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Abstract
Fast frame rate complementarymetal–oxide–semiconductor cameras in combinationwith photon
counting image intensifiers can be used formicrosecond resolutionwide-fieldfluorescence lifetime
imagingwith single photon sensitivity, but the time resolution is limited by the camera exposure time.
We showhere how the image intensifierʼs P20 phosphor afterglow can be exploited for accurate tim-
ing of photon arrival well below the camera exposure time. By taking ratios of the intensity of the
photon events in two subsequent frames, photon arrival timeswere determinedwith 300 ns precision
with 18.5 μs frame exposure time (54 kHz camera frame rate). Decays of ruthenium and iridium-
containing compoundswith around 1 μs lifetimesweremappedwith this technique, including in
livingHeLa cells, using excitation powers below 0.5 μW.Details of the implementation to calculate the
arrival time from the photon event intensity ratio are discussed, andwe speculate that by using an
image intensifier with a faster phosphor decay tomatch a higher camera frame rate, photon arrival
timemeasurements on the nanosecond time scale could be possible.

1. Introduction

Single photon detection and timing capabilities are important in a number of fields such asfluorescence
spectroscopy andmicroscopy, lidar, optical tomography and quantum cryptography, as has been reviewed
recently [1–4]. Time-correlated single photon counting (TCSPC), in particular, is a precise, reliable andmature
technique to time photon arrival. Its popularity andwidespread use are due to its advantages afforded by its
digital nature, and include a high dynamic range, high sensitivity, linearity, well-defined Poisson statistics and
easy visualization of photon arrival time data [5, 6].

Recent developments in sensor technology have allowed complementarymetal–oxide–semiconductor
(CMOS) cameras to reachMHz frame rates. Unlike the pixels in charge-coupled device (CCD) cameras, CMOS
pixels have their own amplification, digitization and read-out circuitry. No charge transfer takes place, and all
pixels can be read out simultaneously and at very high speeds.However, direct detection of individual photons is
not possible with these particular cameras. In this context, we note CMOS single photon avalanche diode
(SPAD) array image sensors have been developed, incorporating picosecond timing circuitry in each pixel or
chip [7–9].

Wide-field TCSPC in themicrosecond time range can be performedwith a fast frame rate CCDorCMOS
camera in combinationwith an image intensifier operatedwith saturated gain, which allows single photons to be
detected [10, 11]. After each excitation pulse, a sequence of frames is acquired during the decay time of the
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probe, and this process is repeated until enough photons are collected so that a decay histogram is obtained for
each pixel of the image.

A similar approach is also used in ion velocitymapping, wheremolecules in vacuum are ionised by a laser
beam, and the ionised fragments accelerated towards amicrochannel plate stack. The electrons generated thus
are converted into light on a phosphor screenwhich is imaged by a camera, and the arrival time and size of the
event can give information about the type of fragment, as reviewed recently [12].

The time resolution of these approaches is limited by the frame rate of the camera—currently 2MHzwith
commercially available CMOS cameras. Amicrosecond time resolution is ideal for imaging the decay of long-
lifetime probes, which are useful especially in biological imaging, where time-resolved acquisition allows the
discrimination between fast-lived autofluorescence of the sample and the long lifetime signal from the probe [4].
In recent years, there has beenmuch interest in the development of transitionmetal probes [13, 14]. These
probes can have a high extinction coefficient, high quantumyield and large Stokes shift, and are chemically
stable andwater soluble. They usually absorb in the visible spectrum, and their emission can be tuned. Their
typical lifetimes range fromhundreds of nanoseconds to a fewmicroseconds, allowing faster data collection than
conventional lanthanide probes whose typical lifetimes range fromhundreds ofmicroseconds to few
milliseconds [15, 16].Many phosphorescent d-block complexes are quenched bymolecular oxygen,making
them suitable probes for this species [17]. Phosphorescence lifetime imaging of such complexes has been used
for the study of air-flow and pressure in aerodynamic studies, also known as luminescent barometry [18], as well
as formappingmolecular probes for oxygen in cells [19]. Oxygen sensing is important for determining the
metabolic state of cells, andmetal–ligand complexes of ruthenium, or other transitionmetal ions such as
iridium, osmiumor rhenium can be used asminimally invasive optical oxygen sensors [17, 20]. The transition
metal complexes can undergometal–ligand charge transfer to form an excited triplet state, and the collisional
quenching of oxygen and the sensor reduces the luminescence quantum yield and lifetime.Moreover, long
lifetime probes enable highly sensitive auto-fluorescence free imaging [21–23] includingmapping of
autofluorescence-free Förster resonance energy transfer (FRET), for examplewith a terbium complex as donor
and greenfluorescent protein (GFP) acceptor by detecting long-lifetime terbium-sensitizedGFP emission [24].
This approachwas reported to have a high sensitivity and speed to study protein–protein interactions in living
cells [24].Moreover, themeasurement of polarization-resolved lifetimes in themicrosecond region allows the
determination of the rotational diffusion of largemolecular weight proteins or othermacromolecules [25], and
can be used for binding or cleavage studies. Nanosecond fluorescence lifetimes are in principle not suitable for
these studies as they are too short: a large protein barelymoves before the fluorophore emits within nanoseconds
after excitation. Importantly, fluorescence anisotropy studies allow the stepwise observation of cleavage or
complexation [26]whereas FRET as a proximity reporter would only be able tomeasure a single step of such a
phenomenon.

TCSPC as amethod tomeasure andmap decay times has been reported to have the best signal-to-noise ratio
of the standard time-resolved imagingmethods [27–30] which is an important consideration in view of a limited
photon budget available from the probe before it is irreversibly bleached [31]. It is also relatively free of various
artefacts [32–36], and independent of excitation intensity variations where the number of detected photons
varies, but their arrival time does not.Moreover, excitation powers below 0.5 μWare sufficient formicrosecond
resolutionwide-field TCSPC imaging [11]. Here, we show amethod to performphoton arrival timingwell
below the camera exposure time, by exploiting the image intensifierʼs phosphor decay.

The image intensifier phosphor screen has an afterglow that is usually undesired [36–39]. The phosphor
decay time depends on the type of phosphor and can range fromnano- tomilliseconds, which can cause image
artefacts with time-resolvedmeasurements [36].However, it can be exploited tofind the photon arrival time
within the frame exposure time. The principle of obtaining photon arrival time information from the phosphor
decay characteristics has been demonstrated before [40], andwe note that a similar double exposure approach
has been used previously for ion velocitymapping, where one [41] or two [42]CCDcameras were used at 25Hz
frame rate. The principle of thismethod is discussed below, and themeasurement of ruthenium and iridium
decays with∼1 μs lifetime at 54 kHz camera frame rate (18.5 μs frame exposure time) is demonstratedwith
excitation powers below 0.5 μW.An application to life sciences is demonstratedwith themeasurement of decays
of ruthenium-based oxygen sensor Ru(dpp) +

3
2 in livingHeLa cells. The potential for further improvement of

time resolution is also discussed.

2. Theory

An image intensifier is a vacuum-based photodetector converting photons into photoelectronswith a
photocathode, accelerating and amplifying the electronswhich finally strike a phosphor screen. The
amplification of the signal is based on themultiplication of electrons insideMCPs, as schematically shown in
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figure 1(a).With a three-stage intensifier, up to 107 photons can be created by an incoming single photon. This
allows single photon events to be imagedwith aCCDor aCMOS camera. Photon counting image intensifiers
were originally developed because of their sensitivity, and theHubble space telescopeʼs faint object camera, for
example, employed a photon counting cascade image intensifier [43, 44]. The European space agencyʼs x-ray
multi-mirror satellite wasfittedwith a photon counting imaging opticalmonitor [45], and several other
astronomical observatories employ photon counting imaging techniques, too.

The phosphor screen decay usually follows amulti-exponential function, where the decay time components
depend on the type of phosphor and can range fromnanosecond tomillisecond time scale [37–39]. Although
the statistical nature of the signal amplification process in theMCPs leads to a broad pulse height distribution
(i.e. variation in the brightness of the photon events), variations in the phosphor decay function are small, as the
gain voltage isfixed [46]. The transit time through theMCPs is short leading to a short transit time spread, so the
photon arrival time information is preserved [47, 48]. Instrument response functions (IRFs) shorter than 20 ps
have been reportedwhen usingMCPdetectors for timing [49]. If the phosphor decay time and the camera frame
rate arematched such that the photon events can be detected inmultiple frames, the photon arrival timewithin
the frame exposure time can be determined from the relative intensities of the photon events in subsequent
frames [40–42]. For a photon arriving at the beginning of the frame exposure time, the intensity of the event in
thefirst frame is larger than in the second frame. For photons arriving later during the exposure time the
intensity in the first frame decreases, and the intensity ratio between the second and the first framewhere the
photon is detected increases, as illustrated infigure 1(b).

Themathematical framework to determine the photon arrival time from the phosphor decay has been
discussed in-depth previously [40]. Briefly, assuming that the phosphor decay follows amulti-exponential decay
function

∑= τ−f t a( ) e (1)
j

j
t j

with amplitudes aj and time constants τ j , and that there is additionally a dead time duringwhich no light is
detected (due to camera readout) in the time interval zT(0, ) occupying a fraction z of the full periodT between
two frames, for a photon arriving at time xT after the start of the exposure, the intensity in themth frame is given
by

∫ ∑ τ= − = −
β

β
τ β τ β τ− −( )I f t xT t a( )d e e e , (2)m

j

j j
xT j j j

1

2
1 2

where β = − +m T zT xTmax (( 1) , )1 , β = mT xTmax ( , )2 , and ⩾m 1 [40]. See figure 2 for a detection
timing diagram.

If the exact phosphor decay function and dead time of the camera are known, the arrival time x can be found
using afitting routine thatminimises the difference between themeasured intensities in frames =m n1 ... and
the theoretical intensities I n1 ... for these frames calculated from the phosphor decay function using equation (2)

Figure 1. (a) Schematic diagramof an image intensifier. An incoming photon ( νh ) hits the photocathode creating a photoelectron
( −e ), which is accelerated into amicrochannel plate (MCP) by a high voltage. Its impact createsmore electrons which aremultiplied
by travelling along the channels of theMCP, and the resulting electron cloud is converted back to photonswhen it reaches the
phosphor screen. (b)Determining the photon arrival time from the phosphor decay: as the photon arrival timewithin the frame
exposure time increases, the intensity ratio between the 2nd and the 1st framewhere the photon is detected increases.Δt indicates the
camera dead time.
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[40]. In this work the exact phosphor decay function and camera dead-time are not known, and the ratio-to-
time conversion function is determined experimentally bymeasuring intensity ratio of thefirst two frames
where the photon is detected I I2 1 for known arrival times x.

3.Method

3.1.Data acquisition
Adiagramof the experimental setup is shown infigure 3. A Photron FastcamSA1.1 CMOS camera (Photron,
CA)was used for image acquisitionwith 54 kHz frame rate and 320 × 256 pixels image size. Although the
exposure time can be varied, we used themaximumpossible value of 1/54 kHz. A pulsed 467 nmdiode laserwith
90 ps pulse width (PLP-10,Hamamatsu, Japan)was used for illuminating the sample. The laser was triggered
from the camerawith a TTL pulse, also at 54 kHz. The delay for the trigger pulsewas set to 5 μs after the start of
the frame exposure for decaymeasurements or varied from zero to exposure time for the ratio-to-time
calibrationmeasurements. A 40mmdiameter dual proximity-focused, three-MCP image intensifier (Photek,
UK) operating in photon countingmode [50, 51]wasmounted on the side port of an invertedmicroscope
(Eclipse TE2000-U,Nikon, Japan). The laser was focused into the sample either through a 4× 0.13NA air
objective (Nikon, Japan; for solutions of the ruthenium compound and the iridium-containing beads) or a
100× 1.4NAoil immersion objective (Leica, Germany; for cell samples), and the detected light was collectedwith
the same objective. A green filter cube (Nikon, Japan; ex:480/30 nm,DM:505 nm, em:515LP) was used for
separating the excitation and emission light; for reflectionmeasurements amirror was placed on the sample

Figure 2.Detection timing diagram. The camera exposure periodT consists of the dead time zT(0, ) and the active time zT T( , ). The
arrival of a photon at time xT relative to the beginning of the exposure period, together with the phosphor decay function f t( ),
determines the intensity Im detected in the framem.

Figure 3.Diagram of the experimental setup. The image intensifierwasmounted on the side port of an invertedmicroscope, and the
phosphor screen of the intensifierwas imaged onto the camerawith two relay lenses. The excitation laser was triggered from the
camerawith an adjustable delay after the frame exposure start time.
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stage and the emission filter was removed. The phosphor screen of the intensifierwas imaged onto the camera
using two 50mm focal length photographic lenses (F=1/1.2, Canon, Japan and F=1/1.4, Nikon, Japan).

3.2.Data processing
The acquired frames saved in 16 bit raw data format containing single photon events were processedwith in-
house softwarewritten inC. The frameswere first thresholded, and the backgroundwas subtracted. Areas that
had between eight and 300 adjacent pixels above the thresholdwere counted as photon events. The brightest
pixel of this area was recorded as the event centre pixel, and the total area and intensity of the event were
determined. The software then checkedwhether an event had been detected at the same position in the previous
frame. If the eventwas detected in at least three consecutive frameswith the ratio of the third and the second
detection in the expected range consistent with a decaying photon event rather than a newone, the ratio of the
second and the first detectionwas recorded in a histogram. The decays werefittedwith TRI2 software [52, 53]
using a Levenberg–Marquardtfitting routine.

3.3. Sample preparation
Ruthenium-tris(4, 7-diphenyl-1, 10-phenanthroline) dichloride (Ru(dpp)3Cl2, Sigma-Aldrich, UK), wasmixed
withwater and glycerol in different proportions: 100%water, 100%glycerol, 20/80%glycerol/water and 50/
50%glycerol/water and deposited on a coverslipwith fourwells for imaging. For the cell samples, Ru(dpp)32+
wasmixedwith 300 μl of DMEM(Sigma-Aldrich, UK) and added to themediumofHeLa cells grown on #1.5
coverslip glass bottomdishes (Thistle Scientific, UK). The cells were incubated at °37 Covernight, washed twice
withOptiMEM(Sigma-Aldrich, UK), then imaged inOptiMEM. Polystyrene beads (200 μmdiameter) were
swollen by suspension in dichloromethane and then soaked in dicholoromethane solutions of iridium
complexes Ir(BMes2)2acac [54], Ir(ppy)3 and Ir(fppy)3 [55], palladiumocatethylporphine (Pd(OEP), Sigma-
Aldrich,UK) and 9, 10-bis(phenylethynyl)anthracene (BPEA). After soaking for 30min the supernatant
solutionwas decanted and the beadswashedwith ethanol, which causes them to shrink and trap the dyes inside
the particles. After thoroughwashingwith ethanol the beadswere air dried and placed on #1.5 coverslips for
imaging.

4. Results

4.1. Single photon events
The single photon events on the phosphor screen of the image intensifier recordedwith the camera vary in size
and brightness, but are approximately round [56] and stand out from theflat, nearly zero background, as shown
infigures 4(a) and (b). Figure 4(c) shows enlarged areas of three photon events arriving at different points
during the exposure time of the 2nd frame, with the relative intensities of the first two frameswhere the photon
is detected clearly varying depending on the photon arrival time. This data set corresponds to the schematic
shown infigure 1(b). All three events can be detected inmany successive frames due to the long afterglow of the
phosphor. Due to the statistical nature of the electronmultiplication process inside each of the threeMCPs of the
intensifier, the photon event intensities varywith a broad pulse height distribution, seefigure 4(d). Importantly,
as the phosphor decay varies with gain voltage (i.e. electron energy) but notwith the number of electrons
creating the photon event [46], variations in the phosphor decay functionwith photon event intensity are
negligible.

The intensifier used in this work has a P20 phosphor screenwith a decay time of 250 μs to 1/10 of the peak
value quoted by themanufacturer. The decay is a complex exponential with a fast initial component and a long
lasting afterglow. The decay function, figure 4(e), was estimated from the reflectionmeasurements with variable
time delay between the frame exposure start time and the laser trigger pulse. However, a detailed knowledge of
the phosphor decay is not required if an experimental calibration is performed to convert the photon event
intensity ratio in two subsequent frames into an arrival time.

4.2. Ratio-to-time conversion
The ratio-to-time conversion functionwasmeasured by varying the time delay between the frame exposure start
time and the laser trigger pulse, and detecting the photons from reflected laser pulse. For each delay, a frequency
histogramof the ratio between the 2nd and the 1st detectionwas plotted, as shown infigure 5(a). AGaussianfit
revealed the peak positionswhichwere plotted against the laser trigger time delays, and fittedwith a triple-
exponential function, as shown infigures 5(b) and (c). This function is used for converting themeasured photon
intensity ratio to arrival time, figures 5(b) and (c) is thus a calibration plot for ratio-to-time conversion. For the
following lifetimemeasurements, a 5 μs delaywas chosen for the excitation pulse to avoid timing inaccuracies
for photons arriving during or immediately after the dead time (see lower part offigure 5(c)).
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4.3. Lifetimemeasurements
4.3.1. Ruthenium solutions
Different water/glycerolmixtures containing the ruthenium complex Ru(dpp) +

3
2 were imaged on a coverslip

with fourwells (figure 6). After the brightest pixel of each photon event was found, an intensity imagewas
obtained by adding all frames together, shown in figure 6(a). The lifetime image, figure 6(b), was obtained by
calculating the decay for each pixel of the image. Figure 6(c) shows the decays of the four different areas in
figure 6(b)with all pixels in each area binned together. The decays werefittedwith amonoexponential decay law
which yields lifetimes of 1.30, 1.41, 3.05 and 4.08 μs for the solutions of 0, 20, 50 and 100%glycerolmixedwith
water, respectively. The χ2-values were between 1.0 and 1.5, and there are no systematic deviations in the
residuals for the longer decays, indicating a good fit. The same trend can be seen in the histograms of the
individual pixel lifetime values in different wells, shown infigure 6(d), which show around 1 μs lifetime for Ru
(dpp) +

3
2 inwater, and longer lifetimes for Ru(dpp) +

3
2 in glycerolmixtures—the lifetime increases with viscosity

due to slower oxygen diffusion rate, as expected [19]. The data set consists of 140 000 images and 370 000
photonswith total data acquisition time of 2.6 s. On average, 2.7 newphotonswere detected in each frame, with
mean count rate of 144 000 photons s−1.

4.3.2. Polymer beads
The lifetimes of the phosphorescent complexes Ir(ppy)3, Ir(BMes2)2acac, Ir(fppy)3 and Pd(OEP) infused into
polystyrene beadsweremeasured. Beads containing BPEA, which has a fluorescence lifetime of a few
nanosecondswere alsomeasured for comparison. The samples werefirst placed on separate coverslips,

Figure 4. (a) A typical frame containing photon events, (b) 3D representation of the same area. (c) Enlarged areas of single photons
events arriving at the beginning (top row), in themiddle (middle row) and towards the end (bottom row) of the frame exposure time
of the 2nd frame. (d) Typical photon event pulse height distribution. (e) Approximate P20 phosphor decay function. Contrast in the
images has been enhanced.
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Figure 5. (a) Log–log histogramof photon event intensity ratiosmeasured by varying the time delay between the frame start time and
the laser pulse. (b) Ratio-to-time conversion plot obtained by plotting the ratio peak positions in (a) against the laser trigger delay
times, and a three-exponential fit to the data. (c) The same plot as (b), butwith a logarithmic x-axis. The error bars in (b) and (c) are
the standard deviation of the peaks in (a).

Figure 6.Wide-field TCSPC intensity (a) and lifetime (b) images of four Ru(dpp) +
3
2 water/glycerol solutions, labelledwith glycerol%

in (a). (c) Decays for the four different areas in (b). (d)Histograms of the individual pixel lifetimes of the different solutions in (b). The
dashed line shows histogramof thewhole image. The data set colours in (c) correspond to colours in (d).
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inspected visually through the eyepiece, and their lifetimesmeasured individually (see table 1). The beadswere
thenmixed and themixture placed on a coverslip for imaging (figure 7).

The different compounds are distinguishable to some extent by colour, intensity and lifetime (figures 7(a)–
(c), respectively). The lifetimes of the Ir(BMes2)2acac and Ir(fppy)3 compounds are very similar, and they
cannot be easily distinguished by lifetime or intensity alone, although their emission spectra are different.
Conversely, the green BPEAfluorescence and Ir(ppy)3 compound look identical in both colour and intensity
images, but show very good contrast in the lifetime image (see figures 7(a)–(c), bottom left corner). The decays
for these two beads are shown infigure 7(d), wheremonoexponential fit yields lifetimes 0.32 and 0.97 μs for the
greenfluorescent beads containing BPEA and the phosphorescent Ir(ppy)3, respectively.

The data set consists of 280 000 images and 220 000 photonswith an average of 0.8 new photons/frame. The
total data acquisition timewas 5.1 s with amean count rate of 43 000 photons s−1.

4.3.3. Ruthenium in living cells
The lifetime of Ru(dpp) +

3
2 wasmeasured in livingHeLa cells.With overnight incubation, the cellular uptake of

the ruthenium complexwas good and the compoundwas found to be distributed in the cytoplasm avoiding the
nucleus (figure 8). Due to the cellular autofluorescence, the decay has a fast component andwas fittedwith a
double-exponential function. The average lifetime of the complexwas found to be 2.7 μs, with a fast component
of 0.1 μs attributable to the cellular autofluorescence. The lifetime of Ru(dpp) +

3
2 is longer than inwater, in

Table 1. Luminescence characteristics of the compounds in the beadsmixture. Life-
times τwere obtainedwithwide-field TCSPC from the phosphor decay.

Ir(ppy)3 Ir(BMes) Ir(fppy)3 BPEA Pd(OEP)

phos phos phos fluor phos

Colour Green Yellow Orange Green Red

Intensity V Strong Strong Strong V Strong Weak

τ(μs) ∼0.8 ∼1.1 ∼1.2 ∼0.3a ∼0.3

a Measured value, literature value:∼0.003 μs.

Figure 7.Mixed beadswith different compounds: Ir(ppy)3, Ir(BMes2)2acac, Ir(fppy)3, Pd(OEP) +BPEA. (a) Colour photo, (b)
intensity image (contrast has been enhanced for clarity), and (c) lifetime image (monoexponential fit). (d)Decays for the two beads at
the bottom left corner of the images. The image acquisition timewas 5 s.
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agreementwith previouswork [11] and indicating partial protection fromquenching bymolecular oxygen. The
total data acquisition timewas 1.3 s, duringwhich 70 000 frames and 57 000 photonswere collected, with an
average of 0.8 newphotons/frame andmean count rate of 44 000 photons s−1. The excitation powerwas below
0.5 μW.

5.Discussion

Our results show that the phosphor afterglow in photon counting image intensifiers does not necessarily have to
be an undesirable nuisance, but, on the contrary, can be exploited to obtain photon arrival time information
within the camera exposure time. This is conceptually similar to a double exposure technique proposed for
time-of-flight studies in velocitymapping [41, 42].However, rather thanmeasuring the time offlight of ion
fragments, here the photon arrival timewasmeasured. It allowed us to obtain the decay of luminescent probe Ru
(dpp) +

3
2 and Iridium-based compounds in each pixel of an image, thus allowing single-photon sensitive lifetime

mappingwithwide-field TCSPCwith time-resolutionwell below the camera exposure time. The image size is
larger than inmicrosecond resolutionwide-field TCSPCwith a P47 short decay time phosphorwhere the
photon events are imaged directly [10, 11] (as a slower frame rate allows a larger image size), and themethod is
single photon sensitive which is an advantage over gating approaches, where signal outside the gate is lost. A low
excitation power in the order of 0.5 μWwas used to obtain clear lifetime contrast in a few seconds
acquisition time.

Themicrosecond resolutionwide-field TCSPC imaging approach described here is especially well suited for
time-resolved imaging of transitionmetal complexes with typical lifetimes in themicrosecond region [20],
including time-resolved luminescence anisotropy imaging [25]. It combines fast image acquisitionwithin a few
secondswith a low excitation power—well below 1 μW, i.e. more than 1000 times lower than reported
previously with a sequential time-gating approach [21, 22]. Due to the digital nature of photon counting and its
associated advantages—e.g. Poisson statistics, a large dynamic range, a high time resolution, easy visualization of
decays and the ability to performmeaningfulmulti-exponential decay analysis—it also has a better signal-to-
noise ratio than frequencymodulation techniques at low signal levels [27], essentially because the signal
intensity has to be high enough so itsmodulation is practical.Moreover, frequencymodulation techniques have

Figure 8. LivingHeLa-cell labelledwith ruthenium compoundRu(dpp) +
3
2 . (a) Phosphorescence intensity image obtained by single

photon counting, (b) composite transmission (grey) andRu(dpp) +
3
2 intensity (red), (c) lifetime imagewith a lifetime distribution

histogram (inset). (d) Decay data of all pixels binned. A biexponential fit yields amean lifetime of 2.7 μs for Ru(dpp) +
3
2 and a 0.1 μs fast

component for autofluorescence. The images were acquired in 1.3 s.

9

New J. Phys. 17 (2015) 023032 LMHirvonen et al



been reported to suffer from aliasing [33, 35], bleaching [32] and calibration [34] artefacts and a limited
dynamic range [57].However, for bright samples and high signal levels, frequencymodulation techniques
perform reasonably well and are preferable to time gatingwhere a single gate ismoved over the decay, as no
photons are lost.We note here that the latest cameras for frequency-domain FLIMdetection dispensewith an
image intensifier and use an all solid state CCD/CMOS camera [58, 59], thus allowing phosphor-free frequency
domain FLIM, avoiding artefacts associatedwith the phosphor decay [36].

The performance of a FLIM technique not only depends on its general operating principle, but also on the
technical details of its particular implementation. TCSPC-basedwide-field FLIM can be implemented using
intensifiers with a position-sensitive read-out or SPAD arrays.Wide-field TCSPCFLIMwith picosecond time
resolution can be performedwithMCP-based photon counting image intensifiers [48, 60]. Instead of using a
phosphor as in gated ormodulated image intensifiers, an electronic read-out is employed. Various architectures
exist, such as crossed delay line anodes, wedge and strip anodes or quadrant anodes. Quadrant anode [61–65]
and delay line anode [66, 67] detectors have successfully been combinedwith picosecond timing and
fluorescencemicroscopy. They typically detect one photon per pulse for thewholefield of view, but advanced
read-out architectures allowingmulti-photon hits to be detected have been designed [68]. Still, the collection of
microsecond decays, while certainly possible, would take a long time due to the limited parallel photon detection
capabilities of these detectors.

In the last decade a number of SPADarray image sensors have emerged, which simultaneously deliver single
photon sensitivity, megapixel spatial resolution and picosecond timing resolution [7–9]. These SPADarrays
hold great promise for the advancement of time-resolved fluorescencemicroscopy, but they currently have a low
fill factor andmuch higher noise levels thanMCP-based detectors. The current lowfill factor of well below 10%
makes their use as cameras for direct FLIM imaging inefficient unless this drawback is overcome, for example
withmicrolenses ormultifocalmultibeam scanning approaches [69]. The dark noise performance of SPAD
arrays, typically hundreds of counts per pixel SPAD, depending on the operating voltage and temperature [8],
can be improved to tens of counts per pixel (25Hz has been quoted [70]) but it is stillmany orders ofmagnitude
higher thanMCP-based intensifiers, for which 0.02 events s−1 cm−2 have been quoted [71]. This consideration
gains in importance as the detectionwindow and lifetime to bemeasured increases, and the count rate drops. It
is also an important point to consider when enlarging the size of the light sensitive area in SPADs, as the dark
noise increases with the area [8]. To the best of our knowledge, SPADarrays have not yet been used to image
microsecond decays.We note here that intensifiers, as vacuumdevices, can also be used in direct ion velocity
mapping and time-of-flightmass spectrometry [12], whereas SPAD arrays cannot directly detect ion fragments.

In this present work, two subsequent frameswere used for the arrival time determination. Althoughmore
frames can be taken into account and aminimisation routine applied tofit the phosphor decay to themeasured
event intensities [40], it was found that at 54 kHz frame rate and a P20 phosphor the ratio of thefirst two or three
detections provided themost useful information. Although the P20 has a long decay component that allows the
events to be detected in up to tens of subsequent frames [38], the intensity is low and the decay so slow that after
first three frames the ratio gets very inaccurate due to noise and digitisation effects [72].

Themaximum count rate achievedwas 144 000 photons s−1 for the Ru(dpp) +
3
2 measurement inwater/

glycerol solutions, where the photonswere distributed approximately equally over thefield of view.Due to the
long phosphor afterglow, the photon event pixels were occupied for up to dozens of frames after the event. A
phosphor screenwith a shorter afterglowwould allow the event pixels to be freed quicker for new events.
Improvement of the image processing software to better separate or take into account partially overlapping
events can also improve the count rate—here care was taken to avoid any overlap of photon events.

If the phosphor decay function and the camera dead-time are known, the ratio-to-time conversion can be
calculated using equation (2). In this work, the conversion functionwas obtained experimentally, because
neither the phosphor decay function nor the exact camera dead-timewere known. According to the camera
manufacturer the Photron SA1.1 dead-time is∼0.6 μs and does not varywith the frame rate or image size.
However, it was found that at 54 kHz frame rate and 320 × 256 pixels image size,measurements with less than
∼3 μs delay between the frame exposure start time and the laser pulse yielded results which did notfit the
conversion function (see figure 5(c)). For decaymeasurements, a 5 μs delay was therefore chosen for the
excitation pulse. The calibration and the decaymeasurements have to be carried out under identical
experimental conditions, in particular the intensifier gain settings: a change in the intensifier gain can affect the
phosphor decay function [46].We note here that illumination or emission intensity variations in principle do
not affect the decaymeasurement as TCSPC is independent of this—a change in intensity only changes the
number of detected photons, but not their arrival time.

In these experiments phosphorescence lifetimesweremeasured in the timescale of around∼0.3 to 5 μs. A
result of∼0.3 μs was obtained for afluorescentmaterial BPEAwhere the actual lifetime is a few nanoseconds.
This represents the IRF and is a limitation of the current setupwith this phosphor and frame rate. 5 μs lifetimes
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are on the upper end of themeasurable scale with this excitation repetition rate, to avoid re-excitation of the
sample before it is fully decayed.

By converting the ratio to time, the reflected pulses at different delays after the frame exposure start time can
be used as an IRF and to estimate the timing accuracy, as shown infigure 9(a). For the 5 μs delay, the full width at
halfmaximum (FWHM)of the IRF is around 1.5 μs. Although this is quite large, even <1 μs decays can be
measured accurately as long as the IRF is recorded before eachmeasurement, and deconvolved from the decay
data [6]. The IRF FWHMgets narrowerwith increasing time and reaches aminimumof about 0.3 μs at around
14 μs delay where the ratio of the 2nd and the 1st detection is one before starting to broaden again, see
figure 9(b). Importantly, the number of detected photons remained constant regardless of the photon arrival
time, as shown infigure 9(c).

The current time resolution of around 300 ns IRF FWHM is based on a frame rate of 54 kHz and the decay of
a P20 phosphor. In order to improve this number, both a faster frame rate and a faster phosphor are required.
Frame rates of 2MHz are possible, albeit only with small images, which allows 500 ns between exposures. P46
phosphors, which advantageously emit in the greenwhere theCMOS sensors are usuallymost sensitive, have a
decay time of around 300 ns [39]. If the excitation pulse is placed near the end of the exposure time, and the
decay extends into the second frame (across the dead time) at frames rates of say 500 kHz, then itmaywell be
possible to achieve timing resolutions of the order of tens of nanoseconds. The signal-to-noise ratiowill depend
on the dead time, the phosphor decay function, the length of the exposure time, and the delay, i.e. the position of
the IRF in the frame exposure time. Due to this variety of factors influencing the time resolution, for a given
phosphor and frame rate, it is best determined experimentally.While the timing accuracymay allow the
measurement and imaging of nanosecond fluorescence decays, thus performing true nanosecond FLIM, the
overall count ratemay be limited by gain depletion to 10MHzor so [73].

6. Conclusion

Wehave demonstrated that the long-lived, invariant decay of the phosphor screen of the image intensifier can be
exploited tofind the photon arrival timewithin the frame exposure time.Whereas our previous approach using
a fast camera and a short phosphor decay intensifier (P47) also offered single photon sensitivity and high speed

Figure 9. (a) IRFs for various time delays of the excitation pulse. (b) FWHMof the IRF as a function of the time delay. The valueswere
measured twice, and the error obtained from standard deviation. (c) The number of detected photons for the different data sets
remains constant.
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[11], and could in principle also benefit applications wheremicrosecond timing is not required, the present
approach is specifically designed to achieve photon arrival timing. This is relevant for general time-of-flight
measurements, e.g. in lidar [74, 75], ion velocitymapping [12, 41, 42] or photon correlation techniques [76],
butwe have employed this approach for lifetimemapping.

Combinedwith an ultrafast camera, enough photons can be collected for a lifetime image in amatter of
seconds. Sub-microsecond luminescence decays of transitionmetal compounds weremeasuredwith 54 kHz
camera frame rate (18.5 μs frame exposure time), including a ruthenium complex Ru(dpp) +

3
2 in livingHeLa

cells. This complex can be used as amolecular probe for the local oxygen concentration that can be imaged in the
presence of strong auto-fluorescence. This technique combines the unique advantages of single photon
sensitivity and accuracywithwide-field data collection, enabling the collection ofmany photons per excitation
cycle. Unlike time-gated imaging techniques, every photon is collected, reducing the required illumination
intensity and acquisition time.We have used an excitation powermore than 1000 times lower than previously
reportedwith time gating [21, 22], and acquired images in a few seconds.

The advantages of sensitive wide-field TCSPC imaging as presented here can be applied to imaging
modalities such as simultaneous tracking and time decaymeasurements, total internal reflectionfluorescence,
supercritical angle fluorescence or light-sheetmicroscopy, which are difficult or impossible to implementwith
scanning techniques. By using a phosphorwith a faster decay time tomatch a higher camera frame rate, the
measurement of nanosecond decays could be possible with this technique.
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