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Abstract

This paper presents nonparametric predictive inference (NPI) for meta-analysis in which
multiple independent samples of lifetime data are combined, where different censoring
schemes may apply to the different samples. NPI is a frequentist statistical approach
based on few assumptions and with uncertainty quantified via lower and upper proba-
bilities. NPI has the flexibility to deal with a mixture of different types of censoring,
mainly because the inferences do not depend on counterfactuals, which affect several
inferences for more established frequentist approaches. We show that the combined
sample, consisting of differently censored independent samples, can be represented as
one sample of progressively censored data. This allows explicit formulae for the NPI
lower and upper survival functions to be presented which are generally applicable. The
approach is illustrated through an example using a small data set from the literature,
for which several scenarios are presented.

AMS Subject Classification: 62G99, 62N99, 62N05

Keywords: Combined data; lower and upper probability; meta-analysis; nonparametric
predictive inference; right-censoring; progressive censoring; lifetime data.

1

Tahani
Typewritten Text

Tahani
Typewritten Text

Tahani
Typewritten Text

Tahani
Typewritten Text

Tahani
Typewritten Text
          Preprint submitted to Journal of Statistical Theory and Practice         8 Jan 2014

Tahani
Typewritten Text
   

Tahani
Typewritten Text



1 Introduction

In reliability and lifetime testing, censored data can occur due to different circum-
stances. For example, an experiment may be terminated early, at a prefixed time or
as soon as a particular number of units have failed, in order to save time and cost.
This leads to the well-known Type-I and Type-II censoring schemes, respectively. In
progressive censoring schemes, units which have not failed are removed during the
experiment at several stages, which may enable expensive units to be used for other
purposes (Balakrishnan and Aggarwala, 2000; Burke, 2011) or detailed investigations
of both failed and unfailed units in order to get more insight into the failure process.
The units can be removed from the experiment at specified times, which leads to pro-
gressive Type-I censoring, or at times when prefixed numbers of failures have occurred,
leading to progressive Type-II censoring. A variety of inferences is possible based on
such censored samples, e.g. Burke (2011) and Bordes (2004) proposed nonparamet-
ric estimation of the survival function under progressive Type-I and Type-II censoring,
respectively. Progressive censoring has been the topic of many research papers over re-
cent decades, for an overview and applications we refer to Balakrishnan and Aggarwala
(2000) and Balakrishnan (2007).

There are scenarios where multiple independent samples are obtained from the pop-
ulation of interest. For example, when the number of units that can be placed in one
lifetime experiment is limited per run, then the experiment may need to be run sev-
eral times in order to collect the required data. If such runs involve censoring then
one may consider it logical that the same censoring scheme is used for each run, but
this is not necessarily the case and may not be possible in practice, for example if
available test facilities differ per run. The combination of information from several
samples, resulting from similar yet not identical experiments, leads to many statistical
challenges which are generally indicated as ‘meta-analysis’ and for which very many
methods have been presented in the literature (Borenstein et al., 2009), reflecting the
huge practical importance of combining information from different sources. Com-
bining multiple samples has several objectives, including increasing the accuracy of
estimation and enhancing the coverage of confidence and prediction intervals (Volter-
man and Balakrishnan, 2010; Balakrishnan et al., 2010). Balakrishnan et al. (2010)
combined two ordinary Type-II and progressively Type-II right censored samples to
derive exact nonparametric confidence, prediction, and tolerance intervals. They found
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that in the case of combining two ordinary Type-II censored samples, the distribution
of the order statistics from the combined sample is closely related to the distribution of
progressively Type-II censored order statistics. This has been extended to the situation
where multiple independent Type-II right censored samples (Volterman and Balakrish-
nan, 2010), doubly Type-II censored samples (Volterman et al., 2012) and progressively
Type-II censored samples (Volterman et al., 2013) are pooled together. A major prob-
lem for several established frequentist statistical methods, including hypothesis testing
and corresponding confidence intervals, it that counterfactuals, so outcomes of an ex-
periment that could have occurred but did not, affect the outcomes of analyses. Dif-
ferent censoring schemes tend to lead to differences in possible counterfactuals, which
therefore leads to problems when one wishes to combine information from samples
obtained under different censoring schemes.

In this paper we present how nonparametric predictive inference (NPI) can deal
with combined information from multiple independent samples under different right-
censoring schemes. NPI explicitly focusses on prediction for a future random quantity,
based on observations of random quantities that are exchangeable with the future one.
It should be emphasized that NPI does not make use of an assumed underlying pop-
ulation, hence no joint probability distribution for the combined (pooled) sample is
required for the NPI approach. Such inferences do not include counterfactuals, hence
the major difficulty for established frequentist statistical methods in dealing with data
from different samples with different censoring schemes is avoided. We present ex-
plicit formulae for the lower and upper survival functions for progressive Type-I and
Type-II censoring schemes, which enable a variety of censoring schemes to be dealt
with. Throughout this paper, it is explicitly assumed that the right-censoring mecha-
nisms are all non-informative, which will be explained further shortly.

Nonparametric predictive inference (NPI) is a statistical method based on Hill’s as-
sumption A(n) (Hill, 1968, 1988, 1993), which gives a direct conditional probability
for a future real-valued random quantity, conditional on observed values of n related
random quantities (Augustin and Coolen, 2004; Coolen, 2006). Effectively, it assumes
that the rank of the future observation among the observed values is equally likely to
have each possible value 1, . . . , n + 1. We assume here, for ease of presentation, that
there are no tied observations (these can be dealt with by assuming that such obser-
vations differ by a very small amount, a common method to break ties in statistics).
The assumption A(n) is not sufficient to derive precise probabilities for many events of
interest, but optimal bounds for probabilities for all events of interest can be derived
via the ‘fundamental theorem of probability’ (De Finetti, 1974). These optimal bounds
are lower and upper probabilities in interval probability theory (Augustin and Coolen,
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2004; Walley, 1991; Weichselberger, 2001).
In this paper we consider the combination of data from samples under different

right-censoring schemes. Such data often occur in reliability and survival analysis,
where right-censoring of event times means that, for a specific unit or individual, it is
only known that the event has not yet taken place at the time of observation. Coolen
and Yan (2004) presented a generalization of A(n), called rc-A(n), which is suitable
for right-censored data. In comparison to A(n), rc-A(n) uses the additional assump-
tion that, at the moment of censoring, the residual lifetime of a right-censored unit
is exchangeable with the residual lifetimes of all other units that have not yet failed
or been censored, see Coolen and Yan (2004) and Yan (2002) for further details of
rc-A(n). This exchangeability assumption is a natural way to formulate the usual
non-informative censoring assumption that underlies most established statistical meth-
ods, including the Kaplan-Meier estimator (Kaplan and Meier, 1958), and is actually
slightly weaker than assuming full independence of the failure and censoring processes
as is commonly done. The main difference is that the censoring process is allowed to
depend on the failure process upto the censoring time, as long as the remaining time to
the event for a censored unit is exchangeable with the remaining times to the event of
other non-censored units (which have been in the experiment equally long).

Coolen et al. (2002) introduced NPI to some reliability applications, including
lower and upper survival functions for the next observation, illustrated with an applica-
tion with competing risks data. They illustrated the lower and upper marginal survival
functions, so each restricted to a single failure mode. While predictive inference, as
considered in this approach, is different to estimation, as it explicitly considers a sin-
gle future unit instead of estimating characteristics of a population distribution, it is
interesting to mention that these NPI lower and upper survival functions (Coolen et al.,
2002; Maturi et al., 2010b) bound the well-known Kaplan-Meier estimator (Kaplan
and Meier, 1958), which is the nonparametric maximum likelihood estimator for the
population survival function in case of lifetime data with right-censored observations
(Coolen and Yan, 2004; Coolen-Maturi et al., 2012c).

NPI has been presented for comparison of two or more groups of right-censored
data (Coolen-Schrijner et al., 2009; Coolen-Maturi et al., 2011, 2012c), for pairwise
comparison with competing risks (Coolen-Maturi, 2014), and for comparison of two
groups under several types of progressive censoring schemes (Maturi et al., 2010a).
The main results in these papers are closed-form expressions for the NPI lower and
upper survival functions and corresponding lower and upper probabilities for events
comparing future observations from different groups. For comparison of more than
two groups under progressive censoring schemes the expressions become quite cum-
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bersome, but such methods can be applied using the R commands provided by Maturi
(2010).

This paper is organized as follows. In Section 2 we briefly review NPI for progres-
sive censoring schemes. Section 3 demonstrates how the NPI approach with combined
data from samples under different censoring schemes. Finally, an example is given in
Section 4 to illustrate the method presented in this paper, followed by some concluding
remarks in Section 5.

2 NPI for progressive censoring

In order to propose the NPI approach for combing multiple independent samples under
different censoring schemes, we first introduce some definitions and notation. Then we
present new formulae for the NPI lower and upper survival functions based on event
time data under Type-I and Type-II progressive censoring schemes.

2.1 Notation and setting

Maturi et al. (2010a) presented NPI for different progressive censoring schemes, the
main results of which we use in this paper and introduce as definitions below. For fur-
ther details and justification we refer to Maturi et al. (2010a). Suppose that nz units
were placed on a lifetime experiment. Of these nz units, rz failed during the experi-
ment. For simplicity of presentation, we assume throughout this paper that they failed
at rz different failure times z1 < z2 < . . . < zrz , and we set z0 = 0 and zrz+1 = ∞.
For details on the use of NPI if data contain tied observations we refer to Coolen and
Yan (2004) and Maturi et al. (2010a). NPI for Type-II and Type-I progressive censor-
ing schemes is achieved according to the following definitions (Maturi et al., 2010a).
These contain M -functions, which allow partial specification of a probability distribu-
tion and are closely related to Shafer’s basic probability assignments (Shafer, 1976)1.
M -functions assign non-negative probability masses, summing to 1, to intervals which
may overlap (multiple values may even be assigned to the same interval). If interest is
in the event that the random quantity of interest is in a specific interval A, the lower
probability for this event is derived by summing the M -function values assigned to
intervals that are fully contained within A (so all probability mass that must be in A)
and the corresponding upper probability by summing the M function values assigned
to intervals that have non-empty intersection with A (all probability mass that can be
in A).

1It is important to emphasize that NPI does not use the corresponding Dempster-Shafer framework for
statistical inference.
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Definition 2.1 (Maturi et al., 2010a)

An experiment with a progressive Type-II censoring scheme is characterized by R̆ =

(R1, R2, . . . , Rrz ), where Rl non-failing units are withdrawn from the experiment at

failure time zl (in addition to the failing unit), for l = 1, . . . , rz . It is assumed that

all non-failing units still in the experiment at the final observed failure time zrz are

removed at that moment, at which the experiment ends. NPI for data from such an

experiment is based on the assumption rc-A(nz) (Coolen and Yan, 2004), which implies

that the probability distribution for a nonnegative random quantity Znz+1 on the basis

of such data, including rz observations of the actual event of interest and (nz − rz)
progressively censored observations, is partially specified by the followingM -function

values, for i = 0, 1, . . . , rz ,

MZnz+1(zi, zi+1) =
1

nz + 1

i−1∏
k=1

nz − k −
∑k−1
l=1 Rl + 1

nz − k −
∑k
l=1Rl + 1

(1)

MZnz+1(z+i , zi+1)=

[
Ri

nz−i−
∑i
l=1Rl+1

]
MZnz+1

(zi, zi+1) (2)

where z+i is used to indicate a value infinitessimally greater than zi, which can be

interpreted as representing the lower bound for the interval that would contain the

actual lifetimes for all units censored at zi. Then the total probability mass assigned

to the interval (zi, zi+1) is the sum of the two M -functions corresponding to (zi, zi+1)

and (z+i , zi+1) (for i = 0, 1, . . . , rz), and is given by

P (Zn+1 ∈ (zi, zi+1)) =
1

nz + 1

i∏
k=1

nz − k −
∑k−1
l=1 Rl + 1

nz − k −
∑k
l=1Rl + 1

(3)

Definition 2.2 (Maturi et al., 2010a)

In a progressive Type-I censoring scheme for nz units on a lifetime experiment, Rq
units are withdrawn from the experiment at time Tq (q = 1, . . . , Q), and define T0 = 0

while it is assumed that TQ is greater than the largest observed failure time (typically

TQ is the end of the experiment, of course RQ = 0 is possible). Let sq denote the

number of observed failure times between Tq−1 and Tq , with in total rz =
∑Q
q=1 sq

observed failures. For ease of presentation, we assume no ties among the observed

times (both failure and right-censoring times) in the data, any ties can be broken in

the usual way (where right-censoring is normally assumed to happen just later than a

failure event if their event times are tied). The data can be represented as in Figure 1,

where zqiq denotes the iqth observed failure time between Tq−1 and Tq (iq = 1, . . . , sq ,
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· · · < Tq−1 < zq1 < · · · < zqsq < Tq < zq+1
1 < . . . < zq+1

sq+1
< Tq+1 < . . .

�
��

�
��

�
��

Rq−1 Rq Rq+1

Figure 1: Data representation for progressive Type-I censoring

q = 1, . . . , Q). Let

Bq =
1

nz + 1

q∏
k=1

nz −
∑k
l=1 sl −

∑k−1
l=1 Rl + 1

nz −
∑k
l=1 sl −

∑k
l=1Rl + 1

then the M -functions for the NPI approach based on data corresponding to a progres-

sive Type-I censoring scheme, are (for q = 1, . . . , Q and iq = 1, . . . , sq)

MZnz+1
(0, z11) = B0 , MZnz+1

(zqiq , z
q
iq+1) = Bq−1 ,

MZnz+1(Tq, z
q+1
1 ) =

[
Rq

nz−
∑q
l=1 sl −

∑q
l=1Rl+1

]
Bq−1 ,

P (Znz+1 ∈ (zqiq , z
q
iq+1)) = Bq

where zq+1
1 ( zqsq ) is the first (last) failure time observed after (before) we removed Rq

units at time Tq , and where zqsq+1 = zq+1
1 and zQ+1

1 =∞.

NPI for ordinary Type-II and Type-I right-censored data can be obtained from the
above definitions as these are special cases of Type-II and Type-I progressive censoring
schemes, respectively. For ordinary Type-II right-censoring we have Ri = 0 for all
i = 1, 2, . . . , rz − 1 and Rrz = nz − rz in Definition 2.1, while ordinary Type-I
right-censoring corresponds to Q = 1 in Definition 2.2.

2.2 NPI lower and upper survival functions under progressive censoring

We now present explicit formulae for the NPI lower and upper survival functions
under Type-II and Type-I progressive censoring, we denote these by SZnz+1

(t) and
SZnz+1(t), respectively. The proofs of these results are presented in the appendix.

We first consider the Type-II progressive censoring scheme (Definition 2.1). For
t ∈ [zi, zi+1), with i = 0, 1, . . . , rz , the NPI upper survival function is

SZnz+1
(t) = ñziMZnz+1

(zi, zi+1) (4)

where ñzi = nz − i−
∑i−1
l=1 Rl + 1 and MZnz+1

(zi, zi+1) is given by (1).
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The corresponding NPI lower survival function under the Type-II progressive cen-
soring scheme is as follows. For t ∈ (tili , t

i
li+1], with i = 0, 1, . . . , rz and li =

0, 1, . . . , Ri, and further notation tiRi+1 = ti+1
0 = zi+1 for i = 0, 1, . . . , rz − 1,

SZnz+1
(t) = ñtili+1

[
ñzi

ñtili+1
+ 1

]1−a
MZnz+1(zi, zi+1) (5)

where ñtili+1
= nz − i −

∑i−1
l=1 Rl − li and a = 1 if {j : zi < cj < tili+1} = ∅ and

a = 0 if {j : zi < cj < tili+1} 6= ∅. Notice that at observed failure times, so t = zi,
these NPI lower and upper survival functions are equal, i.e. SZnz+1

(zi) = SZnz+1
(zi)

for all i = 0, . . . , rz .
Next we consider the Type-I progressive censoring scheme (Definition 2.2). For

t ∈ [zqiq , z
q
iq+1), with iq = 1, . . . , sq and q = 1, . . . , Q, the NPI upper survival function

is
SZnz+1

(t) = ñzqiq
MZnz+1

(zqiq , z
q
iq+1) (6)

where ñzqiq = nz − (iq − 1) −
∑q−1
l=1 Rl −

∑q−1
l=1 sl and MZnz+1

(zqiq , z
q
iq+1) is given

by Definition 2.2. Furthermore, for t ∈ [0, z11) we have SZnz+1(t) = 1.
The corresponding NPI lower survival function under the Type-I progressive cen-

soring scheme for Znz+1 is

SZnz+1
(t) = MZnz+1(zqiq , z

q
iq+1)

[
ñtqiq+1

]1−δ [ ñzqsq ñtqlq+1

ñtqlq+1
+ 1

]δ
(7)

where δ = 0 for t ∈ (tqiq , t
q
iq+1] with tqsq+1 = cq1, and δ = 1 for t ∈ (tqlq , t

q
lq+1]

with tqRq+1 = zq+1
1 , for q = 1, . . . , Q, iq = 1, . . . , sq and lq = 1, . . . , Rq . In this

expression, ñtqlq+1
(ñtqiq+1

) is the number of units at risk at tqlq+1 (tqiq+1), so the number
of units that have not failed or been censored before this time, and MZnz+1

(zqiq , z
q
iq+1)

is given in Definition 2.2. Furthermore, for t ∈ (0, z11 ] we have SZnz+1
(t) = nz/(nz +

1).

3 Combining data resulting from different censoring schemes

In this section, we present how information from multiple independent samples under
different right-censoring schemes can be combined in NPI, in order to use all com-
bined data for the inference on the next future observation. We should emphasize here
that we assume that the lifetimes of all the units from the different samples are ex-
changeable, which relates to the usual assumption in the more established frequentist
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statistics framework that all samples are drawn from the same population. For exam-
ple, one may wish to based inference on the combined information from two or more
Type-II (or Type-I) right-censored samples, with different censoring times applying per
sample. The combined data in this case can be represented as a single Type-II (or Type-
I) progressively censored sample, for which NPI has been introduced by Maturi et al.
(2010a). Moreover, if we combine two or more Type-II (or Type-I) progressively cen-
sored samples we obtain a single Type-II (or Type-I) progressively censored sample.
This means that we can apply the same inferential method as presented by Maturi et al.
(2010a) on the resulting combined progressively censored sample, as discuss in detail
in the rest of this section. This approach for combining information from samples un-
der different censoring schemes is based on the approach presented by Balakrishnan
et al. (2010). However, they study the problem from the order statistics perspective
while we apply the NPI method to such scenarios to derive frequentist predictive in-
ference for the next observation. Working with order statistics is complicated as it
requires the distributions for the different order statistics. The proposed NPI approach
is pretty flexible and implementation of the NPI lower and upper survival functions as
presented in Section 2 is quite straightforward. With the usual, rather weak, assump-
tions underlying NPI together with assumed non-informative right-censoring (assumed
as rc-A(n) for each sample and for the combined sample) as discussed in Section 1, any
type of right-censored or progressively censored samples can be combined in the NPI
approach. We discuss how this is achieved for the main situations of interest below, for
each case then the NPI lower and upper survival functions follow from Section 2 with
some quite obvious notation introduced for convenience in the general theory in that
section, e.g. z0 = 0, not explicitly mentioned again here in each case. These results are
illustrated in an example in Section 4.

3.1 Progressive Type-II censored samples

Data from m independent progressive Type-II censored samples, with for sample j
(j = 1, . . . ,m) observations xj,1 < xj,2 < . . . < xj,rj and nj − rj right-censored
observations according to censoring scheme (Rj,1, Rj,2, . . . , Rj,rj ), can be combined
into a single progressive Type-II censored sample (Definition 2.1) with observed times
z1 < z2 < . . . < zrz and censoring scheme Ri = Rj,ij if zi = xj,ij , ij =

1, . . . , rj , where i = 1, . . . , rz , nz =
∑m
j=1 nj and rz =

∑m
j=1 rj . As a special case

one can combine m Type-II right-censored samples where (Rj,1, Rj,2, . . . , Rj,rj ) =

(0, 0, . . . , nj − rj).
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3.2 Type-II right-censored samples and progressive Type-II censored samples

Suppose we havem1 independent progressive Type-II censored samples, with for sam-
ple j (j = 1, . . . ,m1) observations xj,1 < xj,2 < . . . < xj,rj and nj − rj right-
censored observations according to censoring scheme (Rj,1, . . . , Rj,rj ). Suppose that,
in addition, we have m − m1 independent Type-II right-censored samples, with for
sample j (j = m1 + 1, . . . ,m) observations xj,1 < xj,2 < . . . < xj,rj and nj − rj
right-censored observations. These m samples can be combined into one progressive
Type-II censored sample (Definition 2.1) with failure times z1 < z2 < . . . < zrz

and censoring scheme Ri (i = 1, . . . , rz) defined as follows: for j = 1, . . . ,m1,
Ri = Rj,ij if zi = xj,ij , ij = 1, . . . , rj ; for j = m1 + 1, . . . ,m, Ri = nj − rj if
zi = xj,ij , ij = 1, . . . , rj ; all other Ri = 0.

3.3 Progressive Type-I censored samples

Under a progressive Type-I censoring scheme for nj (j = 1, . . . ,m) units in a lifetime
experiment, in case of m such independent experiments (j = 1, . . . ,m), Rj,ij units
are withdrawn from the experiment at Tj,ij (ij = 1, . . . , pj) and for rj =

∑pj
ij=1 sj,pj

units the failure times are observed, where sj,ij is the number of observed failure times
between Tj,ij−1 and Tj,ij . Combining the data from these m samples leads to a sin-
gle progressive Type-I censored sample (Definition 2.2) where Rq = Rj,ij units are
withdrawn from the experiment at Tq = Tj,ij (j = 1, . . . ,m, ij = 1, . . . , pj) and
rz =

∑m
j=1 rj =

∑Q
q=1 sq failure times are observed, with sq the number of observed

failure times between Tq−1 and Tq . Similarly, combining m Type-I right-censored
samples can be considered to be a special case of this scenario.

3.4 Type-I right-censored samples and progressive Type-I censored samples

Suppose that we have m1 independent progressive Type-I censored samples, where
Rj,ij units are withdrawn from the j-th experiment at Tj,ij (j = 1, . . . ,m1, ij =

1, . . . , pj). Suppose that, in addition, we have m − m1 independent Type-I right-
censored samples, with sample j (j = m1 + 1, . . . ,m) consisting of rj observations
before Tj and Rj = nj − rj right-censored observations at Tj . Combining these sam-
ples leads to one progressive Type-I censored sample (Definition 2.2) with Rq = Rj,ij

(j = 1, . . . ,m1) units withdrawn from the experiment at Tq = Tj,ij (j = 1, . . . ,m1,
ij = 1, . . . , pj , ij = 1, . . . , pj) and Rq = Rj = nj − rj (j = m1 + 1, . . . ,m) units
withdrawn from the experiment at Tq = Tj (j = m1 + 1, . . . ,m). The combined
data include rz =

∑m
j=1 rj =

∑Q
q=1 sq failure times, with sq the number of observed
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failure times between Tq−1 and Tq .

3.5 General mixtures of right-censored and progressively censored samples

We presented the specific cases above as they have attracted attention in the literature
and lead to neatly formulated combined samples which directly fit with the NPI lower
and upper survival functions presented in Section 2. Perhaps most interesting is the
fact that one can combine the information from any mixture of different types of in-
dependent right-censored and progressively censored samples without complications
using the NPI method. All such scenarios can be expressed as mixtures of Type-I and
Type-II progressively censored samples and the corresponding NPI lower and upper
survival functions for the combined sample can be derived following similar steps to
those presented in Section 2.22. This opportunity to combine information from any
mixture of independent right-censored samples, in a quite straightforward manner, is
an advantage of the NPI method, particularly when compared to more established fre-
quentist methods which involve considerations of counterfactuals, which indeed can
become very cumbersome for general mixtures of differently censored samples.

4 Example

To illustrate the methods presented in this paper, we use a subset of Nelson’s dataset
(Nelson, 1982, p. 462) on breakdown times (in minutes) of an insulating fluid that is
subject to high voltage stress. The data are given in Table 1 and consist of two samples,
which we assume to be independent, each with 10 units. The methods presented in
this paper are applicable to any number of samples with any numbers of observations,
which indeed can be different per sample. We have opted to illustrate the methods
using only two small samples in order to clearly show the differences for the different
cases in the plots, with increasing sample sizes the differences between corresponding
upper and lower survival functions decreases and, if most observations are not cen-
sored, the differences due to different censoring schemes would also become small. As
mentioned, implementation of the methods for larger applications is facilitated by the
R-functions.

We use these data to illustrate the combination of the information from both sam-
ples in NPI under different censoring schemes by presenting the lower and upper sur-
vival functions for the failure time Znz+1 of the next unit based on the combined infor-
mation, and we compare these with the NPI lower and upper survival functions based

2R functions for this are available from www.npi-statistics.com.
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Sample Failure times
X 0.49 0.64 0.82 0.93 1.08 1.99 2.06 2.15 2.57 4.75
Y 1.34 1.49 1.56 2.10 2.12 3.83 3.97 5.13 7.21 8.71

Table 1: Insulating fluid failure times of units from two samples

only on the individual samplesX and Y , so for the failure time of the next unitsXnx+1

and Yny+1, respectively. For ease of presentation, we use SX , SX , SY , SY , SZ , SZ ,
to refer to these NPI lower and upper survival functions in the figures. We consider 6
cases, mostly related to the scenarios presented in Section 3.
Case A: We now consider progressive Type-II censoring applied independently to both
samples X and Y with schemes R̆x = (3, 1, 1, 0, 0) at observed values (0.49, 0.64,
0.93, 2.06, 2.15) in sample X and R̆y = (3, 2, 0, 0, 0) at observed times (1.34, 1.56,
2.10, 3.83, 7.21) in sample Y . This can be combined into a single progressive Type-II
censored sample (Section 3.1) with R̆z = (3, 1, 1, 3, 2, 0, 0, 0, 0, 0) at observed times
(0.49, 0.64, 0.93, 1.34, 1.56, 2.06, 2.10, 2.15, 3.83, 7.21). The NPI lower and upper
survival functions based on this combined sample and based on the individual samples,
with the same censorings, are presented in Figure 2.
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Figure 2: Lower and upper survival functions, Case A

Case B: Suppose that some units of samplesX and Y are removed from the experiment
before breakdown, at different times. Suppose that two units are removed from each
sample, at T1 = 1.5, say the units with actual failure times 2.06 and 2.57 from the X
sample and the units with actual failure times 2.10 and 8.71 from the Y sample are

12



removed (hence those failure times are not observed). In addition, one unit from each
sample is removed at T2 = 3.5, let this be the X sample unit with actual failure time
4.75 and and the Y sample unit with actual failure time 5.13. The resulting data consist
of 7 failure times and 3 censored observations for each sample. This can be combined
into one progressive Type-I censored sample (Section 3.3). The NPI lower and upper
survival functions based on this combined sample and based on the individual samples,
with the same censorings, are presented in Figure 3.
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Figure 3: Lower and upper survival functions, Case B

Case C: Assume that both experiments started simultaneously and are terminated at
the fourth observed failure time for the Y sample, hence this sample is Type-II right-
censored at 2.10. It is non-trivial how this stop-criterion for the experiment translates
into a specific censoring scheme for sample X , as it is based on a random event not
related to this sample. However, as mentioned in this paper, as NPI is not affected by
counterfactuals the actual censoring mechanism is irrelevant as long as we can assume
exchangeability at the censoring time of the remaining times till failure of all units
which are still at risk. For example, to fit with the theory presented in Section 3, we
can treat this X sample, with right-censoring at time 2.10 of all three units still at risk
at that time, as a Type-I right-censored sample. These two right-censored samples can
be combined into a single Type-II progressive hybrid censored sample with 11 failure
times and 9 censored observations; we do not consider this scheme further in this paper,
for more detail we refer to (Maturi et al., 2010a). The NPI lower and upper survival
functions based on this combined sample and based on the individual samples, with the
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same censorings, are presented in Figure 4.
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Figure 4: Lower and upper survival functions, Case C

Case D: We now apply the progressive Type-II censoring scheme with R̆x = (3, 1, 1, 0, 0)

to sample X , at the observed times (0.49, 0.64, 0.93, 2.06, 2.15), and we assume that
the experiment leading to sample Y is terminated at time 4, leading to a Type-I right-
censored sample with 7 observed failure times and 3 right-censored observations at
time 4. The NPI lower and upper survival functions based on this combined sample
and based on the individual samples, with the same censorings, are presented in Figure
5.
Case E: To illustrate the possible combination of samples with different mixtures of
censoring schemes, as discussed in Section 3.5, consider the progressive Type-II cen-
soring scheme being applied to sample X with R̆x = (3, 1, 1, 0, 0) at the observed
times (0.49, 0.64, 0.93, 2.06, 2.15), and the progressive Type-I censoring scheme ap-
plied to sample Y , with the two units with failure times 2.10 and 8.71 instead being
removed at T1 = 1.5 and the unit with failure time 5.13 instead being removed at
T2 = 3.5. The NPI lower and upper survival functions based on this combined sample
and based on the individual samples, with the same censorings, are presented in Figure
6.
Case F: Let us end this example by combining the two samples without applying any
censoring schemes, so effectively assuming that both samples came from the same
single experiment without any censoring of observations. The NPI lower and upper
survival functions based on this combined sample and based on the individual samples
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Figure 5: Lower and upper survival functions, Case D

are presented in Figure 7.
Figures 2 to 7 illustrate the combination of information from the two samples in

this example, with differing censoring schemes applied. The lower (upper) survival
function based on a combined sample is always (pointwise) bounded by the two lower
(upper) survival functions based on the individual samples with the same censoring,
so min{SX(t), SY (t)} ≤ SZ(t) ≤ max{SX(t), SY (t)} and max{SX(t), SY (t)} ≤
SZ(t) ≤ max{SX(t), SY (t)} at every t > 0. In most cases the combination of in-
formation from different samples has also led to reduced imprecision (the difference
between the corresponding upper and lower survival functions) when compared to the
imprecision for both corresponding cases based on a single sample. Intuitively it is
quite logical that combining information from different samples leads to more total in-
formation being taken into account, reflected through less imprecision in the resulting
inferences. However, due to some specific censoring schemes, it can occur that impre-
cision in case of the combined sample is larger, at some times t, than when only one
of the samples is used. This happens, for example, in Case C, where the imprecision
in case the combined sample is used is smaller than when either one of the individual
samples is used up to t = 2.10, but beyond that value of t the upper survival func-
tion based only on the data from sample X is less than the upper survival function
based on the combined sample. This occurs because there are 10 more units at risks
beyond t = 2.06 (the last observed failure time for sample X in this case) for the
combined sample, which affects the upper survival function. It should be remarked
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Figure 6: Lower and upper survival functions, Case E

that the NPI lower survival function, based on any data set, is equal to zero beyond the
largest observation in the data set, both if this observation is an actual failure time or
a right-censored observation. Of course, differences between the NPI lower and upper
survival functions in these six figures are caused by the different censoring schemes,
where more censoring typically leads to more imprecision, particularly for larger val-
ues of t. At any right-censoring time, the NPI lower survival function decreases in
value, reflecting that beyond such a time point (compared to just before it) there is less
evidence in the data in favour of the next unit surviving past that point. However, as
a right-censored observation does not actually provide evidence against such survival,
NPI upper survival functions do not decrease at right-censoring times, they do so only
at observed failure times (at which of course also the NPI lower survival functions
decrease).

5 Concluding remarks

This paper has introduced NPI based on multiple independent samples under different
censoring schemes, which fits in general theory of meta-analysis. We used the fact that
the resulting combined sample in such cases can be represented as a single NPI pro-
gressive censoring sample, as defined in Section 2. Explicit formulae for the NPI lower
and upper survival functions for progressive Type-I and Type-II censoring schemes are
also presented for the first time. In addition to using the NPI lower and upper survival
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Figure 7: Lower and upper survival functions, Case F

functions for inference about the next observation based on the combined sample, sev-
eral other inferences can be based on the NPI approach in such cases. For example,
one can consider the event that the next observation from the combined sample will
be in a specific interval, NPI lower and upper probabilities for such an event are easily
derived using the M -functions presented in Section 2. One may also want to compare
the next observations related to different sets of combined samples, NPI for such prob-
lems is possible along the same lines as the methods presented by Maturi (2010), who
developed NPI methods for multiple comparisons for a range of right-censored and
progressively censored data (but not with combination of data from different samples).

Appendix

We present the proofs of the results in Section 2.2. First, consider Type-II progressive
censoring (Definition 2.1). We need notation for multiple right-censorings at the same
time, which for the NPI approach we actually assume all to differ infinitesimally and, if
such censorings occur simultaneously with an actual failure event, then we assume the
censoring times to be infinitesimally greater than the corresponding failure time. To
achieve this, let cili denote the right-censoring time of the li-th unit censored at zi, for
i = 1, . . . , rz and li = 1, . . . , Ri. We mean here that cili is infinitessimally greater than
zi. So, for any k ∈ {1, . . . , rz}, we have zk < ck1 < . . . < cklk < . . . < ckRk

< zk+1

where the actual differences for all but the final inequalities are very small, the limiting
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case for these differences reducing to 0 leads to the NPI results. Furthermore, let ñcklk
be the number of units at risk at cklk , that is ñcklk

= nz − k− (lk − 1)−
∑k−1
l=1 Rl. The

NPI upper and lower survival functions for Znz+1, given in Equations (4) and (5), are
derived as follows.

For t ∈ [zi, zi+1) with i = 0, 1, . . . , rz , the definition of the NPI upper survival
function by Maturi et al. (2010b) leads to

SZnz+1(t) =
1

nz + 1
ñzi

∏
{j:cj<zi}

ñcj + 1

ñcj

=
1

nz + 1
ñzi

i−1∏
k=1

Rk∏
lk=1

ñcklk
+ 1

ñcklk

=
1

nz + 1
ñzi

i−1∏
k=1

nz − k −
∑k−1
l=1 Rl + 1

nz − k −
∑k
l=1Rl + 1

= ñziMZnz+1(zi, zi+1)

where ñzi = nz − i−
∑i−1
l=1 Rl + 1.

To prove the corresponding NPI lower survival function, let t ∈ (tili , t
i
li+1] with

i = 0, 1, . . . , rz and li = 0, 1, . . . , Ri, and in, addition to notation introduced above,
let tiRi+1 = ti+1

0 = zi+1, for i = 0, 1, . . . , rz − 1. The definition of the NPI lower
survival function by Maturi et al. (2010b) leads to

SZnz+1
(t) =

1

nz + 1
ñtili+1

∏
{j:cj<tili+1}

ñcj + 1

ñcj

=
1

nz + 1

∏
{j:cj<zi}

ñcj + 1

ñcj
× ñtili+1

∏
{j:zi<cj<tili+1}

ñcj + 1

ñcj

= MZnz+1
(zi, zi+1)× ñtili+1

∏
{j:zi<cj<tili+1}

ñcj + 1

ñcj

= MZnz+1(zi, zi+1)× ñtili+1

[
ñzi

ñtili+1
+ 1

]1−a

where ñtili+1
= nz − i −

∑i−1
l=1 Rl − li and a = 1 if {j : zi < cj < tili+1} = ∅ and

a = 0 if {j : zi < cj < tili+1} 6= ∅.

Secondly, consider Type-I progressive censoring (Definition 2.2). Let cqlq denote
the right-censoring time of the lq-th unit censored at Tq , for q = 1, . . . , Q and lq =
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1, . . . , Rq , with infinitesimally small differences between coinciding right-censored
observations and the corresponding Tq as explained above. For any k ∈ {1, . . . , Q},
zksk < Tk < ck1 < . . . < cklk < . . . < ckRk

< zk+1
1 , and let ñcklk

be the number of units

at risk at cklk , so ñcklk
= nz −

∑k
l=1 sl − (lk − 1) −

∑k−1
l=1 Rl. Similarly, let ñzkik

be

the number of units at risk at zkik , so ñzkik
= nz − (ik − 1) −

∑k−1
l=1 Rl −

∑k−1
l=1 sl,

ik = 1, . . . , sk. The NPI upper and lower survival functions for Znz+1, given in Equa-
tions (6) and (7), are derived as follows.

For t ∈ [zqiq , z
q
iq+1) with iq = 1, . . . , sq and q = 1, . . . , Q, the definition of the NPI

upper survival function by Maturi et al. (2010b) leads to

SZnz+1
(t) =

1

nz + 1
ñzqiq

∏
{j:cj<zqiq}

ñcj + 1

ñcj

=
1

nz + 1
ñzqiq

q−1∏
k=1

Rk∏
lk=1

ñcklk
+ 1

ñcklk

=
1

nz + 1
ñzqiq

q−1∏
k=1

nz −
∑k
l=1 sl −

∑k−1
l=1 Rl + 1

nz −
∑k
l=1 sl −

∑k
l=1Rl + 1

= ñzqiq
MZnz+1

(zqiq , z
q
iq+1)

with MZnz+1(zqiq , z
q
iq+1) as given in Definition 2.2. Furthermore, for t ∈ [0, z11) we

have SZnz+1(t) = 1.
The corresponding NPI lower survival function is derived in two steps. First, con-

sider t ∈ (tqlq , t
q
lq+1] with q = 1, . . . , Q and lq = 1, . . . , Rq , and we introduce ad-

ditional notation tqRq+1 = zq+1
1 for q = 1, . . . , Q. The definition of the NPI lower

survival function by Maturi et al. (2010b) leads to

SZnz+1
(t) =

1

nz + 1
ñtqlq+1

∏
{j:cj<tqlq+1}

ñcj + 1

ñcj

=
1

nz + 1

∏
{j:cj<zqiq}

ñcj + 1

ñcj
× ñtqlq+1

∏
{j:zqiq<cj<t

q
lq+1}

ñcj + 1

ñcj

= MZnz+1
(zqiq , z

q
iq+1)× ñtqlq+1

∏
{j:zqiq<cj<t

q
lq+1}

ñcj + 1

ñcj

= MZnz+1
(zqiq , z

q
iq+1)× ñtqlq+1

×
ñzqsq

ñtqlq+1
+ 1

where ñtqlq+1
is the number of units at risk at tqlq+1 and MZnz+1

(zqiq , z
q
iq+1) is given in
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Definition 2.2.
Secondly, consider t ∈ (tqiq , t

q
iq+1] with q = 1, . . . , Q and iq = 1, . . . , sq , and

introduce additional notation tqsq+1 = cq1 for q = 1, . . . , Q. The definition of the NPI
lower survival function by Maturi et al. (2010b) leads to

SZnz+1
(t) =

1

nz + 1
ñtqiq+1

∏
{j:cj<tqiq+1}

ñcj + 1

ñcj

=
1

nz + 1

∏
{j:cj<zqiq}

ñcj + 1

ñcj
× ñtqiq+1

∏
{j:zqiq<cj<t

q
iq+1}

ñcj + 1

ñcj

= MZnz+1
(zqiq , z

q
iq+1)× ñtqiq+1

∏
{j:zqiq<cj<t

q
iq+1}

ñcj + 1

ñcj

= MZnz+1
(zqiq , z

q
iq+1)× ñtqiq+1

× 1

where ñtqiq+1
is the number of units at risk at tqiq+1 and MZnz+1

(zqiq , z
q
iq+1) is given in

Definition 2.2. Furthermore, for t ∈ (0, z11 ] we have SZnz+1
(t) = nz/(nz + 1).
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