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I. Introduction 

 

Many laboratory hypotheses concern the behaviour of individuals, either working alone, or in teams, 

or in competition, under conditions of risk.
1
 The risk preferences of subjects participating in 

experiments designed to test such hypotheses are often not of primary interest to the researcher and 

are regarded as nuisance variables. To eliminate their effect, the development of appropriate metrics 

for testing theoretical predictions requires either measurement or control of risk preferences. A 

widely-used procedure for controlling risk preferences is to use binary lotteries to induce in all 

subjects risk preferences pre-specified by the experimenter; a procedure dubbed here the ‘Risk-

Preference Inducing Procedure’ or ‘RPIP’. The validity of RPIP was formally established in a seminal 

paper by Berg et al. (1986), following Roth and Malouf (1979), but only for the special case of a 

single experimental subject performing a single task. Unfortunately, this special case is not typically 

used by experimenters. In practice, subjects are usually required to perform a series of tasks, both to 

economize on experimental overheads and also because subject behaviour does not usually converge 

without some task repetition. Furthermore, experiments involving teams and agencies involve 

interaction between subjects. There has been virtually no debate in the practitioner literature on the 

theoretical validity of binary lotteries in these more general settings, or on whether the form of 

implementation matters. Practitioners have implicitly assumed that whenever the setting and form of 

implementation of RPIP they have chosen deviates from the original single-agent single-stage proof, 

it remains theoretically valid. In this paper, we show that this is not in general true. Restrictions on the 

structure and form of implementation are needed to ensure that RPIP is actually theoretically valid. In 

a recent theoretical contribution, Dobbs and Miller (2012) presented necessary and sufficient 

conditions for the validity of RPIP for non-interacting subjects performing a series of tasks. However, 

                                                 
1
 See Roth and Malouf (1979), Roth and Murnighan (1982), Cox et al. (1985, 1988), Berg et al. (1986, 1992, 

2003), Murnighan et al. (1988), Roth et al. (1988), Waller (1988), Baiman and Lewis (1989), Cooper et al. 

(1989, 1990, 1992, 1993), Harrison (1989), Walker et al. (1990), Harrison and McCabe (1992), Prasnikar 

(1993), Rietz (1993), Cox and Oaxaca (1995), Blume et al. (1998), Selten et al. (1999), Sprinkle (2000), Fisher 

et al. (2002), Fisher et al. (2003), Frederickson and Waller (2005), Dobbs and Miller (2006, 2008, 2009), 

Harrison et al. (2013). 
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that analysis did not address the important class of experiments which feature multiple interacting 

subjects. 

 

Empirical evidence from laboratory experiments on the effectiveness of RPIP for controlling risk 

preferences has been mixed, leading many researchers to abandon the technique altogether. Briefly, 

Berg et al. (1986), Walker et al. (1990) and Rietz (1993) found in favour of its effectiveness, and Cox 

et al. (1985) and Selten et al. (1999) found against.
2
 Harrison et al. (2013) have recently argued that 

previous experiments on the effectiveness of RPIP for inducing risk neutrality have been confounded 

by failure of one or more auxiliary assumptions: a) subjects are not risk neutral over money payoffs; 

b) subjects use Nash strategies in experiments involving strategic games; and c) the reduction of 

compound probabilities axiom of Von Neumann Morgenstern Expected Utility Theory (EUT) holds. 

Their tests are the only ones that avoid making these ‘confounding assumptions’, and they find 

empirical support for the effectiveness of RPIP when subjects perform single or multiple tasks, 

without strategic interaction with other subjects. Harrison et al. (2013, p 150, fn 15)) also note, 

following Berg et al. (2008), that when the experimenter wishes to induce risk attitudes other than risk 

neutrality, the effective use of RPIP ‘requires a model of decision making under risk that assumes 

linearity in probabilities’. As we shall see in the present paper, however, theoretical analysis 

demonstrates that neither linearity in probabilities nor Nash behaviour by subjects are necessary 

assumptions for the validity of RPIP, and therefore their falsification does not necessarily confound 

experiments involving RPIP. The analysis presented here thus permits a fresh appraisal of the 

empirical evidence employing RPIP.
3
 

 

The fundamental contribution of the present article is to provide a general analysis of RPIP for all 

experiments, including those involving interaction between multiple agents performing a series of 

                                                 
2
 See Berg et al. (2008) for a review of this evidence. 

3 For example, Selten et al. (1999, p 212) state ‘If one wants to examine the question whether payoffs in binary 

lottery tickets induce risk neutral behavior, it is necessary to avoid a confounding effect which may be 

introduced by strategic interaction’. They cite Cooper et al. (1990, 1993), inter alia, as examples of this 

potential confounding effect. We show in the present paper that there is no confounding effect from using RPIP 

with strategic interaction in the papers by Cooper et al. (1990, 1993). 
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tasks. Claims to complete generality found in Berg et al. (1986, p. 281) and Berg et al. (2003, p. 145; 

2008) have rested on an independence condition stated to be sufficient but not formally proved in this 

more general setting. Moreover, no necessary condition was proposed. Hence, the validity of RPIP for 

experiments that fail the sufficient condition is unclear, and no design fix has been articulated when 

RPIP is invalid. The present article proves a necessary and sufficient condition for the validity of 

RPIP for the most common form of implementation of the technique, and also shows that when the 

necessary condition fails, the validity of RPIP can be salvaged by a simple modification to the way in 

which it is implemented.
4
 This modification has appeared in the experimental literature, though its use 

appears to be unrelated to the purpose of achieving valid implementation of RPIP, while some 

experimental research designs have failed to use appropriate modifications and have therefore 

misapplied RPIP. We find therefore that RPIP can be robust to the number and interaction of subjects 

in an experiment, depending on its practical implementation. The most important implications of our 

results are for the experimental literature testing propositions from the economics of organisational 

architecture. Many experiments in this literature test theoretical predictions in contexts involving 

multiple decision tasks and multiple agents, where the predictions are typically sensitive to the risk 

preferences of individual agents.
5
 

 

The rest of the paper is divided into three sections. Section II introduces the notion of inducing risk 

preferences using RPIP, provides a formal demonstration that the validity of RPIP does not 

necessarily depend on subject preferences being linear in probabilities, and discusses the use of 

expected utility theory in the experimental literature. Section III presents the notation and framework 

adopted for general analysis of RPIP, reviews the literature on the context and implementation of 

RPIP, and states two propositions relating to the use of RPIP in laboratory experiments. Proofs of 

these propositions are contained in an appendix. Section IV offers conclusions and implications for 

the design of experiments. 

 

                                                 
4
 This generalizes the results in Dobbs and Miller (2012) to include all laboratory experiments, including those 

involving subject interaction as well as multiple tasks. 
5
 See Laffont and Martimort (2002). 



 6 

II. RPIP for a Single Subject Performing a Single Task 

 

In order to introduce the notion of inducing risk preferences using the RPIP method, it is useful to 

review the single-subject single-task problem analysed in Berg et al. (1986). Consider a single subject 

performing a single task in a laboratory experiment that involves an uncertain monetary reward to the 

subject.
6
 Specifically, the subject must choose an action   from a set of actions,    . In return for 

action  , the subject receives a random payment   from a finite set of possible rewards,    , with 

conditional density       . Berg et al. assume the subject’s preferences can be represented by a von 

Neumann-Morgenstern (VNM) utility function     , so the decision problem can be summarized as: 

 

    
   

∫             

   

 (1) 

 

where   and        are specified in the experimental design. However, since      is not known by 

the experimenter, the behaviour of the subject, his chosen  , is likewise unpredictable by the 

experimenter. 

 

If instead of the above experimental design, RPIP is applied, then the subject is rewarded in an 

‘experimental currency’, exchanged later for probability points assigned in respect of a two-prize 

lottery. Suitable choice of the rate at which the experimental currency is exchanged for probability 

points can, in theory, allow the experimenter to ‘induce’ in the subject any desired risk preferences 

over lotteries involving the experimental currency. Denote the random reward of ‘experimental 

currency’ by    , with conditional density       , where   is a closed bounded interval of the set 

of real numbers. Choose for the binary lottery two money prizes,    , with    , so that      

                                                 
6
 It will be convenient to assume the reward is a money payment to the subject, but in general rewards need not 

be monetary. For example, in Isaac et al. (1994), rewards were given in points of course credit. 
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    , and define a function                      for exchanging q into probability points 

for the binary lottery.
7
  Then the subject’s decision problem becomes 

 

    
   

∫       {                      ( )}  

   

 (2) 

 

     
   

∫       {                  ( )}  

   

 (3) 

 

     
   

( ∫           [      ( )]  

   

 ∫        ( )  

   

) (4) 

 

     
   

([      ( )] ∫             

   

  ( ) ∫         

   

) (5) 

 

Since ∫         
   

  , Equation 5 reduces to 

 

    
   

( ( )  [      ( )] ∫             

   

) (6) 

 

Finally, since           in Equation 6, the optimal solution,   , can be written as 

 

          
   

( ∫             

   

) (7) 

 

This shows that the subject should in theory behave as if maximising the expected value of the 

exchange function     , a function chosen by the experimenter. By choosing a convex, linear or 

                                                 
7
 For ease of comparison, where possible the notation is that used in Berg et al. (1986). The one exception is the 

notation for the two money prizes which, in Berg et al. (1986), were        . In our later generalisation, 

subscripts are reserved for distinguishing between multiple stages. 
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concave increasing function     , the experimenter can then induce in the subject, respectively, risk-

seeking, risk-neutral or risk-averse preferences over  . 

 

Although the above analysis has been framed in terms of Von Neumann Morgenstern Expected 

Utility Theory (EUT), RPIP can be shown to be consistent with other theories of preference ordering, 

including rank-dependent cumulative prospect theory. The following proof of this fact relates to the 

single-task single-subject case analysed in Berg et al. (1986). It demonstrates that, contrary to what 

many contributors have claimed, the effectiveness of the RPIP procedure is not dependent on an 

assumption of EUT with linear probabilities.
8
 

 

Write the subject’s value function, indexing his preferences, as            , where   is the preferred 

prize, and      is the probability of receiving it, as a function of the subject’s decision. As noted, but 

not proved, in Selten et al. (1999) and in Harrison et al. (2013), for the context of inducing risk-

neutrality, a sufficient assumption for RPIP to work as intended is that the value function is strictly 

increasing in the probability of winning the preferred prize     . 

 

To see this, suppose    is a unique global maximum. Then                           , for all 

     . But             is strictly increasing in     . Hence             for all      , and    

hence is also the global maximum for the function     : that is, a subject behaves as if maximising 

the probability of winning the preferred prize,     .
9
 Now, by definition of RPIP,      

∫             
   

, where      is the conditional probability of winning the preferred prize. It 

follows immediately from this definition that a subject who behaves as if maximising      also 

behaves as if maximising the expected value of the function     . In the experimental design, this 

function can be made linear with regard to   for risk neutral behaviour, strictly concave for risk 

aversion, or strictly convex for risk-seeking. Thus the sufficient condition, that the subject’s index of 

                                                 
8
 Our thanks to an anonymous referee for raising this question. 

9
 If this were not true, there would exist an action    such that            , but then              

             because             is strictly increasing in     , which contradicts the assumption that there is 

a unique global maximum at     
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preferences is strictly increasing in     , is valid for inducing any type of risk preferences, not only 

the risk-neutrality referred to by Selten et al. (1999) and Harrison et al. (2013). 

 

The above proof relies on strict monotonicity, which is satisfied by rank-dependent cumulative 

prospect theory.
10

 Hence we have provided a value function that is nonlinear in probability, yet 

consistent with induced preferences for risk neutrality, risk aversion or risk-seeking. This shows that 

preferences being linear in probability is not a necessary condition for inducing any form of risk 

preferences over q, and that therefore preferences being nonlinear in probability does not necessarily 

confound experiments involving RPIP. 

 

From this point on, we confine ourselves to analysis of RPIP within the EUT framework. Although, as 

shown above, RPIP may be used in conjunction with other theories of preferences, almost all 

researchers using RPIP have chosen to develop null hypotheses within the EUT framework, even 

when their motivation is to test for violations of EUT.
11

 A good example is Frederickson and Waller 

(2005), where the motivation came from prospect theory in order to explain why, in an agency 

context, bonus and penalty frames in economically equivalent salary schemes affected preferences 

and choices. The null hypothesis was formulated using EUT and RPIP, and the test looked for 

significant departures from this benchmark. As stated in Roth et al. (1988, p 808): 

We do not need to suppose in our interpretation of these experiments that the use of binary 

lottery games has controlled for the behavior of the experimental subjects, who may or may 

not be utility maximisers. Rather, the purpose of using binary lottery games is to control the 

predictions of the theory, specifically Nash’s model of bargaining. The question of whether 

the various predictions of a theory like Nash’s are good descriptions of behavior is 

independent of whether utility theory is a good description of individual choice. (That is, 

some of the predictions could be correct even if individuals aren’t utility maximisers, and vice 

versa.) But since Nash’s model is stated in terms of the expected utility available to the 

bargainers, it is necessary to control for what the utility of utility maximisers would be, to 

know what the predictions of the theory in any particular situation are. 

 

                                                 
10

 See Gonzalez and Wu (1999), who also provide laboratory evidence relating rank-dependent cumulative 

prospect theory to choice problems involving binary lotteries. Also implicit in the above argument is the 

reduction of compound probabilities assumption, at least for binary lotteries. 
11

 Examples include Roth and Malouf (1979), Roth and Murnighan (1982), Cox et al. (1985), Berg et al. (1986, 

1992), Murnighan et al. (1988), Roth et al. (1988), Waller (1988), Baiman and Lewis (1989), Cooper et al. 

(1989, 1990, 1992, 1993), Harrison (1989), Walker et al. (1990), Blume et al. (1998), Sprinkle (2000), 

Frederickson and Waller (2005), and Dobbs and Miller (2006). 
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We now turn to consideration of how risk preferences can be controlled in a more general setting than 

was considered in Berg et al. (1986). In particular, we allow for multiple subjects and multiple 

decision stages, either interdependent or independent, and provide guidance on the experimental 

research design needed for effective control using the binary lottery procedure. 

 

III. RPIP for Sequential Multi-Stage Environments 

 

As remarked in the introduction, although RPIP was originally proven only for the case of a single 

agent dealing with a single (risky) decision, in practice, applications often involve multiple interacting 

agents and/or multiple decision stages. In this section, a characterisation of the multi-stage 

experimental environment for a finite number of interacting subjects is developed. Alternative 

‘bundling’ methods by which RPIP might be implemented in such settings are described and cross-

referenced to the experimental literature, along with a discussion of what exactly the objective of the 

risk-preference-inducing procedure might be in such a multi-stage context. The section provides two 

propositions that are likely to prove helpful when designing experiments. The first gives a necessary 

and sufficient condition involving the experimental design for the standard implementation of RPIP to 

be effective. This condition will not be satisfied for some experimental designs, but the second 

proposition shows that a failsafe albeit not widely used implementation of RPIP is valid for all types 

of multiple-subject multi-stage experimental environments. Thus, for experimental designs that fail 

the necessary condition in Proposition 1, the alternative design in Proposition 2 can be used instead.  

 

Sequential multi-stage multiple-subject experiments 

 

A more general analysis of RPIP requires a mathematical characterisation of multiple-subject multi-

stage experiments. Within this setting, we focus on the problem of inducing risk-preferences in an 

arbitrary subject. There are   stages in the experiment and   subjects interacting at every stage. The 

choice of a typical subject, who we will call subject  , at stage   of the experiment is denoted     
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              and the set of choices of all other subjects except subject   is denoted      

             . In order to control risk preferences at each stage, subject   is given a separate 

award of experimental currency                   for each stage. All of these features are 

assumed given in an experimental design that incorporates use of RPIP. Let               , 

            ,                  , and               , with generalized conditional 

density function
12

    

 

 

                                                              … 

    (   |                                                ) 

(8) 

 

Equation 8 allows for the possibility of interdependence between stages and subjects in an 

experimental design, whilst recognising the sequential nature of the stages. Thus the conditional 

density for     may only depend on     and     , but the conditional density for subsequent awards 

such as     and     may depend on both previous subject decisions and previous awards. 

 

RPIP implementations with and without bundling 

 

The most common method of implementing RPIP is to run a separate lottery for each award of 

experimental currency            , with exchange functions,                 . In that case, the 

set of rewards,               , can be said to be partitioned into T distinct subsets. However, RPIP 

can be, and has been, implemented differently, with     lotteries and                accordingly 

partitioned into   distinct subsets. For example, in their study of the empirical performance of RPIP 

for inducing risk-neutrality, Selten et al. (1999) partitioned the set                 into      

subsets of consecutive pairs of consequences: 

 

                                              (9) 

 

                                                 
12

 For any given value of    , the generalized conditional density function is either a probability frequency 

function or a probability density function. Analysis of expected values can then handle discrete, continuous or 

mixed distributions using the general Lebesgue-Stieltjes integral; see Billingsley (1995, p 228). 
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and in Frederickson and Waller (2005), a single lottery,       , was employed for a total of forty 

stages involving pairs of subjects engaged in principal-agent games. In this latter paper, to induce risk 

neutrality for the principals, RPIP was implemented by setting: 

 

        
 

  
∑        

  

  

   

 (10) 

 

whilst to induce a specific form and level of risk-aversion in agents, RPIP was implemented by 

setting: 

 

        
    

  
∑              

  

   

 (11) 

 

In what follows, the practice of partitioning the set                into     partitions for the 

purpose of implementing RPIP is referred to as stage ‘bundling’ in the present paper. Hence, 

Equations 9-11 all involve some degree of bundling: the      lotteries in Equation 9 each bundle 

together 2 consecutive consequences, and the single,    , lottery represented in both Equations 10 

and 11 bundles together all 40 consequences. In subsequent analysis, in common with typical 

experimental practice, it is assumed that for all stages the realized value of     is revealed to the 

subject at the end of stage  .
13

 Table 1 gives an idea of the variation in experimental design and 

implementation of RPIP observed in the literature. All of the articles in Table 1 featured multiple-

stage experiments, where a stage is defined not by separate decisions, but by separate awards of 

experimental currency. The relevance of the final columns, headed ‘Stage Dependence’ and ‘Nash 

Equilibria’ will be discussed in detail in Sections III and IV of the paper. For the moment we can note 

                                                 
13

 Revealing     to subject   after each stage has the advantage that it may facilitate the subject’s learning of the 

experimental environment and increase the rate at which behaviour converges. Without loss of generality, we 

also assume the lottery for each stage is played and the associated money award paid immediately on 

completion of the stage. Some experiments delay the lottery and associated payment until the end of the 

experiment, but this difference does not affect our results. It can be shown that the incentives facing subjects in 

the EUT framework are exactly the same as when the lotteries take place immediately after each stage. 
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from the table that a) fourteen of the twenty-two studies reviewed involved subject interaction, which 

was beyond the scope of the analysis in Dobbs and Miller (2012), and b) six of the twenty-two studies 

employed some degree of bundling in RPIP implementation, and these are spread across single-

subject and multi-subject studies. 

 

Table 1. Observed variation in experimental design and RPIP implementation 

 

 Subject 

Interaction 

Bundling
a 

Stage 

Dependence
b 

Nash 

Equilibria
c 

1) Berg et al. (1986), Waller 

(1988), Baiman and Lewis 

(1989) 

No No Independent N/A 

2) Prasnikar (1993), Selten et al. 

(1999), Harrison et al. (2013) 

No Yes Independent N/A 

3) Sprinkle (2000), Dobbs and 

Miller (2006) 

No No Dependent N/A 

4) Cox et al. (1985), Walker et al. 

(1990), Berg et al. (1992), 

Blume et al. (1998) 

Yes No Independent Unique 

5) Roth and Malouf (1979), Roth 

and Murnighan (1982), Roth et 

al. (1988) 

Yes No Independent None 

6) Cooper et al. (1989, 1990, 

1992, 1993) 

Yes No Independent Multiple 

7) Harrison (1989), Frederickson 

and Waller (2005) 

Yes Yes Independent Unique 

8) Murnighan et al. (1988)
d
  Yes Yes Independent None 

 

aBundling is said to be present whenever the number of lotteries conducted is less than the number of separate awards of 

experimental currency to an individual subject. This could be because awards are combined in some way, such as in 

Equations 9-11 above, or because the random lottery technique is used. In the table, the presence of bundling implies    , 

but not necessarily full bundling,    . 
bDependence is present when the probability distribution governing experimental currency awards depends on previous 

realisations of experimental currency, or on actions taken in previous stages. 
cSome of the unique Nash equilibria involve subgame perfect equilibria. The papers with no Nash equilibrium test 

bargaining theories with unstructured message spaces. 
dIn this paper, players bargained over probability points in a binary lottery, but there was also a third money outcome 

possible in the event of no bargaining agreement. Without further analysis, it is not clear therefore how RPIP ‘works’ in this 

paper. 
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The objective of RPIP in multiple subject multi-stage experiments 

 

In order to establish the validity of RPIP, and the conditions on which its validity might depend, it is 

necessary to firstly specify what the objective of RPIP is. What class of ‘induced preferences’ do 

experimenters wish to induce? For the single-stage scenario evaluated in Berg et al. (1986), the 

objective of including RPIP in the experimental design is mathematically well-defined: it is to induce 

some pre-specified preference ordering, which we will denote by       . The RPIP procedure 

amounts to setting              . Subjects then behave as if maximising the expected value of 

      . In contrast, for our analysis of RPIP in multiple-subject multi-stage experiments such as (8), 

ascribing intentions to researchers must necessarily be speculative, for their objectives when including 

RPIP in designs with multiple consequences,               , have never been set out formally. 

Inductive analysis of how RPIP has actually been employed suggests that, for each stage of the 

experiment, researchers seek to induce a preference ordering for    that is independent of    realized 

in all other stages of the sequence; that is, in stage  , the objective is to induce a preference ordering 

         that is independent of all        . Independent preference orderings allow considerable 

flexibility to an experimenter, not least because there is no requirement for induced preferences to be 

identical in every stage. But one restriction is required. It involves the structure of induced preferences 

for the full set of experimental consequences,   . It is well known that an additively-separable 

preference function is sufficient for independent preference orderings over each individual 

consequence, but Koopmans (1972) has demonstrated that an additively-separable preference function 

is also necessary.
14

 Given this result, for a general framework it seems reasonable to restrict attention 

to the class of additively-separable induced preference functions over the full set of consequences,   ; 

that is, 

 

   (   )  ∑        

 

   

 (12) 

                                                 
14

 For two-stage problems, independent preference orderings implies only separability, which is weaker than 

additive separability. 



 15 

 

In order to represent the intended induced preference function under uncertainty, we can use the 

expectations operator     
 
to write: 

 

  (      )  ∑           

 

   

 (13) 

 

To maximize Equation 13, a dynamic programming approach should be used with, at every stage  , 

the subject selecting the action     that maximizes ∑              
 
   , where the subscript on the 

expectations operator indicates that conditional expectations are taken at stage  , as a function of 

previous actions and realisations of   . 

 

Stage independence and RPIP without bundling       

 

With the above preparation, we are in a position to present our results. This subsection deals with the 

polar case of no bundling,    , the most frequently observed implementation of RPIP in Table 1, 

with        ∑         
 
   . It is shown that a necessary and sufficient condition for the validity of 

RPIP in the no-bundling case involves both a form of ‘stage independence’ highlighted in the single-

subject analysis of Dobbs and Miller (2012), but also some restrictions on the conjectures of subjects 

about the strategic actions other subjects will take. As we shall see, these conditions can amount to  a 

significant restriction for experiments involving interactions across stages and subjects. 

 

In the no-bundling case, with   lotteries, there are   money awards of either   or  . The rewards at 

different stages are distinguished using subscripts (writing              ) and also by reference to 

ordered T-tuples                 such as          .15
 To establish propositions applicable to all 

                                                 
15

 The two prize levels have been held constant across lotteries. This is solely for expositional convenience. It 

makes no difference, at least in theory, if the two prize levels vary across lotteries, as long as they are not within 

the control of subjects. See the papers by Roth and Malouf (1979), Roth and Murnighan (1982), Murnighan et 

al. (1988) and Roth et al. (1988), lines 5 and 8 in Table 1, for examples of prize levels varying across subjects. 
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subjects, it is assumed preferences over                 for subject   are described by an arbitrary 

VNM utility function                  . For this multiple-award case, the non-satiation assumption is 

strengthened by stipulating that, for all    , increasing     whilst holding constant        , results in 

increased utility. It then follows that, for example,                 and                . 

 

Definition 1:  Stage independence is defined as a condition in which the conditional density function 

in Equation 8 can be multiplicatively decomposed and written as: 

 

                                                                      (14) 

 

or equivalently 

 

    (   |                                                )                     

 

This is a stronger requirement than ‘statistical independence’. Statistical independence would merely 

allow Equation 8 to be multiplicatively decomposed and written as: 

 

                                                            

    (   |                                    ) 

 

One could conceive of experimental designs in which the conditional density for     depends on 

subject decisions in earlier stages, but not on realized outcomes of   prior to stage  . However, the 

relevant necessary and sufficient condition for RPIP validity when there is no bundling, Proposition 1 

of this article, involves stage independence given by Equation 14. Referring to Table 1, twenty of the 

twenty-two studies featured experimental designs satisfying stage independence given by Definition 

1. 

 

The proof of the necessity part of Proposition 1, which follows, makes use of the following lemma. 
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Lemma 1: Given a differentiable VNM utility function        , if for all    : 

i)                  

ii)                                  

then the utility function is additively separable,                    . 

 

Proof: See Appendix. 

 

Proposition 1: For an arbitrary multi-stage multi-subject experiment, in which stages are not 

bundled, if each subject maximizes expected VNM utility, then regardless of personal 

preferences over the set of money rewards, the subject will behave as if having preferences 

over   ,        ∑         
 
   , pre-specified by the experimenter if and only if the 

experimental design exhibits stage independence and the subject’s conjectures regarding the 

actions of other subjects are independent of the subject’s previous realisations of  . 

 

Proof: See Appendix. 

 

RPIP with full bundling       

 

The previous subsection dealt with the polar case of no bundling,    ; in this subsection, the focus 

is on the opposite polar case of full bundling,    . In this setting we show that RPIP is theoretically 

valid for all multiple-subject multi-stage experiments as long as multiple consequences are fully 

bundled into a single binary lottery. The result can be proved using the same assumptions as the 

single-subject single-task case presented in Section II. 

 

Proposition 2: For an arbitrary T stage       experiment, if each subject maximizes 

expected VNM utility, then regardless of  personal preferences over the set of money 

rewards, as long as the experimental currency consequences at each stage are bundled 
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into a single lottery,    , then each subject will behave as if having preferences over 

  ,              , pre-specified by the experimenter. 

 

Proof: See Appendix. 

 

The importance of the above result for full bundling,    , is that it offers a ‘failsafe’ method for 

implementing RPIP when other bundling solutions,    , do not work.  Reference to Table 1 shows, 

however, that bundling was not employed in two of the studies examined, even though it was 

necessary for valid implementation of RPIP because the studies involved stage dependence (line 3 of 

Table 1). 

 

Proposition 2 for the full bundling case and the necessary condition for the no bundling case in 

Proposition 1 also have relevance to intermediate cases of bundling,      . This is because when 

there is any failure of the necessary condition in Proposition 1, it is inappropriate to implement RPIP 

by offering a lottery reward at each stage. In such circumstances, however, a valid RPIP design is 

indicated by Proposition 2; namely, a single lottery reward must be implemented after the final stage. 

By contrast, when the sufficient condition in Proposition 1 is satisfied by the experimental design, the 

bundling decision is irrelevant to the validity of RPIP, leaving researchers with some degree of 

freedom as to how RPIP is implemented. We defer discussion of the studies involving strategic 

interaction until the next section, where we examine design issues. However, we may note 

immediately that the bundling solution was employed in three non-interactive studies, when it was 

unnecessary for valid implementation of RPIP because the studies involved stage independence (line 

2 of Table 1). Bundling may have been employed for other reasons, but these other reasons were 

usually not made explicit or discussed. 
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IV. Conclusions and Implications for the Design of Experiments 

 

In this section we discuss experimental design issues relating to Propositions 1 and 2, and then 

conclude with a summary of the paper’s findings. Where experiments feature stage interdependence, 

correct implementation of RPIP requires that a single lottery is undertaken at the end of each set of 

interdependent stages. This in turn has consequences for the distribution of prizes that a subject might 

receive. In particular, for an experiment in which all stages are interdependent, the subject will receive 

only one of two prizes.  By contrast, where there is a greater degree of stage independence, a greater 

array of prize levels becomes possible without affecting the validity of RPIP. That is, the distribution 

of rewards is affected by bundling, even if the mean payoff is not. There are reasons to prefer the 

standard implementation of no bundling when the decision structure permits, because it increases the 

range of possible prizes a subject may receive. The issue here concerns perceptions of fairness or trust 

in the experimenter. For example, if there was just a single lottery and a low or high prize, a subject 

who received a low prize might well doubt whether the random process had been implemented fairly 

or appropriately. A sensible compromise in cases where the essence of the basic experiment is one of 

stage interdependence is to have a sequence of such experiments, each of which is independent of the 

others. For each of these experiments, the payoff arises from a single binary lottery, but having in 

addition an independent sequence then generates a multiplicity of such lotteries.  This would retain 

RPIP validity whilst increasing the set of potential overall rewards paid to subjects. Of course, if the 

overall burden on the subject is not to prove too onerous, there has to be a trade off between the 

number of interdependent stages within an experiment and the number of independent experiments in 

the sequence faced by subjects. 

 

The importance of the strategic interaction of multiple subjects lies in the fact that a subject’s 

conjectures about how other subjects will act affect the validity of RPIP. This brings out a dimension 

not addressed in the single-subject context of Dobbs and Miller (2012). Since subject actions are 

response variables under observation by the experimenter, in a multiple-subject setting a subject’s 

conjectures about how other subjects will act cannot be fully controlled. The precise degree of control 
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necessary for RPIP to work is one of the new results provided in the present paper. We have shown in 

Proposition 1 that when there is no bundling, part of the necessary and sufficient condition for the 

validity of RPIP is that each subject’s conjectures regarding the actions of others are independent of 

his previous realisations of  . 

 

To see what is at issue here, take the case of stage independence as in Definition 1. In this setting, 

RPIP ensures that a subject in the final stage will behave as if maximising the expected value of 

        , the value of which depends on his conjecture about     . Denote that conjecture as  ̂   . 

Since, however, subject i’s conjecture is supplied by him rather than the experimenter, without further 

restrictions, stage independence alone is not sufficient to rule out the possibility of his conjecture 

depending on        . Nor is the further restriction of confining attention to Nash equilibrium 

behaviour sufficient, since if there are multiple Nash equilibria in the final stage, there is a logical 

possibility that     might have a role to play in subjects selecting one or another of these Nash 

equilibria. For an example of stage independence, yet optimal decision making depending on       

 , consider repeated play of a one-shot coordination game such as ‘Battle of the Sexes’, which has 

two Nash equilibria. This was the setting of Cooper et al. (1989, 1990, 1992, 1993).
16

 Realized     

could be introduced by subjects as a coordination device, allowing them to reach one or another Nash 

equilibrium in the final stage. This then leads to the expected value of          depending on     

because  ̂    depends on    . Cooper et al avoided this problem by having subjects play the Battle of 

the Sexes game against unidentified players, with random re-matching of players at every repetition of 

the game.
17

 Thus it is not rational for subject   to conjecture that his ‘partner’ will condition his stage 

  action on    , because he knows that by experimental design this variable is private information to 

him. Bundling is not therefore required if the anonymous re-matching device is adopted. 

 

                                                 
16

 See Table 1, line 6, of the present paper. 
17

 Though their purpose in adopting this procedure was not related to RPIP, it was to avoid reputation effects 

arising when the same two players knowingly play repeated games together. 



 21 

It is worth considering how ‘independent conjectures’ could be built into the design if anonymous re-

matching was undesirable, perhaps because reputation effects were of specific interest to the 

researcher. In this case, confining attention to environments where at each stage there is a unique 

Nash equilibrium and subjects play their Nash strategies, removes the possibility of optimal decision-

making depending on        .
18

 Given the generalized conditional distribution function with stage 

independence,                  , then by the definition of the assumed unique Nash equilibrium at 

stage  , involving optimal actions     
      

  , it must be that 

 

∫         

       

            
      

       
   ∫         

       

            
      

       
              

  

 

Since, at this Nash equilibrium,     
  is unique and there is a unique best response for subject i, it is by 

definition irrational for the conjectured actions of others to be anything but a constant. Hence a no-

bundling implementation of RPIP will work as intended. The studies in line 4 and line 7 of Table 1 

are stage independent and possess a unique Nash equilibrium at each stage. They are therefore 

consistent with valid RPIP and no bundling, though in Harrison (1989) and Fredrickson and Waller 

(2005) bundling was nevertheless chosen. Unfortunately, if a stage has no Nash equilibrium or 

multiple Nash equilibria, we know of no mechanism other than anonymous re-matching of players for 

rescuing the validity of RPIP with no bundling. Hence in these circumstances, full bundling would be 

the appropriate implementation. The studies in lines 5 and 8 of Table 1 involved two-player 

bargaining with an unstructured message space. Although in these designs, there was anonymity and 

re-matching, the fact that subjects could send ‘cheap talk’ messages again raises the theoretical 

possibility that a subject’s conjectures could depend on the message he sends about his previous 

realisations of  . This possibility casts doubt on the effectiveness of RPIP for these studies. 

 

                                                 
18

 In fact, RPIP will be valid without a unique Nash equilibrium in the first stage, since at this stage there can be 

no dependence of conjectures on previous values of  . 
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In summary we find that independence between multiple decision-making stages of an experiment is 

necessary and sufficient for the most widely-used implementation of binary lotteries, involving a one-

to-one correspondence of stages to lotteries, a design described here as ‘no bundling’. When multi-

subject experiments are under consideration, the idea of independence is broader than in Dobbs and 

Miller (2012), encompassing a subject’s conjectures about the relationship between the actions of 

others and his own previous realized awards of experimental currency. With interdependence, as 

defined in Proposition 1, the affected stages must be bundled together into a single lottery. Thus it has 

been shown formally that the scope of RPIP extends to multi-stage multiple-subject experimental 

settings, as long as either the stages are functionally independent or rewards of experimental currency 

are bundled together into a single lottery. 

 

  



 23 

Appendix 

 

This Appendix gives proofs for Propositions 1 and 2, and Lemma 1. 

  

Lemma 1: Given a differentiable VNM utility function        , if for all    : 

 

 i)                  

 ii)                                 

 

then the utility function is additively separable,                    . 

 

Proof: Conditions i) and ii) imply 

 

                 
 

 
                  (A.1) 

 

Applying (A.1) to                                , where     are arbitrary values: 

 

 

                                

 
 

 
                  

 

 
                  

 
 

 
                  

 

 
                    

(A.2) 

 

(A.2) shows that                                , so utility differences arising from 

receiving   rather than   in the second stage do not depend on the value received in the first stage. 

Since                 is invariant with respect to the value of  , then  
        

  
 

        

  
  . 

But this implies 
        

  
 

        

  
, so that the partial derivative with respect to w is invariant with 

respect to the value received in the second stage. Thus 
         

    
  . Integrating: 



 24 

 

∬
         

    
                         

 

where             are arbitrary functions. But from condition i) 

 

                                        

 

Hence            .   

 

The converse proposition, that additively-separable utility implies conditions i) and ii), is trivial. 

 

For Proposition 1 below, it will be convenient to introduce some new definitions in order to reduce 

notational clutter. Let 

 

 

                  
  

                  
  

                  
  

                  
  

(A.3) 

 

Note that, because utility is strictly increasing in pay-offs (non-satiation),   
    

    
    

   . A further 

useful identity is that   
    

    
    

   

 

Proposition 1: For an arbitrary multi-stage multi-subject experiment, in which stages are not bundled, 

if each subject maximizes expected VNM utility, then regardless of personal preferences over the set 

of money rewards, the subject will behave as if having preferences over   ,        ∑         
 
   , 

pre-specified by the experimenter if and only if the experimental design exhibits stage independence 
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and the subject’s conjectures regarding the actions of other subjects are independent of the subject’s 

previous realisations of  . 

 

Proof: For expositional convenience, we focus on a two-stage experiment.
19

 We seek to examine the 

conditions under which, at stage two, an arbitrary subject i behaves as if he is maximising 

              as a function of       ̂        , where  ̂   denotes the subject’s conjecture about     ,  

and at stage one he acts as if he is maximising                             taking into account the 

interdependence between stages one and two. 

 

At stage two, the subject knows     and    , the latter being either   or  . For an arbitrary set of 

conjectures for the actions of all other subjects,  ̂   ,  ̂   , and regardless of the value of    , the 

subject’s decision problem for choosing an action,    , in order to maximize his expected VNM utility 

from the lottery is: 

 

 

   
       

∫ {                 

       

 (          )  (     )}               ̂         ̂         

(A.4) 

 

where              ̂         ̂         is the distribution function corresponding to the generalized 

probability density function              ̂         ̂        . Equation A.4 can be re-written as: 

 

    
       

(  (     )  {

[            (     )]  

∫         

       

              ̂         ̂        
}) (A.5) 

 

        
       

(  (     )  {

[            (     )]  

∫         

       

              ̂         ̂        
}) (A.6) 

                                                 
19

 Proof of sufficiency for a  -stage experiment is available from the authors. 
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   ̂         ̂               

       

( ∫         

       

              ̂         ̂        ) 

 

Notice the optimal solution for     does not depend on the constant term,   (     ), nor does it 

depend on the positive term [            (     )], hence the subject behaves as if maximising 

             , a function of   ̂         ̂        . Since this is true for arbitrary  ̂    and  ̂   , and for 

an arbitrary subject, it is true for all subjects, whatever their conjectures. Borrowing terminology from 

oligopoly theory, essentially the experimenter has full control over every subject’s ‘reaction function’. 

To obtain a solution to this one-shot final-stage game, the experimenter would have to predict 

subjects’ conjectures. This can be achieved using the Nash equilibrium criterion, giving a solution that 

may involve dominant strategies, pure strategies, mixed strategies or multiple equilibria.
20

 Hence, as 

long as we confine attention to the final stage, or equivalently to a one-stage problem, the validity of 

RPIP is quite general. Note especially that even if there is no prediction about the solution to the 

game, and indeed in some contexts an experimenter might wish to study a situation in which there is 

no Nash equilibrium, risk preferences of subjects are nevertheless pre-specified by the experimenter 

via choice of         . 

 

It turns out that the validity of RPIP at earlier stages will crucially depend on whether the optimal 

value of the integral on the right hand side of (A.6) is a function of     . With stage interdependence, 

this value clearly depends on    . Denote this integral by    
      , notation which will be used to 

prove necessity. With stage independence, the optimal value may or may not depend on    .
21

 We will 

write    
  as a constant if the optimal value of the integral on the right hand side of (A.6) is 

independent of    , notation which will be used in the proof of sufficiency. Finally, note that since 

         is a probability, it lies between 0 and 1, and so both    
       and    

 , the expected 

probabilities from optimal stage two decisions, also lie between 0 and 1. 

                                                 
20

 Although the existence of multiple equilibria does not prejudice the validity of RPIP in the final stage, as we 

shall see it could lead to problems in earlier stages. 
21

 We discuss this point more fully in Section IV of the main text. 
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Proof of necessity 

 

We proceed by proving the contrapositive of Proposition 1: namely, that if stages are interdependent, 

so we have    
      , then RPIP cannot work for arbitrary personal preferences over the set of money 

rewards. 

 

At stage one, the subject’s decision problem for maximising expected VNM utility, given optimal 

decision-making at stage two, can be written as: 

 

    
       

(

 
 
 

∫

(

 
 
 

∫

{
 
 

 
 

[
 
 
 
 

                       

         (          )  (   )

                       (   )

                           (   )]
 
 
 
 

             
   ̂         ̂          ̂         ̂        }

 
 

 
 

       

)

 
 
 
              ̂    

       

)

 
 
 

 (A.7) 

 

The central expression in square brackets in (A.7) can be simplified by the notation in (A.3), to give a 

restatement of (A.7) as: 

 

 

   
       

( ∫ ( ∫ {
[
        {  

          (  
    

 )}

           
    (   )

]

             
   ̂         ̂          ̂         ̂        

}

       

)              ̂    

       

) (A.8) 

 

Integrating with respect to            
   ̂         ̂          ̂         ̂        , utilising the definition 

of    
      , then gives: 

 

 

   
       

( ∫ [
  (   )    

          

   
     

    
              

      
]              ̂    

       

) (A.9) 

 

Given the objective of RPIP at stage one, namely to maximize                            , the 

procedure will be effective in reducing (A.9) to this objective function if and only if: 
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( ∫ [
  (   )    

          

   
     

    
              

      
]              ̂    

       

)

       
       

( ∫ [            
      ]              ̂     

       

) 

(A.10) 

 

If stage independence is not assumed, then Equation A.10 can be true for arbitrary subject 

preferences if and only if: 

 

 [
  (   )    

          

   
     

    
              

      
]       [            

      ] (A.11) 

 

where       are constants and     . To prove the necessity of stage independence, it suffices to 

prove that A.11, which assumes the opposite mutually exclusive condition of stage interdependence, 

leads to a contradiction. 

 

Equation A.11 is true if and only if    
    

  and   
    

 .
22

 From the definitions in (A.3) these two 

conditions necessarily imply, respectively,                 and                         

       . Application of Lemma 1 then means that A.11 implies the subject’s VNM utility function is 

additively separable in        . That is, if stages are interdependent, RPIP is only valid if the 

subject’s VNM utility function is restricted to be additively separable. This contradicts Proposition 1, 

which requires that RPIP should hold for arbitrary preferences over money consequences. 

 

Proof of sufficiency 

To prove sufficiency, assume    
  is a constant, independent of    . The maximand on the left hand 

side of A.10 becomes: 

 

                                                 
22

 Setting      
    

  also satisfies the condition     . 
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(A.13) 

 

and the maximand on the right hand side of A.10 becomes: 
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(A.15) 

 

Equating the right hand sides of A.13 and A.15: 
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  ∫                       ̂    
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( ∫                       ̂    

       

) 

(A.16) 

 

Equation A.16 will be true if and only if   
  (  

    
 )   

   . Given the identity   
    

    
  

  
 , the condition can also be written as: 
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    (A.17) 

 

Finally, since   
    

    by (A.3) and    
        

    , A.17 is satisfied.  

 

Proposition 2: For an arbitrary T stage       experiment, if each subject maximizes expected VNM 

utility, then regardless of  personal preferences over the set of money rewards, as long as the 

experimental currency consequences at each stage are bundled into a single lottery,    , then each 

subject will behave as if having preferences over   ,              , pre-specified by the 

experimenter. 

 

Proof: The objective is to prove that at stage two, each subject behaves as if maximising 

              as a function of           ̂    , and at stage one he acts as if maximising 

                            taking into account the interdependence between stages one and two. 

First consider the decision problem in the second and final stage, where the subject must choose an 

action,    , in order to maximize expected VNM utility from the lottery. For an arbitrary set of 

conjectures for the actions of all other subjects,  ̂   ,  ̂   , the subject’s decision problem is: 

 

    
       

( ∫ {            (        )  ( )}

       

              ̂         ̂        ) (A.18) 

 

where              ̂         ̂         is the generalized distribution function corresponding to the 

generalized probability density function              ̂         ̂         for arbitrary conjectures 

 ̂     ̂   . 

 

Equation A.18 can be subjected to rearrangements that exactly mirror Equations 3 to 6 in the main 

text of the paper, leaving: 

 



 31 

    
       

(  ( )  [        ( )] ∫       

       

              ̂         ̂        ) (A.19) 

 

Since the single lottery satisfies Equation 12,   (  )    (  )     (   )          , and A.19 can be 

further reduced to: 
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  ( )  [        ( )]         
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              ̂         ̂        
) (A.20) 

 

so that, given         ( ), the optimal decision at stage two,    
   ̂         ̂         is 

 

    
 ( ̂         ̂       )        

       

( ∫         

       

              ̂         ̂        ) (A.21) 

 

Thus regardless of the subject’s conjectures, and the realized outcome,    , from the previous 

decision,    , the subject behaves as if maximising               in accordance with the preference 

ordering pre-specified in the experimental design. 

 

Turning to stage one, the subject’s decision problem is to choose an action,    , taking account of 

optimal decision-making going forward:    
   ̂         ̂           Thus at stage one, the subject aims 

to maximize: 

 

∫ ( ∫
{            (        )  ( )}

             
   ̂         ̂          ̂         ̂        

       

)              ̂    

       

 (A.22) 

 

Equation A.22 can again be simplified to give: 
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(A.23) 

 

so that, given         ( ), the optimal decision at stage one is: 
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) (A.24) 

 

Substituting   (  )    (  )     (   )          , into A.24, then rearranging gives: 
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 (A.27) 

 

However, Equation A.26 is precisely the definition of the optimal action for maximising 

                            at stage one. Since this is true for arbitrary  ̂    and  ̂   , and for an 

arbitrary subject, it is true for all subjects, whatever their conjectures. As long as we confine attention 

to RPIP with full bundling, the validity of RPIP is quite general.  
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