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Abstract

This paper is devoted to solve the system of partial differential equations governing the
flow of two superposed immiscible layers of shallow water flows. The system contains source
terms due to bottom topography, wind stresses, and nonconservative products describing
momentum exchange between the layers. The presence of these terms in the flow model
forms a nonconservative system which is only conditionally hyperbolic. In addition, two-
layer shallow water flows are often accompanied with moving discontinuities and shocks.
Developing stable numerical methods for this class of problems presents a challenge in the
field of computational hydraulics. To overcome these difficulties, a new composite scheme
is proposed. The scheme consists of a time-splitting operator where in the first step the
homogeneous system of the governing equations is solved using an approximate Riemann
solver. In the second step a finite volume method is used to update the solution. To
remove the non-physical oscillations in the vicinity of shocks a nonlinear filter is applied.
The method is well-balanced, non-oscillatory and it is suitable for both low and high values
of the density ratio between the two layers. Several standard test examples for two-layer
shallow water flows are used to verify high accuracy and good resolution properties for
smooth and discontinuous solutions.

Keywords. Two-layer shallow water equations, Nonconservative systems, Finite volume
method, Riemann solver, Nonlinear filter.

1 Introduction

In the present study we consider the two-layer shallow water system of partial differential
equations governing the one-dimensional flow of two superposed shallow layers of immiscible
fluids with different constant densities, ρ1 and ρ2 (ρ1 < ρ2), due to, for example, different
water temperature or salinity. The mathematical equations are derived from the compressible
isentropic Euler equations by vertical averaging across each layer depth, see [3, 4] among others.
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Figure 1: Schematic of a two-layer shallow model with topography.

The model reads
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∂
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where ρj is the water density of the jth layer, hj(t, x) is the water height of the jth layer,
uj(t, x) is the local water velocity for the jth layer, j = 1, 2, Z(x) is the bottom topography
and g the gravitational acceleration. Here, the subscripts 1 and 2 represent respectively, the
upper and lower layer in the hydraulic system, see Figure 1 for an illustration. In (1), the bed
friction forcing term Fb is acting only on the lower layer and the wind-driven forcing term Fw

is acting only on the upper layer as

Fb = − τb
ρ2

, Fw =
τω
ρ1

, (2)

with τb and τω are respectively, the bed shear stress and the shear of the blowing wind defined
by the water and wind velocities as

τb = ρ2Cbu2|u2|, τω = ρ1Cωω|ω|, (3)

where Cb is the bed friction coefficient, which may be either constant or estimated as Cb = g/C2
z ,

where Cz = h
1/6
2 /nb is the Chezy constant, with nb being the Manning roughness coefficient at

the bed. In (3) ω is the velocity of wind at 10 m above water surface and Cw is the coefficient
of wind friction defined as [1]

Cw = ρa(0.75 + 0.067|ω|)× 10−3,

where ρa is the air density. It is well known that the calculation of the eigenvalues associated
with the two-layer system (1) is not trivial. Indeed, the four eigenvalues λj (j = 1, . . . , 4) are
the zeros of the characteristic polynomial [4]

P (λ) =
(
λ2 − 2u1λ+ u21 − gh1

) (
λ2 − 2u2λ+ u22 − gh2

)
− g2rh1h2, (4)
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where the ratio r = ρ1
ρ2
. Notice that for hydraulic applications with r ≈ 1 and u1 ≈ u2, a

first-order approximation of the eigenvalues can be obtained by expanding (4) in terms of 1− r
and u2 − u1 as

λ1 ≈ Um −
√

g (h1 + h2),

λ2 ≈ Um +
√

g (h1 + h2),
(5)

λ3 ≈ Uc −

√√√√(1− r)g
h1h2

h1 + h2

(
1− (u2 − u1)

2

(1− r)g (h1 + h2)

)
,

λ4 ≈ Uc +

√√√√(1− r)g
h1h2

h1 + h2

(
1− (u2 − u1)

2

(1− r)g (h1 + h2)

)
,

where

Um =
h1u1 + h2u2

h1 + h2
, Uc =

h1u2 + h2u1
h1 + h2

.

It is evident that, depending on the values of the ratio r, the eigenvalues (5) may become
complex, see for instance [10]. In this case, the system is not hyperbolic and yields to the
so-called Kelvin-Helmholtz instability at the interface separating the two layers. A necessary
condition for the system (1) to be hyperbolic is

(u1 − u2)
2

(1− r)g (h1 + h2)
< 1. (6)

It should also be stressed that if ρ1 = ρ2, u1 = u2 = u and h1 + h2 = H the system (1) reduces
to the canonical single-layer shallow water equations

∂H

∂t
+

∂ (Hu)

∂x
= 0,

(7)
∂ (Hu)

∂t
+

∂

∂x

(
Hu2 +

1

2
gH2

)
= −gH

∂Z

∂x
+ Fb + Fw,

Note that the system (7) forms a conservative hyperbolic with two real eigenvalues given by
λ1 = u−

√
gh and λ2 = u+

√
gh.

The two-layer shallow water equations (1) have been widely used in the literature as a
prototype of nonconservative hyperbolic systems, see for example [4, 12]. These equations have
also been presented as a model of conservation laws with a severe restriction on the hyperbolicity
in [2, 13] among others. Recent trends in modeling multi-layer shallow water flows consist in
the inclusion of other physical mechanisms such as sediment transport, compare [14]. The
numerical solution of two-layer shallow water equations has also been object of an intense
research during the last years, see for instance [11, 6]. This interest is due, on the one hand,
to the applicability of these models to the simulation of stratified geophysical flows. On the
other hand, they can be considered as a prototype of partial differential equations involving
similar difficulties, as it is the case for a number of two-phase flow models. One of the main
difficulties of system (1) both from the theoretical and the numerical point of views comes from
the presence of nonconservative products. Thus, solutions of (1) may develop discontinuities
and, due to the non-divergence form of the equations, the notion of weak solution in the sense of
distributions cannot be used. A second important difficulty of system (1) is related to the loss
of hyperbolicity when the density ratio r approaches unity. Indeed, when r ∼= 1 the condition
(6) may be violated and the system (1) is only conditionally hyperbolic. In this situation, its
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eigenstructure cannot be obtained in an explicit form. This loss of hyperbolicity is related to
the appearance of shear instabilities that may lead, in real flows, to intense mixing of the two
layers. While, in practice, this mixture partially dissipates the energy, in numerical experiments
these interface disturbances may grow and overwhelm the solution. Even though these factors
make it quite difficult to design upwind methods for the two-layer shallow water equations. For
instance, several upwind-based schemes, including the finite-volume [4, 12] and finite-element
[11] ones, were developed during the past decade. An interesting approach to overcome the above
difficulties has been recently proposed in [6], where two artificial equations have been added to
the system (1), so that the extended system becomes hyperbolic and thus could be solved by a
second-order Roe-type scheme in a rather straightforward manner. Time splitting approaches,
proposed for example in [2], are another way to implement upwinding without having the full
eigenstructure of the system readily available. The main objective of this work is to reconstruct
a non-oscillatory method to accurately approximate numerical solutions of the two-layer shallow
water flows over non-flat beds. In the current study we propose a new composite finite volume
method for solving the two-layer shallow water equations (1). The key idea in this approach is
to apply a time-splitting operator to the governing equations where the homogeneous system is
solved using an approximate Riemann solver developed in [16] and the source terms are dealt
with in the second stage of the time-splitting procedure. In order to increase the resolution
of the scheme and remove undesirable oscillations near the shocks a nonlinear filter is applied.
The proposed method is non-oscillatory and suitable for two-layer shallow water equations for
which Riemann problems are difficult to solve. Numerical examples are presented to verify the
considered composite method. We demonstrate the method capability of capturing the shocks
and calculating lateral and vertical distributions of velocities for wind-driven circulation over
complex bathymetry.

The remainder of this paper is organized as follows. In section 2 we present the composite
scheme for the two-layer shallow water equations. This section includes both the discretization
of gradient fluxes and formulation of the nonlinear filter. Section 3 contains numerical results
and examples. Concluding remarks are summarized in section 4.

2 A new composite scheme

For simplicity in presentation we rewrite the two-layer equations (1) in a compact form as

∂W

∂t
+

∂F(W)

∂x
= Q(W) +R(W), (8)

where W is the vector of conserved variables, F the vector of flux functions, Q and R are the
vectors of source terms defined by

W =


h1

h1u1

h2

h1u2

 , F(W) =


h1u1

h1u
2
1 +

1

2
gh21

h2u2

h2u
2
2 +

1

2
gh22

 ,

Q(W) =


0

−gh1
∂

∂x
(Z + h2)

0

−gh2
∂

∂x
(Z + rh1)

 , R(W) =


0
τω
ρ1
0

− τb
ρ2

 .
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It is well-established that the source terms in (8) are stiff such that implementing them directly
causes an instability as it was shown [15] for a simple explicit discretization of source term
integrated in the finite volume scheme for single-layer shallow water model. To overcome this
drawback, a numerical time-splitting method obtained by performing an arbitrary scheme, in
this case a nonhomogeneous Riemann solver, is used.

Let the temporal domain be divided into subintervals [tn, tn+1] with stepsize ∆t. We used
the notation Wn to denote the solution W at time t = tn. In the simplest case, this splitting
takes the following form

Wn+1 = L∆t
Q L∆t

F L∆t
R Wn, (9)

where L∆t
F represents the numerical solution operator for the conservation law

∂W

∂t
+

∂F (W)

∂x
= 0, (10)

over the time ∆t, L∆t
R and L∆t

Q are the numerical solution operators for the equations of source
terms

∂W

∂t
= R and

∂W

∂t
= Q,

respectively. It should be stressed that, although this fractional scheme (known as strong
splitting) performs well for the two-layer shallow water equations over flat bottom, highly
oscillations can be detected close to the shock areas when it is applied to two superposed
immiscible layers of shallow water over non-flat bottom.

It is worth emphasizing that, using the two-layer equations to model shallow water flows,
the nonhomogenuous terms in the right-hand side in (1) are not standard source terms but
nonconservative products, since they include derivatives of two of the variables. The presence
of these source terms in the two-layer shallow water systems can cause severe difficulties in their
numerical approximations, see for instance [8]. In principle, the nonhomegenuous term in these
equations can be viewed as a source term and/or a nonconservative term. In the approach
presented in this study these terms are considered and discretized as source terms.

2.1 A well-balanced finite volume method

The homogeneous system (10) can be numerically solved using any finite volume method de-
signed for hyperbolic systems of conservation laws. In the current work we employ an approxi-
mate Riemann solver developed in [16] among others. The method consists of a predictor stage
for the discretization of gradient terms and a corrector stage for the finite volume solution recov-
ery. The numerical fluxes are reconstructed using a modified Roe’s scheme that incorporates,
in its reconstruction, the sign of the Jacobian matrix in the two-layer shallow water system.
Herein, this method is referred to by SRNHS scheme, see for example [16]. In this section we
briefly describe the method and details can be found in [16].

It is easy to verify that the eigenvalues λk (k = 1, . . . , 4) associated with the Jacobian matrix
in (10) are given by

λ1 = u1 +
√

gh1, λ2 = u1 −
√

gh1,
(11)

λ3 = u2 +
√

gh2, λ4 = u2 −
√

gh2.

Let us discretize the spatial domain into control volumes [xi−1/2, xi+1/2] with uniform size
∆x = xi+1/2 − xi−1/2. Applied to the system (10) the finite volume SRNHS method is

Wn
i+1/2 =

1

2

(
Wn

i+1 +Wn
i

)
− 1

2
sgn
[
A
(
W
)] (

Wn
i+1 −Wn

i

)
,

(12)

Wn+1
i = Wn

i − ∆t

∆x

(
F
(
Wn

i+1/2

)
− F

(
Wn

i−1/2

))
,
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where Wn
i is the space average of the solution W in the control volume [xi−1/2, xi+1/2] at time

tn i.e.,

Wn
i =

1

∆t∆x

∫ tn+1

tn

∫ xi+1/2

xi−1/2

W(t, x) dt dx,

and F(Wn
i±1/2) are the numerical fluxes at x = xi±1/2 and time tn. In (12), the averaged state

is calculated as

W =



h1,i + h1,i+1

2

h1,i + h1,i+1

2

u1,i
√

h1,i + u1,i+1

√
h1,i+1√

h1,i +
√

h1,i+1

h2,i + h2,i+1

2

h2,i + h2,i+1

2

u2,i
√

h2,i + u2,i+1

√
h2,i+1√

h2,i +
√

h2,i+1


, (13)

and the sign matrix is given by

sgn
[
A
(
W
)]

= R
(
W
)
sgn
[
Λ
(
W
)]
R−1

(
W
)
,

with

sgn
[
Λ
(
W
)]

=



sgn
(
λ1

)
0 0 0

0 sgn
(
λ2

)
0 0

0 0 sgn
(
λ3

)
0

0 0 0 sgn
(
λ4

)


,

where λk are the eigenvalues in (11) calculated at the averaged states. The right and left
eigenvector matrices are given by

R
(
W
)
=



1 0 0 0

λ1 λ2 0 0

0 0 1 1

0 0 λ3 λ4


, R−1

(
W
)
=



− λ2

2c1

1

2c1
0 0

λ1

2c1
− 1

2c1
0 0

0 0 − λ4

2c2

1

2c2

0 0
λ3

2c2
− 1

2c2


.

where

c1 =

√
g
h1,i + h1,i+1

2
, c2 =

√
g
h2,i + h2,i+1

2
.

It should be noted that the finite volume SRNHS method can be interpreted as a predictor-
corrector procedure. In the predictor stage, the averaged states Wn

i+1/2 are computed whereas,

the solution Wn+1
i is updated in the corrector stage.
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2.2 Nonlinear filter procedure

Non-physical oscillations are expected to be appeared in the vicinity of the shocks and hydraulic
jumps. In the present work, to remove these inevitable oscillations we incorporate a filter
proposed in [17] for our composite scheme. The main features of this filter are: (i) identify
the nodes where the solution tends to oscillate, (ii) determine whether a particular node is
an undershoot or overshoot, the flow variables need to be correspondingly lifted or reduced,
(iii) conserve mass by balancing a correction (addition/subtraction) at node with an equal and
opposite correction (subtraction/addition) from an adjacent node, and (iv) ensure portability
where the formulation is independent of the basic numerical scheme.

For our composite scheme, the nonlinear filter is applied to each physical variable v ∈
{h1, u1, h2, u2} at each gridpoint in which vi is a local extrema i.e., d+d− < 0, where the
differences d+ and d− are defined as

d+ = vi+1 − vi, d− = vi − vi−1.

Hence, a correction term is added to the variable vj as follows

vi = vi + δisign(d
+), if d+d− < 0,

where δj is a limiting parameter defined by

δi = min

(
min

(
|d+|, |d−|

)
,
1

2
max

(
|d+|, |d−|

))
.

In addition, to retain conservation, one of vi−1 or vi+1 must be corrected in the opposite sense
according to

vj = vj − δisign(d
+), (14)

with

j =

i+ 1, if d+ > d−,

i− 1, otherwise.

Notice that the correction (14) is applied for both neighboring cells to [xi−1/2, xi+1/2] where
the local extrema is located. Here the amount of the correction included is distributed among
the left solution vi−1 and the right solution vi+1 depending on the values of the distances d−

and d+, respectively. By doing so the conservation property of the scheme is preserved and
oscillatory behavior is removed near shock areas. In addition the above filter is the simplest
one presented in [17] but can be extended to obtain a TVD-enforcing filter. The TVD filtering
procedure adopted for our system of equations cannot be explicitly presented in a pseudo-
language algorithm, which corresponds to the implementation of the nonlinear filtering similar
to algorithm described below and for brevity in presentation, we refer the reader to [17] where
the algorithm was described in details. However, one must be careful when choosing the filter,
as it may add numerical dissipation. In fact, too much filtering, may destroy the solution
and it often suffices to apply the filter after each full timestep or even after several timesteps,
depending on the nature of the problem.

Let LSRNHS be the time-splitting operator in (9) mapping grid data at time n to the data
at time n + 1, and let LF be the selected filter operator. Then, the difference operator Sk

defined by doing k − 1 applications of LSRNHS followed by one application of LF is defined as

Sk = LF ◦ LSRNHS ◦ LSRNHS ◦ · · · ◦ LSRNHS︸ ︷︷ ︸
(k−1) times

.
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Thus, the solution of the two-layer shallow water equations is updated as

Wn+k = Sk Wn. (15)

The treatment of source terms in the shallow water equations presents a challenge in many
numerical methods, compare [7] and further references are therein. In our composite scheme,
the approximation of source terms is reconstructed such that the still-water equilibrium (C-
property) is satisfied. Note that the system (1) has the steady states at rest [2]

uj = 0, ∂x

Z +

j−1∑
k=1

ρk
ρj

hk +

2∑
k=j

hk

 = 0, j = 1, 2. (16)

Hence, a numerical scheme is said to satisfy the C-property for the two-layer model if the
conditions

uj = 0, Z +

j−1∑
k=1

ρk
ρj

hk +

2∑
k=j

hk = H, j = 1, 2, (17)

hold for stationary flows at rest. In (17), H is an arbitrary nonnegative constant. Remark that,
if ρ1 < ρ2, the above condition yields

u1 = u2 = 0, Z + h2 = H2, h1 = H1, (18)

with H1 and H2 are nonnegative constants, whereas if ρ1 = ρ2, the condition (17) reduces to

u1 = u2 = 0, Z + h1 + h2 = H. (19)

Therefore, the treatment of source terms in our composite method is reconstructed such that
the condition (19) is preserved at the discretized level. For more details on the discretization
of the source terms in the SRNHS solver we refer the reader to [16].

It should also be stressed that according to the study reported in [9], the well-established
algebraic balancing technique cannot be extended to the two-layer shallow water model in the
presence of interface perturbation due to the effect of an additional term associated with the
layer coupling which violates the well-balanced property. In the present study, we also overcome
this difficulty by interpreting the the two-layer model (1) as a system of two coupled shallow
water problems where the topography in one layer depends on the other layer height (i.e. the
topography is Z+h2 for the first layer, and Z+ ρ1

ρ2
h2 for the second layer). Note that this is not

exactly true as these topographies Z + h2 and Z + ρ1
ρ2
h2 do depend on time as well. However,

this happens to be true when using the considered time-splitting method as demonstrated in
the results presented in our study. Hence, the difficulty of nonconservative products disappears
apparently and thus, we discretized the topography in each layer independently of the other as
follow

(h1u1)
n+1 − (h1u1)

n

∆t
= −g

(hn1,i−1 + 2hn1,i + hn1,i+1)

8∆x

[
(hn2,i+1 − h2,i−1)

n + (Zi+1 − Zi−1)
]
,

(h2u2)
n+1 − (h2u2)

n

∆t
= −g

(hn2,i−1 + 2hn2,i + hn2,i+1)

8∆x

[
ρ1
ρ2

(hn1,i+1 − hn1,i−1) + (Zi+1 − Zi−1)

]
.

In summary, the implementation of the algorithm for the considered nonlinear filter is carried
out in the following steps:

j = 2
newind(v, 2, l, j)

8



while j < N do
d1 = vj −max(vl−1, ..., vj+1)
d2 = min(vl−1, ..., vj+1)− vj
if (∆+vj)(∆−vl) < 0 and (d1 > 0 or d2 < 0) then

if |∆+vj | > |∆−vl| then
d+ = |∆+vj |
d− = |∆−vl|
jcorr = j + 1
lcorr = j + 1

else
d+ = |∆−vj |
d− = |∆+vl|
newind(v, l − 1, lcorr, jcorr)

end if
w1 = j − l + 1
w2 = jcorr − lcorr + 1
δ = min(δ−, w2δ+/(w1 + w2),max(d1, d2))
s = sgn(∆+vj)
for i = l → j do

vi = vi + sδ
end for
for i = lcorr → jcorr do

vi = vi − sδw1/w2

end for
newind(v, l − 1, p, q)

else if (∆+vj)(∆−vl) < 0 and (∆+vl−1)(∆−vp) < 0 then

δ = min(|∆−vp|, |∆+vl−1|/2, |∆+vj |)
s = sgn(∆+vj)
for i = p → l − 1 do

vi = vi − sδ
end for
for i = l → j do

vi = vi + sδ
end for

else
if vj does not need any correction go to j + 1
newind(v, j + 1, l, j)

end if
end while

In the above algorithm the function newind(u, ind, l, j) returns the indices (l, j) such that

ul−1 6= ul = ul+1 = · · · = uj 6= uj+1.

In the sequel, we shall use the terminology SRNHS-F(k) to refer to the proposed composite
scheme. Note that for k = 0 the SRNHS-F(0) reduces to the conventional LSRNHS operator.

3 Applications and numerical results

To examine the effectiveness and the performance of our composite scheme we present numeri-
cal results for several test examples. We illustrate the results for two-layer shallow water flows
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Table 1: Errors for the accuracy test problem using different meshes.

M L1−error rate L2−error rate L∞−error rate

300 4.6141E-04 — 5.8592E-03 — 1.7599E-01 —

600 1.8703E-04 1.30 2.6415E-03 1.14 9.2250E-02 0.93

1200 8.5993E-05 1.12 1.2961E-03 1.07 5.5999E-02 0.72

2400 3.6363E-05 1.24 5.5354E-04 1.22 1.9296E-02 1.53

on both flat and non-flat bottom beds. As with all explicit time stepping methods the theo-
retical maximum stable time step is specified according to the Courant-Friedrichs-Lewy (CFL)
condition

∆t = Cr
∆x

max
k=1,...,4

(
|λn

k |
) . (20)

where λn
k are the approximated eigenvalues in (11) and Cr is a constant to be chosen less than

unity. In all the computations reported herein, the Courant number Cr is set to 0.7 and the
time stepsize ∆t is adjusted at each step according to the stability condition (20).

For comparison reasons, we also compare the results obtained using our composite SRNHS-
F(k) scheme to those obtained using the composite LFAD2 and LWLF4 methods proposed in
[13]. Here, LFAD2 stands for the Lax-Friedrichs with the anti-diffusion is applied every second
time step whereas, LWLF4 refers to the composite Lax-Wendroff Lax-Friedrichs method with a
filtering procedure. This filter in LWLF4 is carried out by replacing every fourth Lax-Wendroff
step with a Lax-Friedrichs step. More details on these methods can be found in [13] and will
not be repeated here.

3.1 Accuracy test problem

We check the accuracy of the proposed composite method for the canonical shallow water
equations proposed in [13] for validating two-layer computations. We solve the equations on a
fixed bottom topography defined as

Z(x) ==

bc

(
1− x2

a2

)
, if − a ≤ x ≤ a,

0, otherwise,

where bc = 0.65, a = 40 and g = 1 in our simulations. At time t = 0, we set h + Z = 1,
u = 0.7 and we present numerical results at time t = 20. In Figure 2 we present the obtained
results for the water free-surface at t = 20 using different meshes for the SRNHS-F(2) scheme.
As can be seen from the presented results, the moving shock and the rarefaction wave are well
resolved by the SRNHS-F(2) scheme. It is clear that for M = 300 and M = 600, the numerical
diffusion is very pronounced in the numerical solutions. This excessive numerical dissipation
has been successfully removed in the water height by increasing the values of M up to 2400 for
which the shock and rarefaction are better solved by SRNHS-F(2) scheme. Needless to mention
that increasing the number of cells M results in an increase of the computational cost in the
SRNHS-F(2) method. For the considered number of control volumes M = 300, M = 600,
M = 1200 and M = 2400 the required CPU time in the SRNH-F(2) method is 0.469, 1.141,
4.297 and 14.672 seconds, respectively.
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Figure 2: Water free-surface for the accuracy test problem using different meshes.

To quantify the errors in our method a reference solution is computed using LWLF2 on a
fine mesh with 4800 control volumes. The obtained results for the L1−, L2− and L∞−error in
the water free-surface are listed in Table 1 along with their corresponding convergence rates. It
reveals that increasing the number of control volumes in the computational domain results in
a decay of all errors. Our composite method SRNHS-F(2) exhibits good convergence behavior
for this shallow water problem. As can be seen from the convergence rates presented in Table 1,
a first-order accuracy is achieved for this test example in terms of the considered error norms.
It is worth to remark that the conclusion from the errors in Table 1 is the fact that although
the SRNHS method is second-order accurate the nonlinear filter reduces the convergence rate
of the composite scheme to a first-order accuracy.

Next we show the effect of the lost of hyperbolicity on the results computed with our
composite SRNHS-F(2) scheme. To this end we consider a test example studied in [2] where we

solve the two-layer shallow water on a flat bottom using a density ratio
ρ1
ρ2

= 0.98 and g = 9.81.

As initial conditions, we set u1(x, 0) = 0.6, u2(x, 0) = −0.6,

h2(x, 0) =


0.5 + 0.01

(
1 + cos(

(x− 0.5)π

0.1
)

)
, if |x− 0.1| < 5,

0.5, if |x− 0.1| > 5,

and h1(x, 0) + h2(x, 0) = 1. The computational domain [0, 10] is discretized into 1000. The
obtained results for the water heights are illustrated in Figure 3 at time t = 1. The oscillatory
behavior in the results in the central region of the computational domain is to be attributed
to the lost of the hyperbolocity in the two-layer shallow water system with the considered
density ratio. Indeed, for the considered density ratio, the first-order approximation (5) for
the eigenvalues gives complex values and as a consequence, the hyperbolicity of the two-layer
system is lost. Although, this example is not physical, the presented results show that the
composite method will not break down when it eventually finds complex eigenvalues in other
examples.
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Figure 3: Water heights for the test problem with complex eigenvalues.

3.2 Interface propagation problem

We consider the interface propagation problem studied in [2, 5]. Here we solve the frictionless
two-layer shallow water equations (1) in the domain [0, 10] with flat bottom. Initially,

(h1(x, 0), h2(x, 0))
T =

(0.2, 1.8)T , if x < 5,

(1.8, 0.2)T , if x > 5,
u1(x, 0) = u2(x, 0) = 0.

The gravitational constant g = 9.81 and the computational domain is discretized into 500
gridpoints. Note that we have imposed initially a jump at the interface, while still having the
total water height constant. In Figure 4 we illustrate the water free-surface and the water
velocity for ρ1/ρ2 = 0.7 at time t = 1. Figure 5 exhibits the results obtained for ρ1/ρ2 = 0.98
at t = 5. As expected the numerical solution of this problem consists of three constant states
connected by two rarefaction waves and two shocks. Observe that increasing the density ratio
r from 0.7 to 0.98 results in the elimination of shocks in the water free-surface. As can be seen
from the numerical results presented in Figure 4 and Figure 5, the LFAD2 and LWLF4 methods
produce diffusive results. For the considered conditions, the proposed composite method is more
accurate than the LFAD2 and LWLF4 methods. No oscillations or smearing of shocks have been
detected in the computed results. The results depicted in Figure 4 and Figure 5 also show good
agreement with those reported in [2, 5]. As can be seen, good behavior is recovered by the
composite method for the considered flow conditions in the system (1) without any significant
loss of accuracy. The performance of the composite method is very attractive since the computed
solutions remain stable and accurate without requiring complicated reconstruction of numerical
fluxes.
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Figure 4: Water free-surface (left) and the water velocity (right) for the interface propagation
problem using ρ1/ρ2 = 0.7 at time t = 1.
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Figure 5: Water free-surface (left) and the water velocity (right) for the interface propagation
problem using ρ1/ρ2 = 0.98 at time t = 5.

3.3 Internal dam-break problem

This example solves a problem of internal dam-break modeled by the frictionless two-layer
shallow water equations (1) subject to the following initial conditions

(h1(x, 0), h2(x, 0))
T =

(0.6, 0.4)T , if x < 5,

(0.4, 0.6)T , if x > 5,
u1(x, 0) = u2(x, 0) = 0.

The equations are solved in the interval [0, 10] discretized into 1000 gridpoints and the gravi-
tational constant g = 9.81. As in the previous test example, we have imposed initially a jump
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at the interface, while still having the total water height constant. Figure 6 presents the water
height and water interface at time t = 10 using ρ1/ρ2 = 0.98. The proposed composite method
accurately resolves this internal dam-break problem without exhibiting nonphysical oscillations.
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Figure 6: Water free-surface (left) and the water interface (right) for the internal dam-break
problem using ρ1/ρ2 = 0.98 at time t = 10.

3.4 Flow over a non-flat bottom

To investigate the ability of our composite method to preserve the correct dynamics solutions,
we apply the scheme to a test problem of flow over a non-flat bottom. In this test example the
computational domain is [−20, 20] and the bottom topography Z is defined as

Z(x) =

bc

(
1− x2

a2

)
, if − a ≤ x ≤ a,

0, otherwise.

(21)

The purpose of this test example is to compare the results obtained using the two-layer equations
to those obtained using the standard single-layer shallow water equations. Hence, the two-layer
shallow water model (1) is solved using the same densities ρ1 = ρ2 in both layers and initially,

h2(x, 0) =
(1 + bc)

2
− Z(x), h2(x, 0) = 1, u1(x, 0) = u2(x, 0) = 0.

It should be pointed out that if the velocities of both layers remain the same u1 = u2 then the
two-layer shallow water model has to produce the same results as the single-layer shallow water
model.

In Figure 7 we show the comparative results for the two-layer and one-layer shallow water
models on the computational domain [−20, 20] discretized into 1000 cells using bc = 0.2, u0 = 1
and at times t = 5, 10 and 20. Both the two-layer and one-layer models were solved using
LWLF4, SRNHS F(2) and LWLF4 methods which give results with negligible difference. All
the considered method capture the hydraulic jump in the computed water free-surface without
exhibiting non-physical spurious oscillations. The obtained results also show good agreement
for the upper water surface obtained by the one-layer and two-layer models.
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Figure 7: Comparison of water heights for two-layer and single-layer shallow water models in
the example of flow over a non-flat bottom at different times.

3.5 Two-layer flow over a hump

We consider an example of two-layer flow over a hump studied in [13, 18]. Here, we solve the
frictionless two-layer equations (1) over a hump defined by (21) with bc = 0.8, the gravitational
constant g = 1, the density ratio is r = 0.8, and the initial water heights and velocities

h2 (x, 0) = 1− Z(x), h1 (x, 0) = 1, u1 (x, 0) = u2 (x, 0) = u0.

The equations are solved in the domain [−20, 20] discretized into 1500 cells. In Figure 8 we
compare the results obtained using the composite scheme without and with the nonlinear filter.
As expected, the nonlinear filter method has been successful in eliminating the nonphysical
oscillations near regions of large gradients. It is seen that for the considered flow conditions, the
proposed composite scheme accurately resolves the two-layer shallow water flows over non-flat
bottom beds. Figure 9 displays the results obtained at time t = 15 using the composite scheme
and the LFAD2 and LWLF4 methods. Those results obtained at time t = 60 are presented
in Figure 10. For better sight we also include a zooming over the hump in this figure. It is
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Figure 8: Comparison between results obtained without the filter (left) and with the filter
(right) for the two-layer flow over a hump at time t = 15.
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Figure 9: Initial water heights (left) and the computed water heights at time t = 15 (right) for
the two-layer flow over a hump.

clear from the results presented in this figure that the numerical diffusion is more pronounced
in the results obtained using the LFAD2 and LWLF4 methods, compare the hydraulic jumps.
Apparently, the overall flow features for this example are preserved with no spurious oscillations
appearing in the results obtained using the composite scheme. Obviously, the computed results
verify the stability and the shock capturing properties of the proposed nonlinear filter.

3.6 Wind-driven flow problem

To examine the performance of the proposed composite method we consider a test example of
two-layer wind-driven flow problem in a lake with non-flat topography studied in [14]. The lake
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Figure 10: Water heights at time t = 60 (left) and a zoom over the hump (right) for the
two-layer flow over a hump.

is of length 2000 m and the bed consists of four bumps defined as

Z(x) =
4∑

k=1

Akexp

(
−
(
x− xk
100

)2
)
,

where A1 = A3 = 0.5, A2 = 1,A4 = 0.25, x1 = 500 m, x2 = 800 m, x3 = 1100 m and
x4 = 1400 m. Initial water level and initial velocity are given as

h2 (x, 0) = 4− Z(x), h1 (x, 0) = 6.75− h2 (x, 0)− Z(x),

u1 (x, 0) = u2 (x, 0) = 0.

The selected values for the evaluation of the present method SRNHS-F(0) with r = 0.8 are
ρa = 1.2 kg/m3, g = 9.81 m/s2 and nb = 0.035 s/m1/3. Depending on the wind conditions,
two situations are simulated namely:

(i) Wind blowing from the east corresponding to (ω = −2.1 m/s).

(ii) Wind blowing from the west corresponding to (ω = 2.1 m/s).

The computational domain is discretized in 500 gridpoints and the computed water free-surface
and velocity fields are illustrated at four different instants t = 250 s, t = 500 s, t = 1000 s and
t = 2000 s. In Figure 11 we present numerical results for the water free-surface and the water
velocity obtained using conditions for the wind blowing from the west. Those results obtained
for the wind blowing from the east are displayed in Figure 12. In Figure 11 and Figure 12, we
also show the topography used in the lake. It is clear that using the considered wind conditions
in the two-layer shallow water flow example, the flow exhibits a hydraulic jump with different
order of magnitudes near the center of the lake. At the beginning of simulation time, the
water flow enters the lake from the eastern boundary and flows towards the eastern exit of the
lake. At later time, due to wind effects, the water flow changes the direction pointing towards
the eastern coast of the lake. Note that this recirculation features of the water flow can not
be captured using the conventional single-layer shallow water equations. A periodic behavior
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Figure 11: Water free-surface (left column) and water velocity (right column) for blowing wind
from the west at four simulation times.

18



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

Distance x

W
at

er
 h

ei
gh

ts

t = 250 s

 

 

Free−surface h
1
+h

2
+B

Interface h
2
+B

Bed B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Distance x

W
at

er
 v

el
oc

iti
es

t = 250 s

 

 

Upper layer
Lower layer

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

Distance x

W
at

er
 h

ei
gh

ts

t = 500 s

 

 

Free−surface h
1
+h

2
+B

Interface h
2
+B

Bed B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Distance x

W
at

er
 v

el
oc

iti
es

t = 500 s

 

 

Upper layer
Lower layer

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

Distance x

W
at

er
 h

ei
gh

ts

t = 1000 s

 

 

Free−surface h
1
+h

2
+B

Interface h
2
+B

Bed B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Distance x

W
at

er
 v

el
oc

iti
es

t = 1000 s

 

 

Upper layer
Lower layer

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

Distance x

W
at

er
 h

ei
gh

ts

t = 2000 s

 

 

Free−surface h
1
+h

2
+B

Interface h
2
+B

Bed B

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Distance x

W
at

er
 v

el
oc

iti
es

t = 2000 s

 

 

Upper layer
Lower layer

Figure 12: Water free-surface (left column) and water velocity (right column) for blowing wind
from the east at four simulation times.
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is also detected for the considered two-layer shallow water flow problem subject to the wind
blowing from the east and west. These results also show good agreement with those reported
in [14]. The proposed composite method performs very satisfactorily for this test problem since
it does not diffuse the moving fronts and no spurious oscillations have been detected near steep
gradients of the flow field in the computational domain.

4 Conclusions

In this paper we have proposed a new composite scheme for the two-layer shallow water flows
with shocks. The proposed finite volume method is a time-splitting procedure and it consists
of two stages which can be viewed as a predictor-corrector procedure. In the first stage, the
scheme reconstructs the numerical fluxes using the sign matrix of the flux Jacobian in the
homogeneous system. In the second stage, the solution is updated using a nonlinear filter in
order to obtain a non-oscillatory discretization of the flux gradients and simple treatment of the
source terms. Numerical results and applications have been illustrated for several test problems
for two-layer shallow water flows on both flat and non-flat bottom beds. The presented results
demonstrate the accuracy of the new finite volume method and its capability to simulate water
flows in the hydraulic regimes considered. The results make it promising to be applicable also
to real situations where, beyond the many sources of complexity, there is a more severe demand
for accuracy in predicting the two-layer shallow water flows, which must be performed for long
time. Future work will concentrate on developing efficient time integration schemes for the finite
volume discretization and extension of this approach to two-layer shallow water flow problems
in two space dimensions.
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