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Abstract. Semple and Steel (2002) showed that if T is a phylogenetic X-tree and C is a collection
of r-state characters that defines T , then |C| ≥ �(n − 3)/(r − 1)�, where n = |X|. In this paper, we
show that, provided n is sufficiently large, this lower bound is sharp. Furthermore, we show that,
for all n ≥ 13, there exists a collection of 4-state characters of size �(n − 3)/3� that defines T , but
there is a phylogenetic X-tree with n = 12 which is not defined by any set of 3 characters.
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1. Introduction. A central task in evolutionary biology is the reconstruction of
phylogenetic (evolutionary) trees. Such trees represent the ancestral history of a col-
lection of present-day species. In biology, characters describe attributes of the species
under consideration and are the typical data used for reconstructing phylogenetic
trees. Characters can be morphological or genetic, such as the nucleotide at a certain
position on a DNA sequence. A natural question to ask is how many characters are
required to recover the correct phylogenetic tree? More precisely, given an arbitrary
phylogenetic tree T , how small can a collection C of characters be so that T is the
only phylogenetic tree consistent with C? If each character is allowed an unbounded
number of “states,” Semple and Steel [8] showed that |C| ≤ 5. Huber, Moulton, and
Steel [6] improved this upper bound to |C| ≤ 4 and this result is sharp. However, in
practice, characters with an unbounded number of states are unrealistic. In this paper,
we derive the analogous sharp result for characters with a bounded number of states.

Throughout the paper, X is always a finite set with |X | ≥ 3. A phylogenetic
X-tree T is an unrooted tree with no degree-two vertices and whose leaf set is X . In
addition, T is binary if every interior vertex has degree three. A character χ on X is
a function from X into a set of character states. If |χ(X)| ≤ r, then χ is an r-state
character. For example, if χ is the character that assigns one of the four nucleotides
at a certain position on a DNA sequence, then χ is a 4-state character.

Let T be a phylogenetic X-tree and let χ be a character on X into a set C of
character states. For each α ∈ χ(X), let T (α) denote the minimal subtree of T whose
leaf set is χ−1(α). We say that χ is convex on T if the subtrees in {T (α) : α ∈ C}
are vertex disjoint. More generally, for a collection C of characters on X , we say C is
convex on T if each character in C is convex on T . A collection C of characters on
X defines a phylogenetic X-tree T if, up to isomorphism, T is the only phylogenetic
X-tree for which C is convex, in which case, T is necessarily binary. The relevance of
convexity to biology is discussed at the end of this section.
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Fig. 1. (a) A binary phylogenetic tree T on {1, 2, . . . , 12} that is not defined by a collection of
three 4-state characters. (b) A binary phylogenetic tree on {1, 2, . . . , 12} for which the characters
displayed by {e1, e4, e7}, {e2, e5, e8}, and {e3, e6, e9} are also convex.

To illustrate, consider the binary phylogenetic X-tree T shown in Figure 1(a),
where X = {1, 2, . . . , 12}, and the 4-state character χ : X → {α, β, γ, δ} defined by
χ(1) = χ(2) = χ(3) = χ(4) = α, χ(5) = χ(6) = β, χ(7) = χ(8) = χ(11) = χ(12) = γ,
and χ(9) = χ(10) = δ. Ignoring the edge labels for now, it is easily checked that
T (α), T (β), T (γ), and T (δ) are vertex disjoint, and so χ is convex on T .

Semple and Steel [8] showed that if T is a binary phylogenetic X-tree and C is a
collection of r-state characters that defines T , then

|C| ≥
⌈
n− 3

r − 1

⌉
,

where n = |X |. In this paper, we show that, provided n is large enough, this lower
bound on the size of C is sharp. In particular, we establish the following theorem.

Theorem 1.1. Let r be a positive integer exceeding one. Then there exists a
positive integer nr such that, for all binary phylogenetic X-trees T with n = |X | ≥ nr,
there is a collection C of r-state characters of size

|C| =
⌈
n− 3

r − 1

⌉

that defines T .
When r = 2, Theorem 1.1 reduces to a result of Buneman [2]. Here n2 = 3.
In addition to establishing Theorem 1.1 for all r ≥ 2, we derive the exact result

for when r = 4.
Theorem 1.2. Let T be a binary phylogenetic X-tree and let n = |X |. If n ≥ 13,

then there is a collection C of 4-state characters of size

|C| =
⌈
n− 3

3

⌉

that defines T . Moreover, if n = 12, then there is a binary phylogenetic X-tree that
is not defined by any collection of 3 = � 12−3

3 � characters.
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Throughout the paper, notation and terminology follow Semple and Steel [10].
The paper is organized as follows. Section 2 contains some preliminaries. In section 3
we establish two lemmas, both of which are used in the proofs of the main results.
Theorem 1.1 is proved in section 4, while Theorem 1.2 is proved in section 5.

Relevance of convexity to biology. Let T be a phylogenetic X-tree, and
suppose that we subdivide an edge of T to create a degree-two vertex ρ. We call ρ the
root vertex of T , and refer to the resulting tree, denoted T +ρ, as a rooted phylogenetic
X-tree.

Phylogenetic trees (and their rooted counterparts) provide a convenient represen-
tation of evolutionary relationships in biology. In particular, viewing the edges of T +ρ

as directed away from the root ρ, we regard T +ρ as describing the evolution of the
set X of extant species from an ancestral species at ρ. The remaining interior vertices
of T +ρ correspond to other hypothetical ancestral species descended from the species
at ρ.

Now suppose each extant and ancestral species has an associated character state
lying in some set C of character states. In this way, we regard the character state
as also “evolving” from ρ towards the species in X . This leads to a concept of
evolutionary “innovation,” namely, that each time a species changes its character
state, the new state it aquires is arising for the first time in the tree. Formalizing this
concept, let c be the map from the vertices of T +ρ into C so that c(v) is equal to the
character state assigned to vertex v. Then the “innovation” concept corresponds to
the requirement that neither of the following two events occur, in which case we say
that c is homoplasy-free.

(i) If v1v2 · · · vk is a path in T +ρ directed away from the root ρ and, for some
i ∈ {2, 3, . . . , k − 1},

c(v1) = c(vk) �= c(vi),

then c exhibits a reverse transition. Informally, this corresponds to a new
state arising, but then reverting to an earlier state.

(ii) If v1v2 · · · vk and w1w2 · · ·wl are distinct directed paths in T +ρ directed away
from the root ρ with v1 = w1, v2 �= w2, and

c(vk) = c(wl) �= c(v1),

then c exhibits a convergent transition. Informally, this corresponds to the
same state arising in different parts of the tree.

Reverse and convergent transitions do happen in biology, but such events are consid-
ered relatively rare.

To explain the connection between these biologically motivated concepts and con-
vexity, we use the following lemma, whose straightforward proof is omitted.

Lemma 1.3. Let χ be a character on X, taking values in a set C, and let T
be a phylogenetic X-tree. Then χ is convex on T if and only if there is a function
χ̄ : V (T ) → C satisfying the following properties:

(C1) χ̄|X = χ; and
(C2) if α ∈ C, then the subgraph of T induced by {v ∈ V (T ) : χ̄(v) = α} is

connected.
Let T +ρ be a rooted phylogenetic X-tree, and suppose that each vertex v of

T +ρ has an associated character state c(v) that is an element of a set C of character
states. Consider the associated phylogenetic X-tree T . Restricting our attention to
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the values that c takes at the leaves of T , we obtain an induced character χ on X by
setting χ(x) = c(x) for all x ∈ X . If c is homoplasy-free, then χ is convex on T since
χ̄ : V (T ) → C defined by χ̄(u) = c(u), for all u ∈ V (T ), satisfies (C1) and (C2).

On the other hand, if a character χ1 is convex on a phylogenetic X-tree T1 with a
corresponding function χ̄1 : V (T1) → C satisfying (C1) and (C2), then, for all choices
of a root ρ, we can extend χ̄1 to a map from V (T1)∪{ρ} to C that is homoplasy-free.

Note that if c is not homoplasy-free on a rooted phylogenetic tree T +ρ, it is still
possible that the associated character may be convex on T .

2. Preliminaries. We begin by generalizing phylogenetic X-trees to X-trees.
An X-tree T = (T ;φ) is an ordered pair consisting of a tree T and a mapping φ from
X to the vertex set V of T with the property that if v ∈ V and v has degree at most
two, then v ∈ φ(X). Now, let χ be a character on X and let T = (T ;φ) be an X-tree.
We denote the partition of X induced by χ by π(χ), that is,

π(χ) = {χ−1(αi) : αi ∈ χ(X)}.

Generalizing the notion of convexity to X-trees, we say χ is convex on T if, for all
α ∈ χ(X), the subtrees in {T (α) : α ∈ C} are vertex disjoint, where T (α) denotes
the minimal subtree of T connecting the vertices in χ−1(α). An equivalent definition
is that χ is convex on T if there is a subset F of edges of T whose deletion from T
gives a graph with the property that, for all A,B ∈ π(χ), there are two components
where φ(A) is a subset of the vertex set of one component and φ(B) is a subset of
the vertex set of the other component. In this case, we say that χ is displayed by F .
More generally, a collection C of characters on X is convex on T if each character in
C is convex on T , in which case, C is compatible. For a compatible collection C of
characters on X , we say that C infers a character χ if χ is convex on every X-tree on
which C is convex.

Let e be an edge of an X-tree T = (T ;φ), and let V1 and V2 be the vertex sets of
the components of T \e. Then the bipartition {φ−1(V1), φ

−1(V2)} of X , denoted σe,
is an X-split of T . If T is a phylogenetic tree and e is an interior edge, we refer to
σe as a nontrivial X-split of T . The following theorem is well known and is simply
a rephrasing of the previously mentioned result of Buneman [2] in the language of
X-splits.

Theorem 2.1. Let T be a binary phylogenetic X-tree. The collection Σ of non-
trivial X-splits of T defines T , that is, up to isomorphism, T is the only phylogenetic
X-tree whose collection of X-splits contains Σ.

An X-tree T ′ is a refinement of an X-tree T if each X-split of T is an X-split
of T ′. A collection C of characters identifies an X-tree T if C is convex on T and
every X-tree on which C is convex is a refinement of T . Note that if C identifies a
binary phylogenetic tree T , then C defines T . Furthermore, a compatible collection
C of characters on X infers an X-split {X1, X2} if {X1, X2} is an X-split on every
X-tree on which C is convex.

Distinguishing and strongly distinguishing. Let T be a binary phylogenetic
X-tree and let C be a collection of characters on X . If e = {u1, u2} is an interior edge
of T , then e is distinguished by C if there is a character χ in C with A1, A2 ∈ π(χ)
such that u1 but not u2 is contained in the minimal subtree of T connecting elements
in A1, and u2 but not u1 is contained in the minimal subtree connecting elements in
A2. We say T is distinguished by C if every interior edge of T is distinguished by a
character in C. As we shall see below, the notion of distinguish has basic links with
defining. However, for identifying, we need a stronger notion.
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Let T = (T ;φ) be an X-tree and let e = {u1, u2} be an edge of T . Then e is
strongly distinguished by a character χ on X if there exist A1, A2 ∈ π(χ) such that,
for each i ∈ {1, 2}, the following hold:

(i) φ(Ai) is a subset of the vertex set of the component of T \e containing ui;
(ii) the vertex set of each component of T \ui, except for the one containing the

other end vertex of e, contains an element of φ(Ai); and
(iii) φ−1(ui) is a subset of Ai.

We say T is strongly distinguished by a collection C of characters if every edge of T is
strongly distinguished by some character in C.

Intersection graphs. Let C be a collection of characters on X ′ and let T =
(T ;φ) be an X ′-tree. If X ⊆ X ′, the minimal subtree of T connecting the vertices in
φ(X) is denoted by T (X). We next define two graphs each of which has vertex set

V (C) =
⋃
χ∈C

{(χ,A) : A ∈ π(χ)}.

(I) The partition intersection graph of C, denoted int(C), is the graph with vertex
set V (C) and an edge joining (χ1, A) and (χ2, B) if A ∩B is nonempty.

(II) The subtree intersection graph of T induced by C, denoted int(C, T ), is the
graph with vertex set V (C) and an edge joining (χ1, A) and (χ2, B) if χ1 �= χ2

and T (A) ∩ T (B) is nonempty.
It is well known that if a graph G is the subtree intersection graph of subtrees of a
tree, then G is chordal [3, 4, 11]. Thus, in (II), the intersection graph int(C, T ) is
chordal.

A graph is chordal if every cycle with at least four vertices has an edge connecting
two nonconsecutive vertices. For a collection C of characters on X , a chordal graph G
is a restricted chordal completion, also called a proper triangulation, of int(C) if G can
be obtained from int(C) by adding only edges joining vertices whose first components
are distinct. If G is a restricted chordal completion of int(C), but there is no restricted
chordal completion G′ of int(C) in which E(G) is a proper subset of E(G′), we say
that G has no nontrivial restricted chordal completions.

Past results. A number of results have been established equating the com-
patibility of a collection C of characters with the intersection graph int(C) of C. For
example, Buneman [3] showed that C is compatible if and only if int(C) has a restricted
chordal completion. Furthermore, if C is a collection of 2-state characters, then C is
compatible if and only if int(C) is chordal [10], and more recently Lam, Gusfield, and
Sridhar [7] have characterized the compatibility of a collection of 3-state characters
C in terms of int(C). The intersection graph of a collection of characters, and re-
stricted chordal completions of it, have also been used in algorithmic approaches to
determining compatibility; see, for example, Gysel and Gusfield [5].

The following results will be used to prove Theorem 1.1 and 1.2. The first result
is one direction of the main result in [9]. For a collection C of characters on X , a
restricted chordal completion G of int(C) is minimal if, for every nonempty subset F
of E(G)− E(int(C)), the graph G\F is not chordal.

Theorem 2.2. Let T be a binary phylogenetic X-tree and let C be a collection of
characters on X. Then C defines T if

(i) each character is convex on T and every edge of T is distinguished by a
character in C, and

(ii) there is a unique minimal restricted chordal completion of int(C).
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For a collection C of characters on X , let G(C) denote the set

G(C) = {G : there is an X-tree T in which C is convex and G = int(C, T )}

of chordal graphs. Note that G(C) is a subset of the collection of restricted chordal
completions of int(C). We obtain a partial order ≤ on G(C) by setting G1 ≤ G2 if
E(G1) ⊆ E(G2) for all G1, G2 ∈ G(C). The next theorem is one direction of the main
result in [1].

Theorem 2.3. Let T be an X-tree and let C be a collection of characters on X.
Then C identifies T if

(i) each character in C is convex on T and every edge of T is strongly distin-
guished by a character in C, and

(ii) there is a unique maximal element in G(C).
In reference to Theorem 2.3, if int(C) has no nontrivial restricted chordal comple-

tions, then there is precisely one graph in G(C), namely, int(C), in which case, this is
the unique maximal element in G(C). In particular, we have the following corollary,
of which we make frequent use.

Corollary 2.4. Let T be an X-tree and let C be a collection of characters on
X. Then C identifies T if

(i) each character in C is convex on T and every edge of T is strongly distin-
guished by a character in C, and

(ii) int(C) has no nontrivial restricted chordal completions.

3. Two lemmas. In this section, we prove two lemmas. Both lemmas are used
in the proofs of Theorems 1.1 and 1.2.

Let T = (T ;φ) be an X-tree, let e = {u, v} be an edge of T , and let T /e be
the X-tree obtained from T by contracting e, that is, letting w denote the identified
vertex in T/e, the X-tree (T/e;φ′), where, for all y ∈ X ,

φ′(y) =

{
φ(y) if φ(y) �∈ {u, v},
w otherwise.

Furthermore, let F be a subset of edges of T . Let V1, V2, . . . , Vk denote the vertex
sets of the components of T \F . The partition of X displayed by F is the partition

{φ−1(Vi) : i ∈ {1, 2, . . . , k}}.

Lemma 3.1. Let r ≥ 2 and let T be a phylogenetic X-tree. Furthermore sup-
pose that T has a path containing (in order) 2r − 2 interior edges e1, e2, . . . , e2r−2.
Let {X1, X2, . . . , X2r−1} be the partition of X displayed by E′ = {e1, e2, . . . , e2r−2},
where, for all i ∈ {1, 2, . . . , 2r − 2}, the edge ei is the only edge in E′ in the minimal
subtree of T connecting the elements in Xi ∪Xi+1. Then any two r-state characters
χ1 and χ2 with

π(χ1) = {X1, X2 ∪X3, X4 ∪X5, . . . , X2r−2 ∪X2r−1}

and

π(χ2) = {X1 ∪X2, X3 ∪X4, . . . , X2r−3 ∪X2r−2, X2r−1}

infer the X-splits σe1 , σe2 , . . . , σe2r−2 .
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Proof. Let T ′ be the X-tree obtained from T by contracting each of the edges
in E(T ) − {e1, e2, . . . , e2r−2}. Let ei be an edge of T ′. First suppose ei is not a
pendant edge of T ′. Then, for some j ∈ {1, 2}, there is a character χj such that
Xi−1 ∪Xi ∈ π(χj) and Xi+1 ∪Xi+2 ∈ π(χj). Using Xi−1 ∪ Xi and Xi+1 ∪Xi+2, it
is easily checked that χj strongly distinguishes ei. Now suppose that ei is a pendant
edge of T ′. Then ei is either e1 or e2r−2. If it is e1, then χ1 strongly distinguishes
ei using X1 and X2 ∪X3, while if it is e2r−2, then χ2 strongly distinguishes ei using
X2r−3∪X2r−2 andX2r−1. Now consider the partition intersection graph int({χ1, χ2}).
A routine check shows that int({χ1, χ2}) is a path in which every second vertex has
the same first coordinate. It follows that int({χ1, χ2}) has no nontrivial restricted
chordal completions and so, by Corollary 2.4, χ1 and χ2 identify T ′. In particular,
χ1 and χ2 infer the X-splits σe1 , σe2 , . . . , σe2r−2 .

Let e be an edge of an X-tree T = (T ;φ), and let V1 and V2 be the vertex sets of
the components of T \e. Let χe denote the character χe : X → {αe, βe} defined, for
all y ∈ X , by

χe(y) =

{
αe if y ∈ φ−1(V1),

βe otherwise.

Lemma 3.2. Let T = (T ;φ) be an X-tree and let χ be a character on X that is
convex on T , where π(χ) = {Y1, Y2, . . . , Yr}, where r ≥ 2. Let {f1, f2, . . . , fr−1} be a
set of edges that displays χ. Let E′ = {e1, e2, . . . , es} be a subset of edges of T with
E′ ∩ {f1, f2, . . . , fr−1} empty satisfying the following two properties:

(i) for all distinct i, j ∈ {1, 2, . . . , r − 1}, there is an interior edge e ∈ E′ on the
path from an end vertex of fi to an end vertex of fj; and

(ii) for each e = {u, v} ∈ E′, there is a path from u (resp., v) to a vertex w of T
avoiding v (resp., u) and f1, f2, . . . , fr−1, and φ−1(w) is nonempty.

Then the collection

{χ, χe1 , χe2 , . . . , χes}

of characters on X infers each of the X-splits σf1 , σf2 , . . . , σfr−1 .
Proof. Let T ′ = (T ;φ′) be the X-tree obtained from T by contracting each edge

not in

E′ ∪ {f1, f2, . . . , fr−1},

and consider the collection

C = {χ, χe1 , χe2 , . . . , χes}

of characters on X . We next show that C identifies T ′.
Clearly, C is convex on T ′. Now let e be an edge of T ′. If e ∈ E′, then χe strongly

distinguishes e. Suppose that e = fi = {u1, u2} for some i ∈ {1, 2, . . . , r − 1}. Since
E′ satisfies (i), every edge in T ′ adjacent to fi is in E′. Together with (ii), this implies
that there exist Z1, Z2 ∈ π(χ) such that, for each i ∈ {1, 2}, we have the following:
φ′(Zi) is a subset of the vertex set of the component of T ′\fi containing ui; the vertex
set of each component of T ′\ui (except for the one containing the other end vertex
of fi) contains an element of φ′(Zi); and φ−1(ui) is a subset of Zi. Thus χ strongly
distinguishes fi.

Consider int(C). We will show that int(C) has no nontrivial restricted chordal
completions. Let e and e′ be distinct elements in E′, and let π(χe) = {A,B} and
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π(χe′ ) = {A′, B′}. Now exactly one of the intersections A ∩ A′, A ∩ B′, B ∩ A′, and
B ∩ B′ is empty. Without loss of generality, we may assume that A ∩ A′ is empty.
Then {(χe, A), (χe′ , A

′)} is not an edge in int(C). Indeed, no nontrivial restricted
chordal completion contains this edge; otherwise (χe, A), (χe′ , A

′), (χe, B), (χe′ , B
′)

are the vertices of a 4-cycle in such a completion. But it is not possible for two
nonconsecutive vertices in this cycle to be joined by an edge as they have the same
first component. Hence any nontrivial restricted chordal completion of int(C) must
contain an edge of the form {(χ, Yi), (χej , Aj)}, where Yi∩Aj is empty. Suppose there
exists such a completionG containing such an edge. Since E′ satisfies (i) and (ii), there
is a Yk ∈ π(χ) with Yk ∩ Aj and Yk ∩ Bj both nonempty, where π(χej ) = {Aj , Bj}.
Note that, as Yk ∩ Aj is nonempty, Yi and Yk are distinct. Furthermore, as Yi ∩ Aj

is empty, Yi ∩ Bj is nonempty. Therefore (χ, Yi), (χej , Aj), (χ, Yk), (χej , Bj) are the
vertices of a 4-cycle of G. But again it is not possible for two nonconsecutive vertices
in this cycle to be joined by an edge; a contradiction. Thus there is no nontrivial
restricted chordal completion of int(C). Therefore, by Corollary 2.4, C identifies T ′,
which in turn implies that every X-tree on which C is convex is a refinement of T ′.
In particular, σf1 , σf2 , . . . , σfr−1 are X-splits of such an X-tree. This completes the
proof of the lemma.

4. Proof of Theorem 1.1. This section consists of the proof of Theorem 1.1.
Proof of Theorem 1.1. We assume that |X | > n0, where n0 will be chosen suffi-

ciently large so that we can choose our initial characters without worrying about the
topology of T . We select a set E0 of interior edges e1, e2, . . . , ek on a path in T with
the properties that

(i) k is a multiple of 2r − 2 and is at least 4r5 + r, and
(ii) each of the components of T \E0 contains at least �log r� vertices.

By applying Lemma 3.1 k times, there is a set C0 of k
r−1 r-state characters which

infers the X-splits σe1 , σe2 , . . . , σek .
We now proceed iteratively to construct the remaining characters. Set i = 1. In

step i, select a set Fi of r − 1 interior edges of T such that each edge in Fi is in a
different component of T \Ei−1. Define χi to be a character for which π(χi) is the
partition of X displayed by Fi. Let Ei = Ei−1∪Fi. By induction and Lemma 3.2, the
collection Ci = Ci−1 ∪ {χi} infers each of the X-splits in {σe : e ∈ Ei}. Now, increase
i by 1 and repeat.

In order to ensure that we do not exhaust the supply of edges in distinct com-
ponents too early, we shall always select the edges in Fi to be in the r − 1 largest
components (measured by the number of interior edges of T ) of T \Ei−1, and to select
the interior edge within each such component that as closely as possible results in two
subsequent components of equal size on its deletion. By doing so, we will show that
we can continue the process until the final step, l say, in which there may be less than
r − 1 interior edges of T not yet selected. However, these edges will be in distinct
components of T \El−1 and we generate the final character χl, for which π(χl) is the
partition of X displayed by the remaining interior edges of T not yet selected. We
end with a set Cl of r-state characters that infers every nontrivial X-split of T and
therefore, by Theorem 2.1, defines T , where l = �n−3

r−1 �.
Let i ≥ 1. Our first claim is that if a component T ′ of T \Ei−1 has m ≥ 4 interior

edges of T , then we can select such an interior edge e of T ′ for which each of the two
components, T ′

1 and T ′
2 say, of T ′\e has greater than m/10 interior edges of T , and

with one component having at leastm/3 interior edges of T . To see this, choose e that
maximizes the minimum number of interior edges of T ′

1 and T ′
2 . For the purposes of
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obtaining a contradiction, we may assume, without loss of generality, T ′
1 has at most

m/10 interior edges of T , and so T ′
2 has at least 9m/10− 1 interior edges of T . Now

T ′
2 has at least one interior edge of T adjacent to e. If T ′

2 has exactly one such edge
f , then the components of T ′\f each have (strictly) more interior edges of T than
T ′
1 , contradicting the choice of e. Therefore, T ′

2 has two such edges, f1 and f2 say.
Let f ∈ {f1, f2} be the edge such that the component of T ′

2\{f1, f2} pendant to f
has the most interior edges of T . This component must have at least �9m/20− 3/2�
interior edges of T which is greater than m/10 for m ≥ 4. Again, the components of
T ′\f each have (strictly) more interior edges of T than T ′

1 , contradicting the choice
of e. For the second part of the claim, it follows by the pigeonhole principle that at
least one of the two components must have at least (m − 1)/2 > m/3 interior edges
of T .

Our second claim is that if we have performed t iterations and the largest remain-
ing component has

mt ≥ 4 · 9�log r�

interior edges of T , then, for all k ≤ min{2t, r − 1}, the kth largest component
(measured by the number of interior edges of T ) has at least

mt

9�log k�

interior edges of T . We prove this claim by induction on t. For t = 0, the claim
trivially holds since k ≤ 1 and the largest component has at least m0 interior edges of
T . Now suppose that the claim holds for the first t iterations. The largest component
after t+ 1 iterations arose either from a component that was divided in the (t+ 1)th
iteration, in which case, by the first claim, mt+1 < 9mt/10, or was not divided in the
(t + 1)th iteration, in which case, it was at most the rth largest component at the
start of that iteration. In the first case, for k ≤ min{2t+1, r − 1}, there were at least
k/2 components of size at least

mt

9�log(k/2)�
=

mt

9�log k�−1

at the start of the (t + 1)th iteration. By the first claim, each of these components
generate two components of size at least

mt

10 · 9�log k�−1
>

mt+1

9�log k� ,

and so the inductive step holds. In the second case, for k ≤ min{2t+1, r − 1}, there
were at least k components of size at least mt+1 at the start of the (t+1)th iteration
and, by the first claim, each of these generated a component with more than mt+1/3
interior edges of T . For k ≥ 2, this is at least

mt+1

9�log k� .

Furthermore, for k = 1, the claim holds trivially. This completes the proof of the
second claim.

We now fill in the argument outlined earlier. There are at least 4r5 + r >
(r − 1)�log r� components in T \E0 with at least �log r� interior edges of T . Hence,
we do the first �log r� iterations without ever selecting an edge in a component which
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only has one interior edge of T . The endgame is reached when we first have to select
an edge from a component consisting of only one interior edge of T . From here, the
number of components starts decreasing. At this point, the number of components is
still at least 4r5 + r. Since the (r − 1)th largest component has 1 interior edge of T ,
it follows by the second claim that

mt < 4 · 9�log r� < 4r4.

Furthermore, as the (r − 1)th largest component has 1 interior edge of T , there are
at least 4r5 components that have exactly one interior edge of T . After at most 4r4

further iterations, there will be no components with more than 1 interior edge of T
remaining and, for each of these iterations, we will have always selected a set of r− 1
interior edges of T from distinct components since there are sufficient components
consisting of at least one such edge. We can now select the remaining interior edges
of T in sets of r − 1 until we are left with the final set of size at most r − 1. Because
we always selected a full set of r− 1 interior edges of T , apart from possibly the final
set, and there are n − 3 interior edges in total, our resulting collection of characters
has size �n−3

r−1 �. This completes the proof of the theorem.

5. Four-state characters. In this section, we prove Theorem 1.2. We begin
with an example to show that when n = 12 there is a binary phylogenetic X-tree that
is not defined by three 4-state characters.

Consider the binary phylogenetic tree T shown in Figure 1(a). Suppose for con-
tradiction that three 4-state characters define T . Since these characters define T , each
interior edge of T must be distinguished by one of the characters, and so no char-
acter is displayed by a subset of edges containing two adjacent edges. Thus we may
assume by symmetry that these characters are displayed, respectively, by the subsets
{e1, e4, e7}, {e2, e5, e8}, and {e3, e6, e9} of edges of T . In particular, the partitions of
{1, 2, . . . , 12}, namely,{

{1, 2, 3, 4}, {5, 6}, {7, 8, 11, 12}, {9, 10}
}
,{

{1, 2}, {3, 4, 9, 10}, {5, 6, 7, 8}, {11, 12}
}
,

and {
{1, 2, 5, 6}, {3, 4}, {7, 8}, {9, 10, 11, 12}

}
induced by the characters define T . But the same collection of characters is also
convex on the binary phylogenetic tree shown in Figure 1(b); a contradiction. Thus,
for n = 12, Theorem 1.2 does not hold.

The rest of the proof of Theorem 1.2 is by induction on n. For this induction,
it is the base case that requires the most work. The base case consists of directly
establishing the result for n = 13, 14 (Corollary 5.9) and n = 15 (Corollary 5.8). We
begin with several lemmas which will eventually be used to establish these corollaries.
Once the base case is established, Lemma 5.10 deals with binary phylogenetic trees
of a special structure (caterpillar-like trees) and, in all remaining binary phylogenetic
trees, we identify three leaves that may be removed to give an easy inductive step.

Lemma 5.1. Let C be a compatible collection {χ1, χ2, . . . , χk} of characters, and
suppose that G is a restricted chordal completion of int(C). If, for each i and j, the
subgraph of G induced by those vertices whose first coordinate is either χi or χj is a
tree, then there is no nontrivial restricted chordal completion of G.
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Proof. Suppose that G has the desired tree property for each pair of characters
in C, but there is a nontrivial restricted chordal completion G′ of G. Let e be an
edge of G′ that is not an edge of G. Then e joins two vertices vi and vj whose first
coordinates are distinct, say χi and χj . By the tree property in G, there is a path
in G′ from vi to vj avoiding e whose first coordinates alternate between χi and χj .
In particular, there is a cycle in G′ with at least four vertices whose first coordinates
alternate between χi and χj . But then, for each four successive vertices in the cycle,
there is no edge connecting two nonconsecutive vertices, so G′ is not chordal. This
contradiction completes the proof of the lemma.

Let T ′ be a phylogeneticX ′-tree and let T be a phylogeneticX-tree with X ⊆ X ′.
The next lemma will show that a set of characters that defines T can be extended to
a set of characters on X ′ that infer the same structure. We say T is a restriction of T ′

if T can be obtained from the minimal subtree of T ′ connecting the elements in X by
suppressing degree-two vertices. A bipartition {A′, B′} extends another bipartition
{A,B} if, for some choice of A and B, we have A ⊆ A′ and B ⊆ B′. Observe that T
is a restriction of T ′ if and only if, for all interior edges e in T , there is an edge f in
T ′ such that the bipartition corresponding to f in T ′ extends that corresponding to
e in T .

Suppose that T is a restriction of T ′. A subset F of interior edges of T ′ is T -
representable if, for each interior edge e in T , there is precisely one edge f in F such
that σf extends σe. Now let C be a collection of characters that are convex on T . Let
χ be a character in C, and suppose that χ is displayed by the subset Eχ of edges in
T . For each χ ∈ C, let χF be a character on X ′ displayed in T ′ by the subset

{f : σf extends σe, e ∈ Eχ, f ∈ F}

of F . Furthermore, let CF = {χF : χ ∈ C}.
Lemma 5.2. Let T ′ be a phylogenetic X ′-tree and let T be a binary phylogenetic

X-tree with X ⊆ X ′. Suppose T is a restriction of T ′. Let F be a T -representable
subset of interior edges of T ′. If C is a collection of characters on X that defines T ,
then the collection CF of characters on X ′ infers each of the X ′-splits of T ′ induced
by the edges in F .

Proof. Let S be the phylogenetic tree obtained from T ′ by contracting each of
its interior edges not in F . We will show that CF identifies S, thus showing that CF
infers each of the X ′-splits of T ′ induced by the edges in F . Suppose that there is a
phylogenetic X ′-tree T1 that is not a refinement of S but CF is convex on T1. Since
CF is convex on T1, and so T1|X ∼= T ∼= S|X , it follows that there is an element z in
X ′ −X such that {A∪ {z}, B} is an (X ∪ {z})-split of S|(X ∪ {z}) but {A,B ∪ {z})
is an (X ∪ {z})-split of T1|(X ∪ {z}). Here X is the disjoint union of A and B. Now,
consider S|(X∪{z}), and let e be the edge of S|(X∪{z}) such that σe = {A∪{z}, B}.
Since C defines T , there is a character χ in C with A1, B1 ∈ π(χ), where A1 ⊆ A and
B1 ⊆ B, and a1, a2 ∈ A1 and b1, b2 ∈ B1 such that the path in S|(X ∪ {z}) from a1
to a2 passes through one end vertex of e, while the path in S|(X ∪ {z}) from b1 to b2
passes through the other end vertex of e. Thus the character χF in CF corresponding
to χ has the property that there are parts AF , BF ∈ π(χF ) with A1 ∪ {z} ⊆ AF and
B1 ⊆ BF . But then, as S|X is isomorphic to T1|X , it follows that χF is not convex
on T1|(X ∪ {z}), and therefore not convex on T1. It follows from this contradiction
that CF identifies S.

An internal pseudopath of length t in a phylogenetic tree T is a set of t interior
edges that lie on a path in T . In particular, the interior edges need not be consecutive.
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Fig. 2. The unique binary phylogenetic tree on {1, 2, . . . , 15} with no internal pseudopath of
length 6.
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Fig. 3. A binary phylogenetic tree on {1, 2, . . . , 12}.

Lemma 5.3. Let T be a phylogenetic X-tree with X = {1, 2, . . . , 15} and no
internal pseudopath of length 6. Then there is a collection of four 4-state characters
that defines T .

Proof. By attempting to construct such a tree, it is easily checked that there is
no binary phylogenetic tree with 15 leaves whose maximum length internal path is
at most 4. Furthermore, another check shows that, up to isomorphism, the binary
phylogenetic tree, T ′ say, shown in Figure 2 is the only binary phylogenetic tree on
{1, 2, . . . , 15} whose maximum length internal path is 5. Consider the phylogenetic
tree T on {1, 2, . . . , 12} shown in Figure 3 and a collection C = {χ1, χ2, χ3} of 4-state
characters on {1, 2, . . . , 12}, where

π(χ1) =
{
{1, 2}, {3, 12}, {4, 5, 6, 7, 8, 9}, {10, 11}

}
,

π(χ2) =
{
{1, 2, 3}, {4, 5}, {6, 10, 11, 12}, {7, 8, 9}

}
,

and

π(χ3) =
{
{1, 2, 3, 9}, {4, 5, 6}, {7, 8}, {10, 11, 12}

}
.

Observe that C is convex on T . The intersection graph int(C) is not chordal but,
as (χ1, {3, 12}), (χ3, {1, 2, 3, 9}), (χ1, {4, 5, 6, 7, 8, 9}), (χ2, {6, 10, 11, 12}) is a cycle in
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int(C), every restricted choral completion of int(C) must include an edge joining
(χ2, {6, 10, 11, 12}) and (χ3, {1, 2, 3, 9}). Let G denote int(C) with this additional
edge. Now G is the intersection graph int(C, T ) and so it is chordal. Thus G is the
unique minimal restricted chordal completion of int(C). Hence, as T is distinguished
by C, it follows by Theorem 2.2 that C defines T . Since T is a restriction of T ′, it fol-
lows by Lemma 5.2 that any collection F of T -representable edges infers the X-splits
of T ′ induced by the edges of F . It now follows by Lemma 3.2 that a collection of
four 4-state characters {χ′

1, χ
′
2, χ

′
3, χ

′
4} on {1, 2, . . . , 15}, where

π(χ′
1) =

{
{1, 2}, {3, 12, 13}, {4, 5, 6, 7, 8, 9, 14, 15}, {10, 11}

}
,

π(χ′
2) =

{
{1, 2, 3, 13}, {4, 5}, {6, 10, 11, 12, 14}, {7, 8, 9, 15}

}
,

π(χ′
3) =

{
{1, 2, 3, 9, 13, 15}, {4, 5, 6, 14}, {7, 8}, {10, 11, 12}

}
,

and

π(χ′
4) =

{
{1, 2, 4, 5, 7, 8, 10, 11, 12}, {3, 13}, {6, 14}, {9, 15}

}
,

defines T ′. This completes the proof of the lemma.
Let F be a subset of edges of a phylogenetic tree T and let C1, C2, . . . , Ck denote

the components of T \F . For all i, let Ei denote the set of interior edges of T in Ci.
Note that, for some i, the set Ei may be empty. We say that F separates the interior
edges of T not in F into sets E1, E2, . . . , Ek.

Lemma 5.4. Let T be a binary phylogenetic X-tree with 15 leaves and an internal
pseudopath P of length 6. If P separates the interior edges of T not in P into sets of
size at most two, then there is a collection of four 4-state characters that defines T .

Proof. Suppose that P separates the interior edges of T not in P into sets of size
at most two. In order, let e1, e2, . . . , e6 denote the edges of P . Let {X1, X2, . . . , X7}
be the partition of X displayed by {e1, e2, . . . , e6}, where, for all i ∈ {1, 2, . . . , 6}, the
edge ei is the only edge in the set in the minimal subtree of T connecting the elements
in Xi ∪Xi+1. By Lemma 3.1, any two 4-state characters χ1 and χ2 with

π(χ1) = {X1, X2 ∪X3, X4 ∪X5, X6 ∪X7}

and

π(χ2) = {X1 ∪X2, X3 ∪X4, X5 ∪X6, X7}

infer the X-splits of T induced by e1, e2, . . . , e6. We next describe two further char-
acters which, together with χ1 and χ2, infer the remaining X-splits of T induced by
its interior edges.

Let E1, E2, . . . , E7 denote the sets of interior edges of T separated by
{e1, e2, . . . , e6}. By our initial assumption, |Ei| ≤ 2 for all i. Now select edges
f1, f2, and f3 in E1 ∪ E2 ∪ · · · ∪ E7 such that no two are from the same Ei and an
edge is selected from each Ei of size 2. Let χ3 denote any character displayed by
{f1, f2, f3}. By Lemma 3.2, it follows that χ1, χ2, and χ3 infer the X-splits of T
induced by f1, f2 and f3. Now select the remaining interior edges of T , say f4, f5,
and f6 in E1 ∪E2 ∪ · · · ∪E7 − {f1, f2, f3}, and let χ4 denote any character displayed
by {f4, f5, f6}. Since |Ei| ≤ 2 for all i, it follows by another application of Lemma 3.2
that χ1, χ2, χ3, and χ4 infer the X-splits of T induced by f4, f5, and f6. Hence, as
all nontrivial X-splits of T are inferred by the collection {χ1, χ2, χ3, χ4}, we have our
desired collection of four 4-state characters.
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Fig. 4. The phylogenetic trees T1, T2, and T3.

Lemma 5.5. Let T1, T2, and T3 be the three phylogenetic X-trees, where X =
{1, 2, . . . , 12}, shown in Figure 4. Then, for each s ∈ {1, 2, 3}, there is a collection of
three 4-state characters that defines Ts.

Proof. Let C1 = {χ11, χ12, χ13} be a collection of characters on {1, 2, . . . , 12},
where

π(χ11) =
{
{1, 2}, {3, 4, 12}, {5, 6, 7, 8}, {9, 10, 11}

}
,

π(χ12) =
{
{1, 2, 3}, {4, 7, 8}, {5, 6}, {9, 10, 11, 12}

}
,

π(χ13) =
{
{1, 2, 3, 4}, {8, 11, 12}, {5, 6, 7}, {9, 10}

}
,

C2 = {χ21, χ22, χ23} be a collection of characters on {1, 2, . . . , 12}, where

π(χ21) =
{
{1, 2}, {3, 4, 9, 10}, {5, 6, 7, 8}, {11, 12}

}
,

π(χ22) =
{
{1, 2, 3}, {4, 7, 8}, {5, 6}, {9, 10, 11, 12}

}
,

π(χ23) =
{
{1, 2, 3, 4}, {8, 11, 12}, {5, 6, 7}, {9, 10}

}
,
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and C3 = {χ31, χ32, χ33} be a collection of characters on {1, 2, . . . , 12}, where

π(χ31) =
{
{1, 2}, {3, 4, 9, 10}, {5, 6, 7, 8}, {11, 12}

}
,

π(χ32) =
{
{1, 2, 3}, {4, 7, 8}, {5, 6}, {9, 10, 11, 12}

}
,

π(χ33) =
{
{1, 2, 3, 4}, {5, 6, 11, 12}, {7, 8}, {9, 10}

}
.

For all s ∈ {1, 2, 3}, it is easily checked that Cs is convex on Ts and distinguished by
Cs.

The intersection graph int(C1) is chordal and so it is the unique minimal restricted
chordal completion of int(C1). Therefore, by Theorem 2.2, C1 defines T1. Now int(C2)
is not chordal, but any restricted chordal completion of int(C2) must include the edge
joining (χ21, {3, 4, 9, 10}) and (χ23, {8, 11, 12}). The graph int(C2) together with this
edge is chordal and so it is the unique minimal restricted chordal completion of int(C2).
Thus, by Theorem 2.2, C2 defines T2. For C3, the situation is similar to that for C2 ex-
cept that, for any restricted chordal completion of int(C3), two specific edges and not
one must be included. These edges join (χ31, {3, 4, 9, 10}) and (χ33, {5, 6, 11, 12}),
and join (χ32, {4, 7, 8}) and (χ33, {5, 6, 11, 12}). This completes the proof of the
lemma.

Lemma 5.6. Let T be a binary phylogenetic X-tree with 15 leaves and an internal
pseudopath P of length 6. If P separates the internal edges of T not in P into sets of
size at most 3, then there is a collection of four 4-state characters that defines T .

Proof. Suppose that P separates the interior edges of T not in P into sets of size
at most three. In order, let e1, e2, . . . , e6 denote the edges of P . Let E1, E2, . . . , E7

denote the sets of interior edges of T separated by {e1, e2, . . . , e6}. By Lemma 5.4,
we may assume that |Ei| = 3 for some i. First suppose that Ei is the only set of
size three. If Ei contains an edge that can extend P to an internal pseudopath of
length 7, then it is easily checked we can choose another internal path of length 6
and that this path has the property of separating the interior edges of T not in it
into sets of size at most two. In this instance, by Lemma 5.4, there is a collection
of four 4-state characters that defines T . Thus we may assume that there is no such
edge in Ei. By symmetry, we may assume that i ∈ {1, 2, 3, 4}. If (i) i = 1, (ii) i = 2
and |E1| ≤ 1, or (iii) i = 3 and |E1| = |E2| = 0, then it is easily seen that we can
choose another internal path of length 6 whose first two edges are in Ei with the
property that it separates the internal edges not in it into sets of size at most two.
If (i) i = 2 and |E1| = 2, (ii) i = 3 and |E1 ∪ E2| ∈ {1, 2}, or (iii) i = 4, then, for
some s ∈ {1, 2, 3}, the binary phylogenetic tree Ts in Figure 4 is a restriction of T up
to labeling. Moreover, it is easily seen that a Ts-representable subset F of edges can
be chosen so that F separates the three interior edges of T not in F into singletons.
Note that if i = 3, then |E1∪E2| ≤ 2; otherwise, |E2| = 3 or we can extend P . It now
follows by Lemmas 3.2, 5.2, and 5.5 that there is a collection of four 4-state characters
that defines T .

Now suppose that there are distinct i and j such that |Ei| = |Ej | = 3. Without
loss of generality, we may assume that i < j. If either Ei or Ej contains an edge that
can extend P , then T has an internal pseudopath of length 6 separating the interior
edges of T not in it into sets of size at most two apart from one possible set which
has size at most three. By Lemma 5.4 and the argument in the previous paragraph,
we may assume that neither Ei nor Ej has such an edge. Furthermore, by symmetry,
we may assume that i ∈ {1, 2, 3, 4}. If |i − j| ≥ 3, then it is easily checked that we
can choose another internal pseudopath of length 6 whose first and last edges are in
Ei ∪ Ej with the property that it separates the interior edges not in it into sets in
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which at most one set has size three and all other sets have size at most two. By
Lemma 5.4 and the argument in the previous paragraph, there is a collection of four
4-state characters that defines T . If |i− j| ∈ {1, 2}, then, unless {i, j} = {3, 5}, there
is some s ∈ {1, 2, 3} such that Ts in Figure 4 is a restriction of T up to labeling.
Furthermore, there is a Ts-representable subset F of edges that can be chosen so that
F separates the three interior edges of T not in F into singletons. By Lemmas 3.2,
5.2, and 5.5, there is a collection of four 4-state characters that defines T . In the
exceptional case, we can choose an internal pseudopath of length 6 whose first and
last edges are in E3 ∪ E5 with the property that it separates the remaining internal
edges of T into sets of size at most two, in which case, by Lemma 5.4, there is a
collection of four 4-state characters that defines T .

Lemma 5.7. Let T be a binary phylogenetic X-tree with 15 leaves and an internal
pseudopath P of length 6. If P separates the interior edges of T not in P into sets
one of which has size at least four, then there is a collection of four 4-state characters
that defines T .

Proof. Suppose that P separates the interior edges of T not in P into sets one of
which has size at least four. In order, let e1, e2, . . . , e6 denote the edges of P and let
E1, E2, . . . , E7 be the sets of interior edges not in P separated by {e1, e2, . . . , e6}. For
some i, we have |Ei| ∈ {4, 5, 6}. By symmetry, we may assume that i ∈ {1, 2, 3, 4}.
First suppose that |Ei| = 4. If Ei contains an edge that can extend P to an internal
pseudopath of length 7, then we can choose another internal pseudopath of T of
length 6 with the property that it separates the interior edges of T not in it into sets
of size at most three, in which case, by Lemma 5.6, there is a collection of four 4-state
characters that defines T . Thus we may assume that there is no such edge in Ei. If
(i) i ∈ {1, 2} or (ii) i = 3 and |E1 ∪ E2| ≤ 1, then we can choose another internal
pseudopath of length 6 whose first edge is in Ei with the property that it separates
the interior edges not in it into sets of size at most three. By Lemma 5.6, there is a
set of four 4-state characters that defines T . If (i) i = 3 and |E1 ∪ E2| = 2, or (ii)
i = 4, then, for some s ∈ {1, 2, 3}, the binary phylogenetic tree Ts in Figure 4 is a
restriction of T up to labeling. Furthermore, a Ts-representable subset F of edges
can be chosen so that F separates the three interior edges not in F into singletons.
It now follows by Lemmas 3.2, 5.2, and 5.5 that there is a collection of four 4-state
characters that defines T .

Now suppose that |Ei| ∈ {5, 6}. Then, regardless of i, we can choose another
internal pseudopath of length 6 whose first edge is in Ei with the property that it
separates the interior edges not in it into sets of size at most four. By Lemma 5.6
and the argument in the last paragraph, there is a set of four 4-state characters that
defines T .

The following corollary is an immediate consequence of Lemmas 5.4, 5.6, and 5.7.
Corollary 5.8. Let T be a binary phylogenetic X-tree with 15 leaves and an

internal pseudopath of length 6. Then there is a collection of four 4-state characters
that defines T .

Corollary 5.9. Let T be a binary phylogenetic X-tree with 13 or 14 leaves.
Then there is a collection of four 4-state characters that defines T .

Proof. We prove the corollary for when T is a binary phylogenetic tree with 13
leaves. The analogous proof for when T is a binary phylogenetic tree with 14 leaves is
simpler and omitted. Let T be a binary phylogenetic X-tree with X = {1, 2, . . . , 13}.
We next extend T to a binary phylogenetic X ′-tree, where X ′ = {1, 2, . . . , 15} as
follows. For each nontrivial X-split of T , add the elements 14 and 15 to the cell
of the X-split containing 13. The resulting collection of X ′-splits together with the
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Fig. 5. A caterpillar-like tree with exactly three cherries {1, 2}, {3, 4}, and {n− 1, n}.

X ′-split {{14, 15}, {1, 2, . . . , 13}} is the collection of nontrivial X ′-splits of a binary
phylogenetic X ′-tree T ′. By Corollary 5.8, there is a collection C′ of four 4-state
characters that defines T ′. Now, amongst the characters in C′, there is a character χ′

1

in which {13, 14, 15} ∈ π(χ′
1) and a character χ′

2 in which {14, 15} ∈ π(χ′
2). Deleting

{13, 14, 15} from π(χ′
1), deleting {14, 15} from π(χ′

2), and deleting the elements 14
and 15 from the partitions induced by the remaining two characters in C′, gives the
partitions of a collection C of four 4-state characters on {1, 2, . . . , 13}. Note that,
except for χ′

2, each of the characters in C′ has the property of mapping the elements
14 and 15 to the same state in which 13 is mapped. Clearly, C is convex on T .
Furthermore, C defines T . If not, then there is another binary phylogenetic X-tree
on which C is convex. By extending this tree to a binary phylogenetic X ′-tree in the
same way that we extended T to T ′, we obtained a binary phylogenetic X ′-tree on
which C′ is convex but distinct to T ′; a contradiction. This completes the proof of
the corollary.

Let T be a binary phylogenetic X-tree. A cherry is a 2-element subset {x, y} of
X with the property that x and y have a common neighbor. A binary phylogenetic
tree is caterpillar-like if it does not have three cherries each two of which are separated
by at least three interior edges. It is easily checked that there are exactly three types
of caterpillar-like trees. The first type has precisely two cherries, the second type has
precisely three cherries, two of which are separated by only two interior edges, and
the third type has precisely four cherries, in two pairs each separated by only two
interior edges. An illustration of a caterpillar-like tree with exactly three cherries is
shown in Figure 5.

Lemma 5.10. Let T be a binary phylogenetic X-tree that is caterpillar-like with
n leaves, where n ≥ 11. Then there is a collection of 4-state characters of size �n−3

3 �
that defines T .

Proof. Let P be a longest internal path of T . Since n ≥ 11, it is easily checked
that P has at least 6 internal edges. In fact, the exact number of internal edges in P
is n− k, where k ∈ {3, 4, 5}, depending upon whether T is the first, second, or third
type of caterpillar-like tree. We next partition the edges of P into three nonempty
parts, each part consisting of consecutive edges in P . If we view these parts as being
ordered, the first part contains the first edge of P and the third part contains the last
edge of P . If n− k ≡ 0 (mod 3), then each part consists of n−k

3 edges. If n− k ≡ 1

(mod 3), then the first part consists of �n−k
3 �+ 1 edges and the other two parts each

consist of �n−k
3 � edges. If n − k ≡ 2 (mod 3), then the first and second parts each

consist of �n−k
3 �+ 1 edges and the third part consists of �n−k

3 � edges.
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Using the above partition of P , we next construct a collection of 4-state characters
of size �n−k

3 � that will infer all but at most four of the nontrivial X-splits of T . View
each part as an ordered set with the ordering consistent with the order of the edges
in P . For all i ∈ {1, 2, . . . , �n−k

3 �}, define χi to be a 4-state character on {1, 2, . . . , n}
displayed (collectively) by the ith edge in each part. By Lemma 3.1, χ1 and χ2 infer
the X-splits of T induced by the edges displaying χ1 and χ2. Moreover, for each
j ∈ {3, 4, . . . , �n−k

3 �}, it follows by Lemma 3.2 that {χ1, χ2, χj} infers the X-splits
of T induced by the edges displaying χj . Thus, except for at most two edges, the
collection

C =
{
χ1, χ2, . . . , χ�n−k

3 �
}

infers each of the X-splits of T induced by the edges of P .
Now there are at most two interior edges of T not in P . Therefore there are at

most four interior edges of T whose X-splits are not inferred by C. Let F denote the
set consisting of these interior edges of T . By the way in which P was partitioned,
no two of the edges in F are adjacent. If |F | = 0, in which case T is the first type of
caterpillar-like tree, C is an appropriate collection of 4-state characters that defines
T . If |F | ∈ {1, 2, 3}, then define χ�n−k

3 �+1 to be a character on {1, 2, . . . , n} displayed

by the edges in F . It follows by Lemma 3.2 that C ∪ {χ�n−k
3 �+1} infers each of the

X-splits induced by the edges in F and thus defines T . Lastly, if |F | = 4, then define
χ�n−k

3 �+1 to be a character on {1, 2, . . . , n} displayed by three of the edges in F and

χ�n−k
3 �+2 to be a character on {1, 2, . . . , n} displayed by the remaining edge in F .

By two applications of Lemma 3.2, C ∪ {χ�n−k
3 �+1, χ�n−k

3 �+2} infers each of the X-

splits induced by the edges in F and thus defines T . This completes the proof of the
lemma.

Proof of Theorem 1.2. It remains to show that, for all n ≥ 13, if T is a phylogenetic
X-tree on {1, 2, . . . , n}, then there is a collection of 4-state characters of size �n−3

3 �
that defines T . The proof is by induction on n. If n ∈ {13, 14, 15}, then the theorem
holds by Corollaries 5.8 and 5.9. Now suppose that n ≥ 16 and that the theorem holds
for all binary phylogenetic trees on {1, 2, . . . , n− 3}. By Lemma 5.10, we may assume
that T is not a caterpillar-like tree. Hence T has three pairs of cherries in which each
pair is separated by at least three interior edges. Without loss of generality, we may
assume that these cherries are {n− 5, n− 2}, {n− 4, n− 1}, and {n− 3, n}. Let Tn−3

denote the binary phylogenetic tree obtained from T by deleting the leaves n − 2,
n− 1, and n, and suppressing the resulting degree-two vertices. By induction, there
is a collection Cn−3 of 4-state characters of size �n−6

3 � that defines Tn−3. Now Tn−3

is a restriction of T , and so there is a collection F of interior edges of T that is Tn−3-
representable. By Lemma 5.2, (Cn−3)F is a collection of characters on {1, 2, . . . , n}
that infer the X-splits of T induced by the edges in F . Let χ be a character on
{1, 2, . . . , n} in which

π(χ) =
{
{n− 5, n− 2}, {n− 4, n− 1}, {n− 3, n}, {1, 2, . . . , n− 6}

}
and let C be the collection (Cn−3)F ∪ {χ} of 4-state characters on {1, 2, . . . , n}. Since
any two of the cherries {n−5, n−2}, {n−4, n−1}, and {n−3, n} are separated by at
least three interior edges of T , it follows by Lemma 3.2 that C defines T . Moreover, C
consists of �n−3

3 � 4-state characters. This completes the proof of the theorem.
We end with a remark regarding where the argument breaks down for when

n ≤ 11. The proof of Theorem 1.2 uses induction on n, where the base case consists
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of establishing the result for three consecutive values of n. For a fixed n ≤ 9, there is
no choice whereby the theorem holds for n, n+ 1, and n+ 2. The reason is that, for
5 ≤ n ≤ 9, we simply don’t have enough characters to define every binary phylogenetic
tree with n leaves. For example, when n = 9, we have �n−3

4−1 � = 2. But any binary
phylogenetic tree with an interior vertex incident with three interior edges cannot be
defined by two characters as these two characters won’t distinguish all three of these
edges.
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