of Equation (15)
is very flexible, allowing for a reasonable model of
preferences in many real-life situations. For example,
the utility function u(r1, . . . , rn) =

∑n
i=1 φ

i−1ri
is included as a special case, and is suitable for
representing preferences in situations where future
decision returns are subject to discounting at rate
φ ∈ [0, 1] (this is referred to as the Exponential
Discounting Model). A further possibility is for when
a trade-off exists between returns received in differing
periods, i.e., when u(r1, . . . , rn) =

∑n
i=1 φiui(ri),

where φi ≥ 0 is a trade-off weight satisfying the
constraint

∑n
i=1 φi = 1, and where ui is a known

polynomial function of return ri. This may be an
appropriate model for the situation in which each
return represented a single attribute within a larger
multi-attributed return (r1, . . . , rn).

An alternative possibility for when (r1, . . . , rn)
is considered a multi-attribute return (see for
instance, Huang et. al (2013), Chang (2011) and
Musal et. al (2012)), and one that does not make
such strong independence assumptions regarding
preferences over differing attributes levels, is to take
u(r1, . . . , rn) =

[
Πn
i=1[φ∗φiui(ri) + 1]− 1

]
/φ∗, where

φi ∈ (0, 1) and φ∗ > −1 represent non-zero scaling
constants (see, e.g., Keeney 1972). Again, provided
ui is a polynomial function of ri, this utility function
is also a member of the polynomial class of Equation
(15).

Even when the appropriate utility function is
known to be of a specific algebraic form that is not
of the class described by Equation (15), e.g., expo-
nential or logarithmic utility, the polynomial utility
class can still be used to provide an approximation
through the use of Taylor Polynomials (see, for
example, Hlawitschka 1994, Diamond & Gelles 1999).
For an infinitely differentiable function f of a single
variable x, the Taylor Series is defined on an open

interval around a as T (x) =
∑∞
n=0

dnf(x)
dxn |x=a(x −

a)n/n!. The function f can then be approximated
to a specified degree of accuracy by taking a partial

sum of this series, and each such partial sum will
be of the form of a polynomial in x. This result
is also generalizable for approximating multivariate
functions, hence allowing a greater class of utility
functions to be approximated by the polynomial class
of Equation (15).

We briefly comment on some of the shortcomings
of the use of polynomial utility functions. Frequently
polynomials are not monotonically increasing func-
tions of their arguments. This may be problematic
as a DM is likely to want to assign utility values
to returns that are strictly increasing as the returns
grow larger. If a DM is not careful then they may end
up associating a greater utility value to a lower return
then to a slightly higher one, i.e., u(r + ε) < u(r)
for some ε > 0. Evidently care should be taken to
ensure a DM avoids potentially illogical situations
like this, as otherwise they may end up making
irrational decisions in the event of extreme returns
occurring. Polynomials are also unbounded and tend
towards positive or negative infinity in extreme cases.
This may cloud the decision making process of an
individual, by placing a utility of an unreasonable
magnitude on a particular event. In many realistic
settings lower and upper bounds can be placed on the
potential outcomes which may occur, and hence the
domain of the utility function can be made compact.
In section 4.2 we shall consider the use of a utility
function which is unbounded, but it is assumed that
values which will cause the function to misbehave
have a negligibly small probability of occurrence, and
hence will not have adverse consequences to a DM.

Finally we note that in the following examples
the problem at hand is of a discrete decision nature.
At each epoch an individual must choose one decision
from a finite collection of possible alternatives, with
the optimal decision path being that which max-
imises expected utility over the uncertain parameter
θ. Another potential setting is one in which there
is a continuum of possible decisions open to an
individual, i.e., they make their choice from an
infinite set of alternatives. In one of the following
examples we consider a decision problem where a
DM must choose whether to buy a fixed amount
of stock A, stock B or neither. She has a clearly
finite amount of options. An illustration of how this
problem could be mapped into a continuous decision
domain would be where she wishes to decide how
large a quantity of a particular stock to buy, meaning
she now faces an infinite collection of possible choices.
The work presented above is generalisable to a
continuous decision setting, but incorporates some
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further complications in the maximisation aspect
of calculations. This was discussed in Section 1,
specifically how this maximisation is straightforward
when dealing with a relatively small collection of
options, but complexity increases with the number
of options, which in the continuous case is an infinite
amount.

4. EXAMPLES

4.1 Example 1

First consider the case where prior beliefs about
unknown θ are such that θ ∼ N (0, 1). At each of
two epochs a decision must be made - either dA
or dB in both cases. The returns associated with
these decisions have Normal distributions Ri|dA, θ ∼
N (θ, 1), and Ri|dB , θ ∼ N (−θ, 2). A decision tree for
the above sequential problem is given below in Fig.
1 (note that the shading indiciates the continuous
nature of the potential returns):

Fig. 1. Decision Tree for Example 1

For a utility function consider u(r1, r2) = r21+r2,
which belongs to the polynomial utility class (15) as

required. Then

u(r1, r2, θ) =

∫
(r21 + r2)

2∏
i=1

P (ri|di, θ)dr1dr2,

=

∫
r21

2∏
i=1

P (ri|di, θ)dr1dr2

+

∫
r2

2∏
i=1

P (ri|di, θ)dr1dr2,

=

∫
r21P (r1|d1, θ)dr1

+

∫
r2P (r2|d2, θ)dr2. (18)

Now using (17), and that for the Normal Distribution
the first raw moment is µ and the second is µ2 + σ2,
we obtain Table II below containing utility outcomes
for potential decision streams.

Table II . Utility for given decisions

d1 d2 U(d1, d2, θ)

dA dA θ2 + θ + 1
dA dB θ2 − θ + 1
dB dA θ2 + θ + 2
dB dB θ2 − θ + 2

Using (13) and (14) updated beliefs about θ
given the history of decisions taken and returns
observed can be obtained after one and two decision
epochs. The results are given below in Table III.

Table III . Posterior beliefs about θ

d1 d2 R1 R2 P (θ| Rest )

dA - r1 - N ( r12 ,
1
2 )

dB - r1 - N (− r13 ,
2
3 )

dA dA r1 r2 N ( r1+r23 , 13 )
dA dB r1 r2 N ( 2r1−r2

5 , 25 )
dB dA r1 r2 N ( 2r2−r1

5 , 25 )
dB dB r1 r2 N (−r1−r24 , 12 )

Now consider the expected utility values at the
far right hand side of the decision tree. For instance
in the case of choosing dA at both epochs we have
the following (where we denote by h2 the history
of decisions made and returns observed up to this
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point):

Eθ|h2,r2,d2=dA [θ2 + θ + 1]

=

∫
(θ2 + θ + 1)P (θ|h2, d2 = dA, r2)dθ,

=

∫
θ2P (θ|h2, d2 = dA, r2)dθ

+

∫
θP (θ|h2, d2 = dA, r2)dθ + 1,

=
r21 + 2r1r2 + r22 + 3r1 + 3r2 + 12

9
.

Note the use of the raw moments of the Normal
distribution from (17) to compute the integrals
above. Now to continue to “roll back” along the tree,
moving from right to left, requires the predictive
distribution of R2 given the history h2 of decisions
and rewards observed up to that point. However
P (R2|h2, d2) =

∫
P (R2|d2, θ)p(θ|r1, d1)dθ, which

gives, for example, E[R2|r1, d1 = dA, d2 = dA] = r1
2 .

The predictive expected values of R2 are then used
in the expected utility equations, i.e., by replacing
the R2 terms by their expected value in terms of
expressions in r1. For instance, in the case of choosing
dA at both epochs we now have expected utility
r21
4 + r1

2 + 4
3 .

At the decision nodes labeled d2 the maximum
utility path is chosen from those available as detailed

above. In the case where d1 = dA this is max
{

(
r21
4 +

r1
2 + 4

3 ), (
r21
4 −

r1
2 +1.4)

}
and in the case where d1 = dB

this is max
{

(
r21
9 −

r1
3 +2.4), (

r21
9 + r1

3 +2.5)
}

. Obviously,

determining the maximum is dependent upon the
unknown value of R1, however, it transpires that,
when d1 = dA then π2 = dA if r1 > 0.667, and π2 =
dB otherwise. Similarly, when d1 = dB then π2 = dB
if r1 > −0.15 and π2 = dA otherwise. Finally, to
work out the expected values of the maximum, we
evaluate

ER1|d1=dA

[
max{f1(r1), f2(r2)}

]
=

0.0667∫
−∞

f1(r1)P (r1|dA)dr1

+

∞∫
0.0667

f2(r1)P (r1|dA)dr1,

where

• f1(r1) =
r21
4 −

r1
2 + 1.4,

• f2(r1) =
r21
4 + r1

2 + 4
3 ,

• R1|dA ∼ N (0, 1).

This yields ER1|d1=dA

[
max{f1(r1), f2(r2)}

]
=2.0165

and a similar calculation for the bottom branch
yields an expected utility of 3.050. Hence the decision
sequence which maximises expected utility is π1 =
dB , followed by π2 = dB if r1 > −0.15, and π2 =
dA otherwise. Note, however, that the given utility
function u(r1, r2) = r21 + r2 is slightly more risk
seeking for positive returns than it is risk averse for
negative returns. This is consistent with the optimal
strategy that requires the DM to initially select the
decision with the greatest variance of distribution of
return, given that both decisions lead to an expected
return of 0.

4.2 Example 2

As a second, slightly more practical example,
consider the following scenario. When a DM enters
into a long futures contract for a stock, she makes
a commitment to purchase that stock at a fixed
price (known as the strike price) at a fixed time
in the future. When that fixed time is reached and
the purchase is made, the DM has made a profit if
the current market price exceeds the strike price,
and a loss if not. Here a DM has been given the
chance to enter into a long futures contract on stock
A, and also the chance to enter into a long futures
contract on stock B. There are two decision epochs,
and she may only enter into (at most) one long
futures contact in each epoch. We denote by dA
the decision to enter into a long futures contract
on stock A, and by dB the decision to enter into
a long futures contract on stock B. She may also
choose to enter into neither, a decision we denote by
dN . At the first epoch, a decision d1 must be made.
The time t, after which the DM must purchase the
stock at the strike price, is assumed to be the length
of an epoch, e.g., if a DM chooses dA at the first
epoch, then she purchases stock A and makes either
a profit or loss precisely before she must make her
next decision. Hence after an epoch learning occurs
about the unknown parameter of interest θ, which is
related to stock performance and hence to the profit
or loss made.

Suppose θ ∼ N (1, 3), i.e., the DM expects stock
prices to be more than the strike price. We also have

• Ri|dA, θ ∼ N (2θ, 2),
• Ri|dB , θ ∼ N (θ + 1, 3),
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• P (Ri = 0|dN ) = 1.

The utility function of the DM over returns r1 and
r2 resulting from decisions d1 and d2 respectively
are given by the sum of exponential utility functions
in Equation (19), the use of which is common in
financial decision situations (see for instance Gerber
& Pafumi, (1998) or Tsanakas & Desli, (2005)).
The 0.9 multiplying the second term in the function
pertains to a discounting rate, by which it is meant
that returns received in the future are regarded as
inferior to identical returns received in the present.
The discounting rate is a measure of the degree to
which the DM prefers returns now to those at some
future time, with the discounting becoming more
extreme over time. It is also noted that this form of
utility function will yield negative utility values, but
this is of no concern as utility functions are invariant
to affine linear transformations, so the values may be
translated to any desired region.

u(r1, r2) = −e−0.1r1 − 0.9e−0.1r2 . (19)

This can be approximated by a multivariate Taylor
expansion to ensure that it belongs to the polynomial
utility class. This expansion is taken about the point
(2, 2), corresponding to the most likely values of r1
and r2 resulting from the prior distribution. This
yields the approximation

u(r1, r2) ≈ −1.9005 + 0.0978r1 + 0.0917r2

−0.004r21 − 0.0045r22. (20)

The decision tree is given below (Fig. 2).
The solution to this problem is found in the same

manner as in Example 1. In particular we have

u(r1, r2, θ)=

∫ (
− 1.9005 + 0.0978r1 + 0.0917r2

−0.004r21 − 0.0045r22

) 2∏
i=1

P (ri|di, θ)dr1dr2

= −1.9005 + 0.0978

∫
r1P (r1|d1, θ)dr1

+ 0.0917

∫
r2P (r2|d2, θ)dr2

− 0.004

∫
r21P (r1|d1, θ)dr1

− 0.0045

∫
r22P (r2|d2, θ)dr2.

Using the raw moments of the Normal distribution
as before allows the calculation of the expected
utility for possible decision paths, e.g., u(dA, dB , θ) =

Fig. 2. Decision Tree for Example 2

−1.8348 + 0.2783θ − 0.0205θ2, while u(dA, dN , θ) =
−1.9085 + 0.1956θ − 0.016θ2, etc. Again we use (13)
and (14) to update beliefs about θ. For instance there
are three conditional values at the first epoch, for
example θ|d1 = dA, r1 ∼ N ( 3r1+1

7 , 37 ), and seven
at the second epoch, for example θ|d1 = dA, d2 =
dB , r1, r2 ∼ N ( 3r1+r2

8 , 38 ). Expected utility values
are then found as in Example 1, but for illustrative
purposes consider the expected utility having first
made decision dA, followed by dB , and observing r1
and r2 respectively, then:

Eθ|h2,r2,d2=dB [u(dA, dB , θ)]

=

∫
u(dA, dB , θ)P (θ|h2, d2 = dB , r2)dθ

=

∫ (
− 1.8348 + 0.2783θ − 0.0205θ2

)
× P (θ|h2, d2 = dB , r2)dθ,

=−1.8348 + 0.2783

∫
θP (θ|h2, d2 = dB , r2)dθ

− 0.0205

∫
θP (θ|h2, d2 = dB , r2)dθ

=−1.8438 + 0.1044r1 + 0.034r2 − 0.0028r21

− 0.0019r1r2 − 0.00032r22

The predictive distribution of R2 given the history
up to that point is found by integration with respect
to updated beliefs about θ, i.e., P (R2|r1, d1, d2) =∫
P (R2|d2, θ)P (θ|r1, d1)dθ, allowing predicted ex-



10 Brett Houlding

pected values, e.g., E[R2|r1, d1 = dA, d2 = dB ] =
3r1+1

7 , which in turn permit the expected utility
equations in terms of r1 only. This allows calculation
of the expected utility, e.g., when d1 = dA and
d2 = dB then the expected utility is given by
−1.838 + 0.119r1 − 0.0037r21.

Now considering the branch where dA is chosen
first, it is clear that dB is preferred over dN if and
only if

−1.838 + 0.119r1 − 0.0037r21 >

−1.888 + 0.082r1 − 0.0029r21

⇐⇒ 0.050 + 0.037r1 − 0.00082 > 0

⇐⇒ −1.31 < r1 < 47.56

Hence:

ER1|d1=dA

[
max{f1(r1), f2(r2)}

]
=

−1.31∫
−∞

f1(r1)P (r1|dA)dr1

+

47.56∫
−1.31

f2(r1)P (r1|dA)dr1

+

∞∫
47.56

f1(r1)P (r1|dA)dr1,

where

• f1(r1) = −1.888 + 0.082r1 − 0.0029r21,
• f2(r1) = −1.838 + 0.119r1 − 0.0037r21,
• R1|dA ∼ N (2, 2).

This results in ER1|d1=dA

[
max{f1(r1), f2(r2)}

]
≈

−1.62. A similar procedure for when d1 = dB gives
a value approximately equal to −1.66, and when
d1 = dN the expected utility is −1.66. Hence,
performing the remainder of the calculations results
in an optimal decision sequence of π1 = dA, followed
by π2 = dB if −1.31 < r1 < 47.56. The DM has a
slightly risk-averse utility function in this example,
and hence it is unsurprising that she chooses the
return with the smaller associated variance, given
that both returns have (prior) equal means. Of
course it should be noted that the upper bound
for an observation r1 before the decision d2 = dA
is no longer optimal can be explained by the fact
that these values have negligibly small probability
of occurring. Note that the derivative of f2(r1) is
negative for r1 > 16.1, implying incoherent utility
preferences, but the probability of seeing a value

exceeding this threshold is less than 0.0001, i.e., it
is negligibly small.

In addition to the above computations we also
conducted the analysis in this question using the
original exponential utility function of Equation (19),
rather than its polynomial approximation using the
Taylor Series, as demonstrated in Equation (20).
Use of this non-polynomial utility function meant
we were unable to use the techniques derived in
Section 3. Nevertheless it was possible to calculate a
result (using numerical integration methods) which
was that the optimal sequence was π1 = dA, followed
by π2 = dB if r1 > −1.308. We see that it
is essentially identical to the outcome determined
above, with the expected utility also being −1.62
for buying stock A first. There is no upperbound
on r1 in this exponential case, while for its Taylor
series approximation the upperbound was 47.56.
The probability of witnessing a value above this
bound is suitably smalll, yet significant enough to
cause a minor difference in the finalised figures for
expected utility in the two cases. Overall we see
that both approaches garner the same outcome,
but with the former, using polynomial utility, being
significantly more tractable, and not requiring the
use of numerical integration in the computations.
Note that where we to continue to extend Equation
(20) to a higher order Taylor expansion then the
results in both cases would be indistinguishable.

5. DISCUSSION

As discussed in Section 2 Lindley’s method of
conjugate utility permits a closed form solution to a
one-off decision problem. However, when extended
to a sequential decision problem the solution is
generally no longer available in closed form. As an
alternative we have proposed the use of a polynomial
utility class, which allows for tractable solutions
in sequential decision problems when Normal dis-
tributions reasonably represent prior beliefs over
the unknown decision parameter θ and decision
returns Ri. Normal-Normal conjugacy ensures that
subsequent utility values are in a closed form and
are easily interpretable. Note that while on the
surface the requirement for beliefs to follow a Normal
distribution may seem like a somewhat restrictive
facet of this methodology, the Normal distribution
is a very prevalent one which occurs naturally in
many realistic frameworks. Also furthering this claim
is the Central Limit Theorem, which states that
the sum of a suitably large amount of independent
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identically distributed random variables, having
finite mean and variance, will converge to the Normal
distribution, making it a commonly used limiting
distribution in cases where the elements of interest
are not themselves Normally distributed. Note that
this methodology can naturally be extended to a
multivariate Normal setting, as similar conjugacy to
the univariate case is applicable here also.

It is noteworthy that the method outlined in
this paper could potentially be extended to include
the idea of adaptive utility, as seen in Cyert &
DeGroot (1975) and Houlding & Coolen (2011).
In adaptive utility there is uncertainty of a DM
over her preferences, and she may learn about them
over time. In sequential decision problems within
this framework, the additional uncertainty further
increases the computational complexity of a solution,
which suffer greatly from the curse of dimensionality.
The implementation of a method such as the
polynomial utility class would be especially effective
in this case, and the tractability of solutions would
be all the more valuable, as it would greatly decrease
computational cost.

An area for possible further exploration is in the
use of sets or classes of utility functions to model
imprecise utilities, discussed in Houlding & Coolen
(2012). In cases of imprecise utility in sequential
decision problems the tractability of computation is
an even bigger issue then for single utility functions
due to the need to track both a lower expected utility
bound and an upper expected utility bound rather
than a single expected utility value.

Also of future interest is whether this method
could be extended beyond the Normal distribution
to other members of the Exponential family or
Stable family of distributions, or maybe to consider
discretization, e.g., using the Multinomial model
with conjugate Dirichlet priors. Finally, we also
mentioned that commonly used functions such as
the exponential and logarithmic functions are not
contained in the polynomial utility class, but may be
approximated by Taylor series. Further study could
be conducted to determine the level of accuracy
of this approximation depending on the number of
terms considered in the partial sum (as touched on
at the end of Example 2) so as to allow a robust
analysis and potential bounds on resulting errors.
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APPENDIX

In the univariate case, a probability distribution
is said to be a member of the exponential family
if, following a suitable parameterization, it can be
expressed in the following form, where the function
H(r) is non-negative, and G(θ) is the normalising
constant:

P (r|θ) = G(θ)H(r)eθr. (21)

The natural conjugate prior for such densities is
then, for suitable hyper-parameters n0 and r0, of the
following form, with normalising constant K(n0, r0):

P (θ|n0, r0) = K(n0, r0)G(θ)n0eθr0 . (22)

Following a sample of independent and identically
distributed values (r1, r2, . . . , rn) = r, with P (ri|θ)
as in Equation (3), posterior beliefs over θ will be as
follows:

P (θ|r, r0, n0) = K
(
n+ n0,

n∑
i=0

ri

)
× G(θ)n+n0eθ

∑n
i=0 ri . (23)

Lindley (1976) shows that if the utility of a decision d
depends on the value of some uncertain parameter θ
that has posterior distribution according to Equation
(23), then there is a natural conjugate ‘matched’
utility function that takes the following form, with
F (d) a positive function:

U(d, r, θ) = F (d)G(θ)n(d)eθr(d). (24)

When determining the expected utility of decision
d with respect to posterior beliefs over θ, Equation
(24) leads to the following (with r =

∑n
i=0 ri and

N = n+ n0):

U(d, r)=

∫
F (d)K(N, r)G(θ)N+n(d)eθ(r+r(d))dθ, (25)

=
F (d)K(N, r)

K(N + n(d), r + r(d))
.


