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The synthesis of thiazoles and thiophenes starting from nitriles, via a modified Gewald reaction has been studied for a number of

different substrates. 1,4-Dithiane-2,5-diol was used as the aldehyde precursor to give either 2-substituted thiazoles or 2-substituted

aminothiophenes depending on the substitution of the a-carbon to the cyano group.

Introduction

Thiazoles are privileged motifs which are encountered in many
naturally occurring bioactive compounds and pharmaceuticals
with indications in a number of therapeutic areas including anti-
cancer, antifungal, antibacterial, anti-inflammatory and as anti-
depressants (Figure 1) [1]. Several protocols have already been
described for the synthesis of substituted thiazoles and benzo-
thiazoles [2-11]. The current first choice synthesis protocol, the
Hantzsch synthesis, requires access to appropriately function-
alised a-halocarbonyls but such starting materials are not
always readily available. Consequently, expanding the scope of
thiazole synthesis by developing new methodologies remains an
active area of research.

The air-stable, readily available 1,4-dithian-2,5-diol (10) has
been previously reported as a coupling partner with various

nitriles to give 2-aminothiophenes through a Gewald mecha-
nism [21,22]. However, we have noticed that a-substituted
benzylacetonitriles, alternatively yield 2-substituted thiazoles,
when coupled with the aldehyde derived from 10. Although the
thiazole formation from nitriles has already been shown to
occur with ketones [23-26] and carboxylic acid [27,28] deriva-
tives to give 2,5-disubstituted thiazoles, to our knowledge alde-
hydes have only been shown to form 2-aminothiophenes [29].
Even though 2-substituted thiazoles are important structures in
their own right, further substitution can be easily achieved
through published protocols to form 2,4-substituted thiazoles,
2,5-substituted thiazoles and also 2,4,5-substituted thiazoles
[30]. This further shows the need for the rapid and facile
formation of 2-substituted thiazole compounds as core building
blocks.
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Figure 1: Selected examples of biologically active thiazole containing molecules [12-20].

Results and Discussion

Screening for the bifurcation conditions

Initially, the reaction of several nitriles was screened with
aldehyde precursor 10 to determine the selectivity between
thiophene and thiazole products. In general, substrates which
have an a-methylene adjacent to the nitrile group gave 2-amino-
thiophene (Scheme 1) whilst those that possessed an a-methine
yielded the corresponding 2-substituted thiazole. Originally,
reactions were performed using conventional heating, however,
to allow for a wider temperature range, microwave heating
was introduced. This allowed access to higher temperatures
above the boiling points of the solvents used at atmospheric

pressure.

Optimisation and scoping of thiazole

formation

The reaction of ethyl phenylcyanoacetate (16) with pro-alde-
hyde 10 was used as a model system applying a fixed tempera-
ture of 80 °C and a reaction time of 300 min to evaluate
different solvents, bases and stoichiometry of 10 (Table 1).
Only a small impact upon conversion was observed with
changing the ratio of compound 10 and so it was decided to also
maintain this at equimolar concentration (i.e., 0.5 equiv of the
dimer) as it would simplify the purification later on. All reac-
tions were assessed for conversion using 'H NMR analysis of a
crude sample followed by work-up and purification via column

chromatography to determine the yields.
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Scheme 1: lllustration of substrates that form thiophenes under Gewald-type conditions.

Table 1: Scoping experiments using ethyl phenylcyanoacetate (16) with different solvents and bases.?

O+ OEt O+ OEt
S._OH base (1.1 equiv)
cN * L j/ — N
HO s solvent, heating SJ
16 10 17
Entry Base Solvent Ditiane (equiv) Conversion® (%) Isolated yield
1 NEt;3 trifluoroethanol 0.50 84 58
2 NEt;3 trifluoroethanol 0.55 85 50
3 NEt3 trifluoroethanol 0.75 94 52
4 NEt; ethanol 0.50 25 N/D
5 NEt3 chlorobenzene 0.50 18 N/D
6 NEt;3 1,2-dichloroethane 0.50 0 N/D
7 DBU trifluoroethanol 0.50 100 5
8 TMG trifluoroethanol 0.50 100 33
9 piperidine trifluoroethanol 0.50 0 0
10 TMEDA trifluoroethanol 0.50 67 50
11 QP-SA trifluoroethanol 0.50 0 0

aThe reactions were carried out at 80 °C for 300 min and at a concentration of 0.143 M. PConversion of starting material to product was measured by

H NMR spectroscopy. N/D: not determined.

With regard to solvent selection, trifluroethanol showed by far
the best results, this is probably due to the high polarity and its
slightly acidic nature, which assists in solubilising 10, and

subsequently promotes the formation of the aldehyde monomer.

The base screen indicated that triethylamine (NEt3) was the
most effective base providing the highest conversion and iso-
lated yield (58%) with tetramethylethylenediamine (TMEDA)

also giving a respectable yield of 50% (Table 1, entries 1 and
10). The stronger guanidine bases 1,1,3,3-tetramethylguanidine
(TMG) and 1,8-diazabicycloundec-7-ene (DBU) both gave full
consumption of the nitrile starting material, but generated
complicated product mixtures allowing only a moderate iso-
lated yield of 33% for the TMG and negligible recovery for the
DBU (Table 1, entries 7 and 8). Interestingly, the use of piperi-
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dine led to no conversion under these reaction conditions
(Table 1, entry 9), we believe this is due to its condensation
with the aldehyde component (generated from 10), which
inhibits the transformation. In addition, a sulfonic acid bound
resin (QP-SA) was also trialled as an additive but showed no
conversion allowing full recovery of the starting nitrile (see
later discussion on mechanism). These experiments imply that
the deprotonation of the a-methylene adjacent to the nitrile

group is an essential part of the mechanism.

In an attempt to improve the yield of this reaction, a design of
experiment analysis (DOE) was performed initially testing three
factors; temperature, concentration of 16 and reaction time,
while monitoring the response by measuring the isolated yield
of 17. The starting point for the design of the array was the best
conditions obtained from the initial scoping (Table 1, entry 1),
this generated the profiles and results as shown in Table 2 and
Table 3. From the data it was concluded that elevated tempera-
tures resulted in lower isolated yields most probably due to

Table 2: 15t Full factorial screening for conversion of compound 16.

Entry Pattern® Temperature (°C)
1 —++ 40
2 ++- 120
3 000 80
4 +++ 120
5 +—= 120
6 +—+ 120
7 —-—+ 40
8 - 40
9 —+- 40
10 000 80

@Where ‘+ refers to the maximum limit, ‘=’ refers to the minimum limit and

Table 3: 2"d Factorial screening for 16.
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decomposition of compound 10 or the resulting aldehyde. In
general, lower concentration was beneficial but at a conse-
quence of longer reaction times in order to obtain a good yield.
The best results were entry 9, Table 2 and entries 8 and 9,
Table 3 which produced similar results. The latter conditions
were then chosen to progress due to the increased productivity
based upon the higher concentration and slightly shorter reac-
tion time.

Having established an optimised set of conditions for the
formation of thiazole 17, we next turned our attention to
expanding the versatility of the reaction by changing both the
aromatic portion and the ester functionality of the substrate
(Table 4). To allow direct comparison and evaluation of the
influence of substrate modifications on the reaction outcome we
maintained the standard reaction conditions generated above. It
should be noted that these reactions are therefore not optimised
and that improvement could be achieved as highlighted by
entries 14 and 15 in Table 4. In general esters, amides and

Time (min) Concentration of 16 (M) Isolated yield (%)
420 0.21 70
420 0.07 31
300 0.14 51
420 0.21 18
180 0.07 43
180 0.21 33
180 0.21 67
180 0.07 68
420 0.07 85
300 0.14 58

‘000’ refers to the middle limits.

Entry Pattern@ Temperature (°C) Time (min) Concentration of 16 (M) Isolated yield (%)
1 ++- 80 480 0.04 71
2 -— 40 300 0.04 66
3 +++ 80 480 0.18 36
4 +—+ 80 300 0.18 52
5 —+- 40 480 0.04 76
6 —++ 40 480 0.18 56
7 +—= 80 300 0.04 66
8 000 60 390 0.11 83
9 000 60 390 0.11 81
10 ——+ 40 300 0.18 76

@Where ‘+' refers to the maximum limit, ‘=’ refers to the minimum limit and

‘000’ refers to the middle limits.
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Table 4: Scoping of the 2-substituted thiazole formation.?
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Table 4: Scoping of the 2-substituted thiazole formation.? (continued)
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Oy OEt
7
35
o)
N= NH, 34
37
Br 0
N= NH, 37

O 1OEt
.
.

43

aConditions: 0.50 equiv 1,4-dithian-2,5-diol (10), 0.11 M of nitrile, 1.10 equiv NEt3, 2 mL trifluoroethanol, 60 °C, 390 min; bp 50 equiv 1,4-dithian-2,5-
diol (10) followed by another 0.50 equiv of 10 after the first 390 min, 0.11 M of nitrile, 1.10 equiv NEts, 2 mL trifluoroethanol, 80 °C, 630 min.

nitriles are tolerated, with methyl esters giving generally lower
yields (hydrolysis occurs from generated water) than the corres-
ponding ethyl analogues (entries 1, 2 and 9, 10, Table 4). The
isopropyl ester leads to a lower conversion and isolated yield
presumably as a consequence of steric interactions (entry 3,
Table 4). Changing the electronic character of the aromatic
appendage shows that an electron donating group (entries 4 and
5, Table 4) gives a better yield than an electron withdrawing
group (entries 6 and 7, Table 4). This is presumably due to a
subtle balance between the basicity and nucleophilicity of the
intermediate anion, which could in the case of the more stable
(electron withdrawing group) anion enable a retro-aldol reac-
tion following. Substituted malonitriles are also tolerated
forming the corresponding cyanothiazole in good yield, with no
indication of the dithiazole product observed (entry 8, Table 4).
Benzyl groups are also tolerated (entries 9—12, Table 4) but give

lower yields than the corresponding aromatics. Changing to an
aliphatic group instead of the aromatic moiety (entries 9-15,
Table 4) decreases the conversion, sterics again seem to play an
important role. Substrate possessing a methyl or an ethyl group
react well (entries 13 and 14, Table 4) but an isopropyl group
such as in molecule 47 (Figure 2), reproducibly gave no prod-
uct, indicating the steric limits of the reaction.

Although the reaction appears general, certain substrates tested
did not generate any product when employing the standard reac-
tion conditions (Figure 2) thus helping to identify certain attrib-
utes of the mechanism. For example, 2-phenylacetonitrile (44)
failed to react most likely due to the lower acidity of the
a-methylene protons. Diethyl 2-cyanomalonate (45), also
proved unreactive, this substrate would be expected to form an

extensively delocalised anion which would be a poor nucleo-
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Figure 2: Substrates which did not react under the optimised conditions.

phile. Also, substrate 46, lacking an acidic proton, was recov-
ered unchanged from the reaction. Finally, compound 47, as
mentioned previously, possesses a high degree of steric hin-
drance around the a-carbon to the cyano group thus inhibiting

the reaction.

The original pathway for the thiophene formation (Scheme 1)
follows the Gewald mechanism and has already been described
[31]. However, the alternative mechanism for the thiazole
formation as described herein has not previously been reported
and initially presented some queries. We envisaged two puta-
tive mechanisms for the formation of the thiazole (Scheme 2),
which could both be involved in the formation depending on the
specific substrate involved. Putative mechanism A is theoretic-
ally valid when a methine or methylene group is present in the
o-position to the nitrile group, which is reminiscent of the orig-

inal Gewald reaction mechanism. Mechanism B would also be

Putative mechanism A

Beilstein J. Org. Chem. 2015, 11, 875-883.

O+ OEt
X
47

EtO___O

Me
CN

46

viable for molecules which possess no protons o to the nitrile
group. The fact that compounds 46 and 47 did not react implies
mechanism A is the predominant pathway. The lack of reactiv-
ity of substrate 47 can be attributed to the high degree of steric
hindrance inhibiting its enolisation. In summary, although our
evidence indicates mechanism A is the most likely pathway it
should be noted that several benzonitrile derivatives have been
shown to successfully result in thiazole formation when reacted
with coupling partners such as 2-mercaptopropionic acid, there-

fore mechanism B could operate under certain conditions [32].

Conclusion

We have successfully shown that substitution of the nitrile
precursor predetermines the reaction outcome yielding exclu-
sively to a thiophene or thiazole product. It was shown that the
presence of an alkyl or aryl substituent adjacent to the cyano

group leads selectively to the thiazole by blocking the Gewald

2 2 2
R R /:N S y R= ¢NH . NH, 5
-exo-di 2 —
R%\\\ — R><A\/SH 9 R s — %SIV
) N v R!
HO HO H
o%\/SH J
R2 R?
+HY—H* H
R _N R N
SJ H® S\/>
Putative mechanism B
R? 2 2 - H,0 R2
J\ + H/-H* R 5-exo-trig R _>2
RN oy s Rk@
A NH \8 N\Z N
oS A OH

R' = aromatic or aliphatic
R? = ester or amide

Scheme 2: Proposed mechanisms for the formation of thiazoles.
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type mechanism responsible for the formation of the 2-amino-
thiophene. In the study, the thiazole formation from the appro-
priately substituted a-methine nitrile compounds was evaluated,
demonstrating its scope as an effecient way of synthesising
2-subsituted thiazoles from readily available, air stable 1,4-
dithiane-2,5-diol (10) as a precursor for 2-mercaptoacetalde-
hyde.

Experimental

See Supporting Information File 1 for full experimental data.

Supporting Information

Supporting Information File 1
Experimental and analytical data.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-11-98-S1.pdf]
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