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Abstract

A robust solver is proposed for the numerical solution of density-driven multi-layer
shallow water flows. The governing equations consist on coupling the multi-layer
shallow water equations for the hydraulic variables with suspended sediment trans-
port equations for the concentration variables. The layers can be formed in the
shallow water model based on the variation of water density which may depend
on the water temperature and salinity. At each time step, the method consists of
two stages to update the numerical solution. In the first stage, the multi-layer shal-
low water equations are rewritten in a non-conservative form and the intermediate
solutions are calculated using the modified method of characteristics. In the sec-
ond stage, the numerical fluxes are reconstructed from the intermediate solutions
in the first stage and used in the conservative form of the multi-layer shallow water
equations. The proposed method avoids Riemann problem solvers and it is suitable
for multi-layer shallow water equations on non-flat topography. Several numerical
results are presented to illustrate the performance of the proposed finite volume
method. The computed results confirm its capability to solve multi-layer shallow
water equations for density-driven flows over flat and non-flat bottom topography.

Key words: Multi-layer shallow water equations, Density-driven flows, Finite
volume method, Modified method of characteristics

1 Introduction

Mathematical modelling of water flows in the hydraulics and oceanic systems is
based on the formulation and solution of the appropriate equations of continu-
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ity and motion of water. In general, water flows represent a three-dimensional
turbulent Newtonian flow in complicated geometrical domains. The cost of
incorporating three-dimensional data in natural water courses is often ex-
cessively high. Computational efforts needed to simulate three-dimensional
turbulent flows can also be significant. In view of such considerations, many
researchers have tended to use rational approximations in order to develop
two-dimensional hydrodynamical models for shallow water flows. Indeed, un-
der the influence of gravity, many free-surface water flows can be modelled
by the shallow water equations with the assumption that the vertical scale is
much smaller than any typical horizontal scale. These equations can be derived
from the depth-averaged incompressible Navier-Stokes equations using appro-
priate free-surface and boundary conditions along with a hydrostatic pressure
assumption. The shallow water equations in depth-averaged form have been
successfully applied to many engineering problems and their application fields
include a wide spectrum of phenomena other than water waves. For instance,
the shallow water equations have applications in environmental and hydraulics
engineering such as tidal flows in an estuary or coastal regions, rivers, reser-
voir and open channel flows. Such practical flow problems are not trivial to
simulate since the geometry can be complex and the topography irregular.
However, single-layer shallow water equations have the drawback of missing
some physical dynamics in the vertical motion. Therefore, during the last
decades, multi-layer shallow water models have been attracted more attention
and have became a very useful tools to solve hydrodynamical flows such as
rivers, estuaries, bays and other nearshore regions where water flows interact
with the bed geometry and wind shear stresses, see for instance [4,6,2]. The
main advantage of these models is the fact that the multi-layer shallow wa-
ter model avoids the expensive three-dimensional Navier-Stokes equations and
obtains stratified horizontal flow velocities as vertical velocities are relatively
small and the flow is still within the shallow water regime.

The multi-layer models studied in [4,6] among others, account only for the
vertical variation of the density between the water layers. This makes their
application very restrictive and can not be used to model density-driven flows
where a horizontal variation in the water density is required for their dynamics.
Recently, a single-layer model has been presented in [5] for shallow water flows
with variable horizontal density. It has been shown in [5] that the governing
equations form a hyperbolic system of conservation laws and can be used to
model dam-break type problems where the water dynamics is controlled by
the variation of water densities rather than the variation in water heights. The
drawback of this model remains the failure to capture the vertical effects in
the water dynamics. This water dynamics is refereed to by density-driven flow
and it occurs in many applications such as ocean circulation, incursion of salty
water in rivers at the sea-river intersections, and lock-exchange hydraulics for
water bodies at different temperature. Our objective in this study is therefore,
to develop a multi-layer model for shallow water flows with variable horizontal
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or/and vertical density. It should be stressed that a multi-layer model for
shallow water flows with variable density has been recently proposed in [1].
The model uses a single variable to represent the water height in the system.
This fact limits the application of the model in [1] since the formation of the
layers is artificial and has to exactly follow the bed profile. In our model we use
different water density and water height at each layer, and it can be applied
to arbitrary number and profile of the layers in the considered water system.

Numerical treatment of the multi-layer shallow water equations often presents
difficulties due to their nonlinear form, presence of the source terms, coupling
between the free-surface equation and the equations governing the water flow,
compare [6,1] among others. In addition, the difficulty in these models comes
from the coupling terms involving some derivatives of the unknown physical
variables that make the system non-conservative and possibly non-hyperbolic.
Due to these terms, a numerical scheme originally designed for single-layer
shallow water equations will lead to instabilities when it is applied to each layer
separately. In the present work we extend the finite volume modified method
of characteristics developed by the authors in [3] to solve the density-driven
multi-layer shallow water flows. The method avoids the solution of Riemann
problems and belongs to the predictor-corrector type methods. The predictor
stage uses the method of characteristics to reconstruct the numerical fluxes
whereas, the corrector stage recovers the conservation equations. The proposed
method is simple, conservative, non-oscillatory and suitable for multi-layer
shallow water equations for which Riemann problems are difficult to solve.
Numerical examples are presented to verify the considered multi-layer shallow
water model. We demonstrate the model capability of calculating lateral and
vertical distributions of velocities for density-driven multi-layer shallow water
flow on flat bottom and over a hump.

The organization of the present paper is as follows. In section 2 we first give
a brief description of the model employed for the multi-layer shallow water
equations in density-driven flows. We then formulate the finite volume mod-
ified method of characteristics for the governing equations in section 3. This
section includes the reconstruction of the numerical fluxes and the discretiza-
tion of the source terms. Numerical results are presented in section 4 for sev-
eral test examples in density-driven multi-layer shallow water flows. Section 5
contains concluding remarks and remarks about future work.

2 Equations for density-driven multi-layer shallow water flows

In the current study we are interested on density-driven flows occurring on
the water free-surface where assumptions of shallow water flows applied. We
consider the one-dimensional multi-layer shallow water equations written in a
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Fig. 1. Schematic of a multi-layer shallow water equations.

conservative form as

∂t (ρjhj) + ∂x (ρjhjuj) = 0,

∂t (ρjhjuj) + ∂x

(
ρjhju

2
j +

1

2
gρjh

2
j

)
= −gρjhj∂xZ− (1)

gρjhj

j−1∑

k=1

∂xhk − ghj

M∑

k=j+1

∂x (ρkhk) ,

where j = 1, . . . , M , with M is the total number of layers, ρj is the water
density of the jth layer, hj(t, x) is the water height of the jth layer, uj(t, x) is
the local water velocity for the jth layer, Z(x) is the bottom topography and
g the gravitational acceleration, see Figure 1 for a simplified representation.
For two layers with constant density ρ1 and ρ2, the equations (1) reduce to the
standard two-layer shallow water equations studied for example in [6]. In the
current work, we assume that a sediment transport takes place such that the
density depends on space and time variables, i.e., ρj = ρj(t, x). This requires
additional equations for its evolution. Here, the equations used to close the
system are given by

ρj = ρw +
(
ρsj

− ρw

)
cj, j = 1, . . . , M, (2)

where ρsj
is the sediment density with ρsj

> ρw, and cj is the depth-averaged
concentration of the suspended sediment for the jth layer. The equation for
mass conservation of species is modeled by

∂t

(
ρsj

hjcj

)
+ ∂x

(
ρsj

hjujcj

)
= 0, j = 1, . . . , M. (3)

For simplicity in presentation we rewrite the equations (1) and (3) in a compact
conservative form as

∂tW + ∂xF(W) = Q(W), (4)

where W is the vector of conserved variables, F the vector of flux functions
and Q is the vector of source terms. For single-layer flows with variable density,
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the equation (4) leads to the model for shallow water flows with variable hor-
izontal density studied in [5]. Another multi-layer shallow water system with
variable density has also been presented in [1]. This model does not account
for conservation of species (3) and uses instead a Boussinesq approximation
for dependence of the density on the temperature.

An equivalent system to the water flow equations (1) and the suspended sed-
iment equations (3) can be obtained by using the physical variables as

D
(j)
t (ρjhj) + ρjhj∂xuj = 0,

D
(j)
t uj + g∂x


Z +

1

2
hj +

j−1∑

k=1

hk


 =− g

ρj

∂x


1

2
ρjhj +

M∑

k=j+1

(ρkhk)


 , (5)

D
(j)
t ρj = 0, j = 1, . . . , M,

where D
(j)
t denotes the total derivative defined as

D
(j)
t ω = ∂tω + uj∂xω, j = 1, . . . ,M. (6)

Note that D
(j)
t ω measures the rate of change of the function ω following the

trajectories of the flow particles in the jth layer. We should also emphasize
that it is not easy to confirm the hyperbolicity of the system (4). In the case
of its single-layer counterpart, the authors in [5] have calculated the three
eigenvalues of the system. The two-layer system with constant density is only
conditionally hyperbolic, see for example [4,6] whereas, the multi-layer system
with constant density in [1] is proven to be hyperbolic only for the two-layer
case. It is worth remarking that the finite volume modified method of charac-
teristics proposed in this paper does not require the explicit calculation of the
eigenvalues of (4) and can be applied for arbitrary number M of the layers.
In what follows we describe the different steps of the proposed finite volume
modified method of characteristics.

3 Modified finite volume method of characteristics

Let us discretize the spatial domain into control volumes [xi−1/2, xi+1/2] with
uniform size ∆x = xi+1/2 − xi−1/2 and divide the temporal domain into
subintervals [tn, tn+1] with stepsize ∆t. Here, tn = n∆t, xi−1/2 = i∆x and
xi = (i + 1/2)∆x is the center of the control volume. Integrating the sys-
tem (4) with respect to space and time over the time-space control volume
[tn, tn+1]× [xi−1/2, xi+1/2] we obtain the following semi-discrete equations

Wn+1
i = Wn

i −∆t
Fn

i+1/2 −Fn
i−1/2

∆x
+ ∆tQn

i , (7)
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where Wn
i is the space average of the solution W in the control volume

[xi−1/2, xi+1/2] and at time tn, i.e.,

Wn
i =

1

∆x

∫ xi+1/2

xi−1/2

W(tn, x) dx,

and Fn
i±1/2 = F(Wn

i±1/2) are the numerical fluxes at cell interfaces x = xi±1/2

and time tn. In (7), Qn
i is the difference notation for the discretized source

terms Q(Wi) in (4). It should be pointed out that as with all explicit time
stepping methods the theoretical maximum stable time step ∆t is specified
according to the Courant-Friedrichs-Lewy (CFL) condition

∆t = Cr
∆x

max
j=1,...,M

(∣∣∣λn
j

∣∣∣ ,
∣∣∣µn

j

∣∣∣ ,
∣∣∣νn

j

∣∣∣
) , (8)

where Cr is a constant to be chosen less than unity and λj, µj and νj are the
eigenvalues associated with each layer separately defined as

λj = uj −
√

ghj, µj = uj, νj = uj +
√

ghj, j = 1, 2, . . . M.

The spatial discretization of the equation (7) is complete when a numerical
construction of the numerical fluxes Fn

i±1/2 and source terms Qn
i is chosen. In

general, the construction of the numerical fluxes requires a solution of Rie-
mann problems at the interfaces xi±1/2. From a computational viewpoint, this
procedure is very demanding and may restrict the application of the method
for which Riemann solutions are not available. Our objective in the present
work is to extend a finite volume modified method of characteristics (FVC)
proposed by the authors to solve canonical single-layer shallow water equa-
tions in [3] to the density-driven flow system (4). The FVC method is simple,
easy to implement, and accurately solves the conservation equations without
relying on Riemann problem solvers. The central idea of the FVC method
consists of reconstructing the numerical fluxes Fn

i±1/2 by integrating the ad-
vective system (5) along the characteristics defined by the water velocity at
each layer. In this section we give a brief description of the FVC method for
solving the system (4) and the reader is urged to see our previous work in [3]
for detailed formulation and analysis of the FVC method.

3.1 Discretization of the flux gradients

To reconstruct the numerical fluxes Fn
i±1/2 in (7), we consider the method of

characteristics applied to the advective version of the system (5). The main
idea behind the method of characteristics is to impose a regular grid at the
new time level, and to backtrack the flow trajectories to the previous time
level. At the old time level, the quantities that are needed are evaluated by
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δ
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Fig. 2. A schematic diagram showing the control volumes and the main quantities
used in the calculation of the departure points. The exact trajectory is represented
by a solid line and the approximate trajectory with a dashed line.

interpolation from their known values on a regular grid, see for example [9,8].
Thus, the characteristic curves associated with the equation (5) are solutions
of the initial-value problem

dXj,i+1/2(τ)

dτ
= uj,i+1/2

(
τ, Xj,i+1/2(τ)

)
, τ ∈ [tn, tn + ∆t/2] ,

(9)
Xj,i+1/2(tn + ∆t/2) = xi+1/2, j = 1, 2, . . . , M.

Note that Xj,i+1/2(τ) is the departure point at time τ of a particle that will
arrive at point xi+1/2 in time tn + ∆t/2. The method of characteristics does
not follow the flow particles forward in time, as the Lagrangian schemes do,
instead it traces backward the position at time tn of particles that will reach
the points of a fixed mesh at time tn + ∆t/2. By doing so, the method avoids
the grid distortion difficulties that the conventional Lagrangian schemes have,
see for instance [9,8]. The solutions of (9) can be expressed as

Xj,i+1/2(tn) = xi+1/2 −
∫ tn+∆t/2

tn
uj,i+1/2

(
Xj,i+1/2(τ)

)
dτ,

(10)
= xi+1/2 − δj,i+1/2, j = 1, 2, . . . , M.

It is worth remarking that the departure points in (10) are calculated in the
interval [tn, tn + ∆t/2] instead of [tn, tn+1]. This is motivated by the idea of
reconstructing a predictor-corrector scheme where the predictor stage is com-
puted at the fractional time tn+∆t/2 completed by a corrector stage computed
at the end time tn+1. This fractional time stepping is also supported by the
analysis reported in [3].
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To compute the displacement δj,i+1/2 in (10) we consider the following iteration

δ
(0)
j,i+1/2 =

∆t

2
uj,i+1/2

(
tn, xi+1/2

)
,

(11)

δ
(m)
j,i+1/2 =

∆t

2
uj,i+1/2

(
tn, xi+1/2 − δ

(m−1)
j,i+1/2

)
, m = 1, 2, . . . .

The iterations (11) are terminated when the following criteria
∥∥∥δ(m)

j − δ
(m−1)
j

∥∥∥
∥∥∥δ(m−1)

j

∥∥∥
< ε, (12)

is fulfilled for the L∞-norm ‖ · ‖ and a given tolerance ε. It is also known [7]
that

∥∥∥δj − δ
(m)
j

∥∥∥ ≤ ∆t

8

∥∥∥δj − δ
(m−1)
j

∥∥∥ max
j=1,...,M

(|∂xuj|) , m = 1, 2, . . . . (13)

Hence, a necessary condition for the convergence of iterations (11) is that the
velocity gradient satisfies

max
j=1,...,M

(|∂xuj|) ∆t ≤ 8. (14)

Note that the condition (14) is sufficient to guarantee that the characteristics
curves do not intersect during a time step of size ∆t/2. A schematic represen-
tation of the quantities involved in computing the departure points is shown
in Figure 2.

Once the characteristics curves Xj,i+1/2(tn) are known, a solution at the cell
interface xi+1/2 is reconstructed as

ωn
j,i+1/2 = ωj

(
tn + ∆t/2, xi+1/2

)
,

= ωj

(
tn, Xj,i+1/2(tn)

)
,

:= ω̃n
j,i+1/2, (15)

where ω̃n
j,i+1/2 is the solution at the characteristic foot Xj,i+1/2(tn) computed

by interpolation from the gridpoints of the control volume where the departure
point resides i.e.

ω̃n
j,i+1/2 = P

(
ωj

(
tn, Xj,i+1/2(tn)

))
, (16)

where P represents the interpolating polynomial. For instance, a Lagrange-
based interpolation polynomials can be formulated as

P
(
ωj

(
tn, Xi+1/2(tn)

))
=

∑

k

Lk

(
Xj,i+1/2(tn)

)
ωn

j,k, (17)
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with Lk are the Lagrange basis polynomials given by

Lk(x) =
∏
q=0
q 6=k

x− xq

xk − xq

.

Note that other interpolation procedures in (16) can also be applied. It should
also be stressed that in general, the method of characteristics fails to conserve
mass, compare [8] and further references are therein. However, in our FVC
method the mass lost in the predictor step for calculating the intermediate
stages Wn

i±1/2 will be recovered in the corrector step (7). It is evident from
the formulation (7) that the FVC method is mass conservative.

3.2 Discretization of the source terms

Applied to the equations (5), the characteristic solutions are given by

rn
j,i+1/2 = r̃n

j,i+1/2 −
ν

2
r̃n
j,i+1/2

(
un

j,i+1 − un
j,i

)
,

un
j,i+1/2 = ũn

j,i+1/2 −
ν

2
g





Z +

1

2
hj +

j−1∑

k=1

hk




i+1

−

Z +

1

2
hj +

j−1∑

k=1

hk




i




(18)

− ν

2

g

ρ̃n
j,i+1/2





1

2
ρjhj +

M∑

k=j+1

(ρkhk)




i+1

−

1

2
ρjhj +

M∑

k=j+1

(ρkhk)




i


 ,

ρn
j,i+1/2 = ρ̃n

j,i+1/2, j = 1, . . . , M,

where rj = ρjhj, ν = ∆t
∆x

, r̃n
j,i+1/2, ũn

j,i+1/2 and ρ̃n
j,i+1/2 are the solutions at the

characteristic foot computed by interpolation from the gridpoints of the con-
trol volume where the departure points Xj,i+1/2(tn) are located. The numerical
fluxes Fi±1/2 in (7) are calculated using the intermediate states Wn

i±1/2 recov-
ered accordingly from the characteristic solutions in (18). Hence, the FVC
method (7) reduces to

rn+1
j,i = rn

j,i − ν
(
(rjuj)

n
i+1/2 − (rjuj)

n
i−1/2

)
,

qn+1
j,i = qn

j,i − ν




[
ρjhju

2
j +

1

2
gρjh

2
j

]n

i+1/2
−

[
ρjhju

2
j +

1

2
gρjh

2
j

]n

i−1/2




− 1

2
νgr̂n

j,i





Z +

j−1∑

k=1

hk




i+1

−

Z +

j−1∑

k=1

hk




i−1


 , (19)

− 1

2
νgĥn

j,i







M∑

k=j+1

(ρkhk)




i+1

−



M∑

k=j+1

(ρkhk)




i−1


 ,

σn+1
j,i = σn

j,i − ν
(
(σjuj)

n
i+1/2 − (σjuj)

n
i−1/2

)
,
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where rj = ρjhj, qj = rjuj and σj = ρsj
hjcj, with j = 1, . . . , M . In our

FVC method, the reconstruction of the terms ĥn
j,i and r̂n

j,i in (19) are carried
out such that the discretization of the source terms is well balanced with the
discretization of flux gradients using the same concept as in [3] by

ĥn
j,i =

1

4

(
hn

j,i+1 + 2hn
j,i + hn

j,i−1

)
, r̂n

j,i =
1

4

(
rn
j,i+1 + 2rn

j,i + rn
j,i−1

)
.

In summary, the implementation of FVC algorithm to solve the density-driven
multi-layer shallow water equations (4) is carried out in the following steps.

Given
(
hn

j,i, q
n
j,i, σ

n
j,i

)
, we compute

(
hn+1

j,i , qn+1
j,i , σn+1

j,i

)
via:

Step 1. Calculate the departure points Xj,i+1/2(tn), with j = 1, . . . , M using
the iterative procedure (10)-(11).

Step 2. Compute the approximations

h̃n
j,i+1/2 = hj

(
tn, Xj,i+1/2(tn)

)
, ũn

j,i+1/2 = uj

(
tn, Xj,i+1/2(tn)

)
,

ρ̃n
j,i+1/2 = ρj

(
tn, Xj,i+1/2(tn)

)
,

employing an interpolation procedure.
Step 3. Evaluate the intermediate states rn

j,i+1/2, un
j,i+1/2 and ρn

j,i+1/2 from the
predictor stage (18).

Step 4. Update the species concentration cn
j,i+1/2 using the equation (2) as

cn
j,i+1/2 =

ρn
j,i+1/2 − ρw

ρsj
− ρw

.

Step 5. Compute the conservation solutions rn+1
j,i , qn+1

j,i and σn+1
j,i using the

corrector stage (19).

Note that other interpolation procedures in Step 2 can also be applied. In our
simulations we have used a linear interpolation since for this type of interpola-
tions the obtained solution remains monotone and the FVC method preserves
the exact water equilibrium at the machine precision, compare [3].

4 Numerical results and applications

In this section we present numerical results obtained for two test examples
for density-driven shallow water flows over both a flat and a non-flat bottom.
The main goals of this section are to illustrate the numerical performance of
the FVC method described above and to verify numerically its capabilities to
solve shallow water flows with variable density on a non-flat bottom. In all
the computations reported herein, the gravity acceleration g = 9.81 m/s2, the
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Fig. 3. Configuration for the flow system used in the simulations.

Courant number Cr is set to 0.5 and the time stepsize ∆t is adjusted at each
step according to the CFL condition (8).

We consider a test example of multi-layer density-driven flow problem in a
rectangular channel of length 100 m, see Figure 3 for a sketch. The total water
height in the channel is set to H = 10 m and discretized into M superposed
layers such that the first 4 layers are selected to be within a height b = 3 m
close to the bottom i.e.

hj(t, x) =





b− Z(x)

4
, if j ≤ 4,

H − b

M − 4
, otherwise.

(20)

For the water density distribution we assume horizontal and vertical variations
are taken place in the channel. As shown in Figure 3, the discontinuity in the
water densities is located at a parabolic interface y(x) defined by

y(x) = 0.03x2 + 0.01x− 8.

Thus, given the left upper density ρU
L = 900 kg/m3, the right upper ρU

R =
1010 kg/m3, the left lower density ρL

L = 990 kg/m3 and the right lower density
ρL

R = 1100 kg/m3, the initial water density ρj(t, x) at each layer j is given by

ρj(t, x) =





ρL
L − (j − 1)∆ρL, if x < y(x),

ρL
R − (j − 1)∆ρR, if x > y(x),

(21)
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Fig. 4. Initial water densities (top) and water heights (bottom) for the 5-layer model
(left) 10-layer model (middle) and 20-layer model (right) on a flat bottom.

where the density increments ∆ρL and ∆ρR are defined as

∆ρL =
ρL

L − ρU
L

M − 1
, ∆ρR =

ρL
R − ρU

R

M − 1
.

This variation in the water density can be interpreted by the variation of wa-
ter temperature or water salinity with the water depth in the channel and
as a consequence the main flow is governed by the density variation. In our
simulations, the computational domain is discretized into 100 control volumes
and wall boundary conditions are implemented. The system is assumed to be
at rest and at t = 0 the interface collapses and the flow problem consists
of a shock wave traveling downstream and a rarefaction wave traveling up-
stream. These flow features are well-established for the canonical dam-break
flow problems.

4.1 Density-driven flow on a flat bottom

First we present numerical results obtained on flat bottom i.e. Z(x) = 0.
In Figure 4 we display the initial conditions for water densities and water
heights associated with 5-layer, 10-layer and 20-layer shallow water models.
We have used different color scales to differentiate between the layers with a
darker color refers to the layers close to the channel bed. We apply the multi-
layer shallow equations (4) to these initial conditions and numerical results
are displayed at three different instants namely, t = 30 s, 120 s, and 240 s.
Figure 5 presents the results obtained for the 5-layer model. Those results
obtained for the 10-layer and 20-layer models are illustrated in Figure 6 and
Figure 7, respectively. In these figures we show the snapshots of the water
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Fig. 5. Water densities (top), water heights (middle) and velocity fields (bottom)
for the 5-layer model on a flat bottom. From left to right t = 30 s, 120 s, and 240 s.

densities, water heights and water velocity fields. It should be stressed that
for the presented velocity fields, the vertical velocity is calculated using the
divergence-free condition in the flow system along with the method described
in [2].

For all considered layers, we observe that the variation in the water density re-
sults in moving fronts with different speeds and different amplitudes traveling
in the channel. Obviously, the free-surface trends in the considered multi-layer
models look similar however, the velocity fields exhibit different flow features.
Observe the recirculation zones appeared in the velocity fields obtained us-
ing the 10-layer and the 20-layer models. The 5-layer model fails to capture
the vertical effects for the water dynamics in the considered flow system. We
have also noted that the 5-layer model produces diffusive water density and
free-surface profiles. This diffusion has been reduced in the water density and
free-surface results obtained using the 10-layer and 20-layer models. It is evi-
dent that the more layers used in the simulation the more accurate description
of the vertical flow effects become. For example, using the 20-layer model the
response of the upper free-surface layer to the vertical dynamics is more pro-
nounced than using the 10-layer model, compare the velocity fields in Figure
7. The FVC method performs well for this unsteady multi-layer shallow water
problem and produces accurate solutions without requiring special treatment
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Fig. 6. The same as Figure 5 but for the 10-layer model on a flat bottom.
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Fig. 7. The same as Figure 5 but for the 20-layer model on a flat bottom.
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Fig. 8. Water velocity (left) and species concentration (right) at the mid channel
x = 50 m for the multi-layer model on a flat bottom.

of the source terms or complicated upwind discretization of the gradient fluxes.

For visualizing the comparisons, we display in Figure 8 the water velocity and
the species concentration associated with each layer at the mid of the channel
(x = 50 m) for different multi-layer models at time t = 120 s. Under the
actual flow conditions, it is clear that the cross section plots exhibited different
behaviors in the channel center and the results obtained for the 50-layer model
are the most accurate. Similar features have been observed for a comparison,
not reported here, of cross sections for water heights and water densities.
As expected for low number of layers in the flow system, the vertical effects
may not be clearly captured. Note that these flow features are impossible
to recover using the single-layer model studied in [5]. The computed results
also verify the stability and the well-balanced properties of the considered
finite volume modified method of characteristics. The proposed FVC method
performs very satisfactorily for this multi-layer flow problem since it does
not diffuse the moving fronts and no spurious oscillations have been detected
near steep gradients of the flow field and water density in the computational
domain.

4.2 Density-driven flow over a hump

Now we turn our attention to the test example of density-driven flow over a
hump defined by

Z(x) = e
−(x− 50)2

200 .

The initial conditions for water densities and water heights are depicted in
Figure 9 for the considered 5-layer, 10-layer and 20-layer shallow water models.
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Fig. 9. Initial water densities (top) and water heights (bottom) for the 5-layer model
(left) 10-layer model (middle) and 20-layer model (right) over a hump.
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Fig. 10. Water densities (top), water heights (midlle) and velocity fields (bottom)
for the 5-layer model over a hump. From left to right t = 30 s, 120 s, and 240 s.

In Figure 10 we present the time evolution of the water densities, water heights
and water velocity fields at t = 30 s, 120 s, and 240 s for the 5-layer model.
Those results obtained for the 10-layer and 20-layer models are illustrated in
Figure 11 and Figure 12, respectively. It is clear that using the conditions for
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Fig. 11. The same as Figure 10 but for the 10-layer model over a hump.
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Fig. 12. The same as Figure 10 but for the 20-layer model over a hump.
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the density-driven flow problem and the considered bottom topography, the
flow exhibits a recirculation zone with different order of magnitudes over the
hump. At the beginning of simulation time, the water flows over the hump
and moves towards the channel walls. At later time, due to the boundary
conditions imposed on the walls, the water flow changes the direction and a
water soliton is formed and it propagates over the hump. As can be seen, the
response of the water free-surface to the bottom bed is more pronounced for
the 5-layer model that the other 10-layer and 20-layer models.

Again, the proposed FVC scheme performs well for this density-driven flow
problem since it does not diffuse the moving fronts and no spurious oscilla-
tions have been observed when the water flows over the hump. Note that the
performance of the proposed FVC method is very attractive since the com-
puted solutions remain stable and oscillation-free even for coarse grids without
solving nonlinear systems or Riemann problems.

5 Conclusions

we have proposed a simple and accurate finite volume modified method of
characteristics to solve multi-layer shallow water equations for density-driven
flows. The proposed finite volume method consists of two stages which can be
viewed as a predictor-corrector procedure. In the first stage, the scheme re-
constructs the numerical fluxes using the method of characteristics. This stage
results in an upwind discretization of the characteristic variables and avoids
the Riemann problem solvers. In the second stage, the solution is updated us-
ing the conservation system. The method combines the attractive attributes
of the finite volume discretization and the method of characteristics to yield
a robust algorithm for multi-layer density-driven shallow water flows. The
method does not require either nonlinear solution or special treatment of the
bed bottom. The proposed method has been numerically examined for the
test example of density-driven flow problem on a both flat and a non-flat to-
pography. The obtained results have exhibited accurate prediction of both,
the water free-surface and the water velocity field with correct dynamics, and
stable representation of free-surface response to the variation in the water
density. The results make it promising to be applicable also to real situations
where, beyond the many sources of complexity, there is a more severe demand
for accuracy in predicting density-driven shallow water flows, which must be
performed for long time.

We conclude with some comments on the current development of this finite
volume method, in terms of both physical and numerical features that will
be implemented. In this paper, we have only considered source terms due
to the bottom topography. However, in many hydraulic scenarios, mass ex-
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changes, friction losses and viscous terms, which interact with the hydraulics
through the introduction of stress terms in the momentum equations, can be
the dominant force in the multi-layer shallow water equations for density-
driven flows. Therefore, future work will involve inclusion of viscous coupling
a wave model component into the modelling system to include the effects of
bottom friction, wind stresses, eddy viscosity, and mass exchange in the multi-
layer density-driven flows. Numerically, the present scheme is a suite of finite
volume modified method of characteristics that are currently being developed.
Other method components will include application to tidal flows and lock ex-
change flows. In many situations, these models will be solved on large domains
and over irregular bathymetries such as coastal scenarios. The proposed finite
volume modified method of characteristics is particularly advantageous for
this class of applications.
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