- ¹ The role of discharge variability in determining alluvial
- 2 stratigraphy
- 3 Andrew P. Nicholas¹, Gregory H. Sambrook Smith², Mario L. Amsler³, Philip J.
- 4 Ashworth⁴, James L. Best⁵, Richard J. Hardy⁶, Stuart N. Lane⁷, Oscar Orfeo⁸,
- 5 Daniel R. Parsons⁹, Arnold J.H. Reesink^{2,4,10}, Steven D. Sandbach^{1,6}, Christopher J.
- 6 Simpson⁴, and Ricardo N. Szupiany³
- 7 ¹Geography, College of Life and Environmental Sciences, University of Exeter, Exeter,
- 8 EX4 4RJ, UK
- 9 ²School of Geography, Earth and Environmental Sciences, University of Birmingham,
- 10 Birmingham, B15 2TT, UK
- ³*Facultad de Ingeniería y Ciencias Hídricas, Centro Internacional de Estudios de*
- 12 Grandes Ríos, Universidad Nacional del Litoral, C.C. 217 (3000) Santa Fé, Argentina
- ⁴Division of Geography and Geology, School of Environment and Technology, University
- 14 of Brighton, Brighton, BN2 4GJ, UK
- 15 ⁵Departments of Geology, Geography and Geographic Information Science, Mechanical
- 16 Science and Engineering and Ven Te Chow Hydrosystems Laboratory, University of
- 17 Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
- ⁶Department of Geography, Durham University, Durham, DH1 3LE, UK
- 19 ⁷Faculté des géosciences et l'environnement, Institut de géographie, Université de
- 20 Lausanne, Batiment Anthropole, Lausanne, CH2015, Switzerland
- 21 ⁸Centro de Ecologia Aplicada del Litoral, Consejo Nacional de Investigaciones
- 22 Cientificas y Tecnicas, Corrientes, Argentina

⁹Department of Geography, Environment and Earth Sciences, University of Hull, Hull,

- 24 HU6 7RX, UK
- ¹⁰Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK
- 26

27 ABSTRACT

28 We illustrate the potential for using physics-based modeling to link alluvial 29 stratigraphy to large river morphology and dynamics. Model simulations, validated using 30 Ground Penetrating Radar data from the Río Paraná, Argentina, demonstrate a strong 31 relationship between bar-scale set thickness and channel depth, which applies across a 32 wide range of river patterns and bar types. We show that hydrologic regime, indexed by 33 discharge variability and flood duration, exerts a first-order influence on 34 morphodynamics and hence bar set thickness, and that planform morphology alone may 35 be a misleading variable for interpreting deposits. Indeed, our results illustrate that rivers 36 evolving under contrasting hydrologic regimes may have very *similar morphology*, yet be 37 characterized by *marked differences* in stratigraphy. This realization represents an 38 important limitation on the application of established theory that links river topography to 39 alluvial deposits, and highlights the need to obtain field evidence of discharge variability 40 when developing paleoenvironmental reconstructions. Model simulations demonstrate the 41 potential for deriving such evidence using metrics of paleocurrent variance.

42

43 INTRODUCTION

44 Alluvial deposits are a key archive for reconstructing river morphology,
45 hydrology and paleoenvironments (Blum and Törnqvist, 2000; Miall, 2006). However,

46	interpretation of deposits is often difficult due to the lack of unambiguous criteria linking
47	fluvial processes to sedimentary product (Bridge, 2003; Ethridge, 2011), and because the
48	stratigraphic record is incomplete (Strauss and Sadler, 1989). Quantitative theory has
49	been used to relate bedform geometry and dynamics to bedset thickness (Paola and
50	Borgman, 1991). However, studies have necessarily focused on small spatial scales, such
51	as laboratory settings (Straub et al., 2012; van de Lageweg et al. 2013), or deposits
52	associated with individual bedform trains (Bridge and Best, 1997; Leclair, 2011).
53	Moreover, existing theory neglects the role of hydrologic variability (e.g., flood
54	magnitude and duration), despite its importance as a control on river evolution and
55	deposit reworking (Tamminga et al., 2015) and bar and bedform geometry (Wilbers et al.,
56	2003), all of which determine the resultant stratigraphy. Recent work highlights a need to
57	understand better the link between morphodynamics and sedimentology, particularly at
58	bar and channel belt scales, and for a range of river patterns and hydrologic regimes
59	(Fielding et al., 2009; Ethridge, 2011; Plink-Björklund, 2015). Achieving this aim has
60	proven virtually impossible to date due to a lack of suitable field data sets. However,
61	recent advances in numerical modeling mean that it is now possible to simulate river
62	morphodynamics over large temporal and spatial scales (Nicholas, 2013; Schuurman et
63	al., 2013). Herein, we aim to: (1) evaluate the potential for models to generate spatially-
64	rich data sets quantifying alluvial architecture; (2) elucidate the roles of hydrologic
65	regime and river pattern as controls on the resultant stratigraphy; and (3) identify some
66	key limitations on the application of existing theory linking alluvial deposits to their
67	formative flows.

69 APPROACH

70	The deposits of large sand-bed rivers were simulated using a physics-based
71	numerical model of hydraulics (for sub- and supercritical flows), sediment transport,
72	bank erosion and floodplain formation. This model, described and evaluated elsewhere
73	(Nicholas et al., 2013), is suitable for representing meandering, braided and anabranching
74	channels (Nicholas, 2013). Twenty-six simulations were conducted herein using a range
75	of bed slopes, sediment loads and bank erodibilities to generate rivers (50 km in length)
76	with contrasting channel patterns. All 26 simulations used the same hydrologic regime
77	(flood hydrographs where discharge varied from a low of 10,000 m^3s^{-1} to a peak of up to
78	$30,000 \text{ m}^3 \text{s}^{-1}$). In all simulations, the river evolved from a straight initial channel of
79	constant width. Simulation duration (typically 175 floods; nominally equivalent to a
80	scaled time period of 350 years) was sufficient to rework deposits multiple times. Herein,
81	we focus on six simulations that generated low-sinuosity anabranching channels similar
82	in form to the Río Paraná (Fig. 1), for which we have characterized the deposits of km-
83	scale bars using ground penetrating radar (GPR) and sediment cores up to 5 m in length
84	(Reesink et al., 2014). The Río Paraná has a mean annual discharge of 17,000 m^3s^{-1} at
85	Corrientes, Argentina, where the geophysical surveys were based. To investigate the
86	influence of hydrologic regime on the stratigraphy, these six simulations were also run
87	with floods in which hydrograph duration was increased by factors of two and four, and
88	simulations that used a constant discharge of 22,500 m ³ s ⁻¹ (the average peak discharge for
89	simulated floods), yielding 44 simulations in total (see Table DR1 in the Data
90	Repository).

91	Modeled deposits were reconstructed from channel topography and flow
92	conditions at 700 points in time over the course of simulations. Bedsets, defined as
93	depositional elements bounded by erosional surfaces (Straub et al., 2012), were identified
94	from vertical profiles in each model grid cell (80 m by 40 m in size). Modeled sets are
95	associated with macro-scale morphologic features (e.g., unit bars) represented by the
96	model DEM, rather than smaller bedforms (e.g., dunes) that are finer than the model grid
97	resolution. Deposits were subdivided into three classes (termed 'slackwater', 'ripples'
98	and 'dunes') based on modeled flow conditions. Slackwater deposits were classified as
99	those that form below a velocity threshold of 0.1 ms^{-1} , and the criterion of van Rijn
100	(1984) was used to define the ripple/dune transition (see his fig. 1). To account for the
101	existence of non-equilibrium dunes (e.g., on the falling limb of a flood), deposits were
102	only classified as ripples where the threshold for dune formation was not exceeded at any
103	point during the hydrograph. Simulations are characterized by zero net aggradation, and
104	hence total deposit thickness scales with maximum thalweg depth (typically 25–30 m).
105	Analysis of deposits is restricted to sediment below the vegetation that is established on
106	bar tops that are inundated infrequently.

107

108 **RESULTS**

109 Simulations that yield low-sinuosity anabranching rivers (e.g., Fig. 1A), similar in 110 form to the Río Paraná (Fig. 1B), are characterized by km-scale sand bars that grow by 111 vertical stacking of unit bars, and lateral accretion of bar wings that wrap around the bar 112 head. Modeled bar deposits (Fig. 1C) are composed of stacks of four to eight bar sets 113 (similar to the three to seven bar sets reported by Bridge and Lunt, 2006). Cross-bar

114	channel fills and slackwater sediments deposited in the lee of the bar are common in
115	simulations. Truncation of deposits by unit bar migration is common, as is reworking to
116	depths of 5–10 m below the bar surface (Fig. 1D). Comparison of model results with
117	GPR data from the Río Paraná (see Table DR2 in the Data Repository) indicates that the
118	model reproduces both the vertical dimensions of bar sets, and the tendency for sets to
119	thin toward the bar surface (Fig. 1E). Modeled deposits comprise 1%-3% slackwater
120	sediments (predominantly composed of silt) and 5%-30% ripples, compared to 30%
121	ripples and 3% silt/clay (deposited in slackwater areas) on average for bars from the Río
122	Paraná near Corrientes (Reesink et al., 2014).
123	Previous studies have applied existing theory (e.g., Paola and Borgman, 1991) to
124	relate set thickness to formative flow depth for large-scale strata generated by migrating
125	bars (Bridge and Lunt, 2006; van de Lageweg et al., 2013). Such analysis often involves
126	the assumption that the spatial distribution of bed topography at an instant in time is
127	representative of the temporal distribution of topography at a point in space (i.e., that
128	morphology is a reliable measure of morphodynamics). We demonstrate below that this
129	assumption may be unjustified. Despite this, we observe a strong positive relationship
130	between mean channel water depth, calculated as the average depth at all channel
131	locations and model time steps, and mean bar set thickness for all 26 simulations
132	conducted using the same variable hydrological regime (Fig. 2A). These simulations are
133	associated with a wide range of channel patterns and widths (total channel belt width
134	varies from 1.5 km to 7 km). We find no statistically significant difference in the ratio of
135	mean bar set thickness to mean flow depth between channels with low and high
136	width:depth ratios ($n = 13$ for both groups). Moreover, the transition from

137	wider/shallower (anabranching) to narrower/deeper (meandering) channels is associated
138	with a transition from unit bar dominated to scroll bar dominated deposits. These results
139	imply a near constant ratio of mean bar set thickness to mean flow depth irrespective of
140	bar type and channel pattern.
141	The six simulations with constant discharge plot well above the regression line in
142	Figure 2A, with bar set thickness for these simulations increasing by a factor of 1.6 on
143	average compared to equivalent simulations where discharge varies. This cannot be
144	explained fully by differences in morphology (e.g., channel width, depth or pattern).
145	Moreover, simulations run with constant and variable discharge experience similar
146	average rates of deposition and bed reworking over decadal timescales. Despite this, bar
147	set thickness exhibits a clear relationship with channel morphodynamics, as defined by
148	measuring the thickness (Δz) of packages of continuous erosion or deposition in all
149	individual model grid cells throughout simulations, in order to derive a probability
150	density function (pdf) of morphodynamic event magnitude (Fig. 2B). Simulations with
151	constant discharge experience an increase in both small ($ \Delta z < 0.025$ m) and large ($ \Delta z > 0.025$ m)
152	2.25 m) scale erosion and deposition events, but a reduced frequency of intermediate
153	scale events, and an overall increase in the variance of vertical change increments. We
154	attribute this to two factors. First, bars aggrade until reaching the water surface, and
155	hence when discharge is constant, and water level changes are small, many bar surfaces
156	experience lower rates of vertical change. Second, cut and fill cycles driven by flood
157	hydrographs are absent under constant discharge, because temporal changes in flow
158	velocity (at any given location) are limited. This allows the duration and magnitude of
159	continuous deposition events to increase, thus promoting thicker sets. Similarly, where

160	flood hydrograph duration increases, periods of continuous deposition are also longer.				
161	This promotes a positive relationship between flood duration and relative bar set				
162	thickness (Fig. 2C). Significantly, the standard deviation of Δz values is an excellent				
163	predictor of mean bar set thickness across all 44 simulations (Fig. 2D). Thus, while mean				
164	bar set thickness is a function of mean channel depth, morphodynamics rather than				
165	morphology is the dominant control on stratigraphy.				
166	Further insight into these relationships can be derived by analysis of the				
167	variability in paleocurrent directions associated with the deposits, defined by the modeled				
168	velocity vectors at the time of sediment deposition, and by the ratio of the downstream				
169	and cross-stream dimensions of facies units, defined as deposits characterized by similar				
170	proportions of dunes, ripples or thick sets (see metrics used in Figure 3, Table 1, and				
171	Table DR3 in the Data Repository). Simulations that use a variable discharge regime				
172	(flood duration, $T = 2 y$) are characterized by distinct values of these metrics for both low				
173	and high sinuosity channels. Moreover, low sinuosity anabranching channels generated				
174	by variable and constant discharge regimes exhibit marked differences in deposit				
175	characteristics, despite having similar morphology. Channels formed by constant				
176	discharge exhibit lower variability in paleocurrent direction and facies units that are				
177	preferentially elongated in the downstream direction. Vertical packages of each deposit				
178	type (notably dunes) exhibit marked differences in thickness between contrasting channel				
179	planforms (see Table 1). Moreover, where discharge is constant, sediment packages are				
180	thicker on average compared to those generated under a variable discharge regime. This				
181	is consistent with the inverse relationship between unit bar set thickness and discharge				
182	variability suggested previously by Sambrook Smith et al. (2009), and indicates a				

183	tendency for bar overtopping to be inhibited where discharge is constant. This limits the
184	occurrence of lateral bar-top flows and channels, and promotes flow streamlining that
185	encourages the elongation of deposits.
186	
187	SUMMARY
188	This study illustrates the potential for using physics-based modeling to link river
189	morphodynamics to stratigraphy. Our results demonstrate that bar set thickness is a good
190	predictor of channel depth irrespective of river pattern, and associated differences in bar
191	type. However, depth estimates derived from bar set thickness data may be highly
192	sensitive to uncertainty in hydrologic regime. This suggests that paleoflow
193	reconstructions should attempt to assess the nature of discharge fluctuations, for instance
194	as expressed by reactivation surfaces that are not associated with bedform
195	superimposition.
196	Our simulations examine large rivers, such as the Rio Paraná, characterised by
197	low discharge variability (Q_{var} = annual range in discharge/mean discharge < 2) and
198	gentle slopes, that are dominated by sub-critical flows. Herein, we do not consider rivers
199	characterised by high discharge variability or flash floods (e.g., $Q_{var} > 100$; Fielding et
200	al, 2009), where deposits formed under supercritical flow may be abundant and
201	accretionary sets associated with bar migration may be poorly developed (Plink-
202	Bjorklund, 2015). Consequently, our conclusions regarding the significance of
203	hydrologic regime are almost certainly conservative.
204	Our results indicate that data quantifying paleocurrent variance and the
205	downstream and cross-stream dimensions of facies units may be valuable for constraining

206	hydrologic variability. However, such characteristics are also a function of channel
207	pattern, in particular sinuosity. These results also indicate that physical and numerical
208	models that impose a constant flow discharge may not be simulating correctly the alluvial
209	architecture of natural channels that experience discharge variability.
210	When relating bed topography to set thickness, some studies (e.g., van de
211	Lageweg, 2013) have assumed that the spatial distribution of bed heights (in bathymetric
212	data) is representative of the temporal distribution at a point in space. Our results
213	demonstrate that this need not be true. Modeled rivers with similar morphology can be
214	characterized by significant differences in temporal dynamics and hence stratigraphy.
215	Moreover, while a positive relationship between topographic variability and set thickness
216	is central to accepted theory (e.g., Paola and Borgman, 1991), we find that increased
217	hydrologic variability suppresses bar set thickness, due to its influence on
218	morphodynamics. Hydrologic regime thus plays a key role in controlling stratigraphy that
219	has yet to be incorporated within predictive theory. This implies that use of stratigraphic
220	evidence to link environment to morphology can only succeed by giving consideration to
221	the essential role of dynamics as a control on sediment accumulation and preservation.
222	

223 ACKNOWLEDGMENTS

The authors are grateful to the UK NERC that funded this work (NE/E016022/1) and the staff of CECOAL CONICET (Corrientes, Argentina) for their essential field support. Simulations were performed using the University of Exeter Supercomputer. We thank Chris Fielding, Piret Plink-Björklund, and Filip Schuurman for their thoughtful reviews that helped us improve the manuscript.

229 **REFERENCES CITED**

- 230 Bridge, J.S., 2003, Rivers and Floodplains: Forms, Processes, and Sedimentary Record:
- 231 Oxford, UK, Blackwell Science Ltd, 504 p.
- Bridge, J.S., and Best, J.L., 1997, Preservation of planar laminae due to migration of low
- relief bed waves over aggrading upper stage plane beds: Comparison of experimental
- data with theory: Sedimentology, v. 44, p. 253–262, doi:10.1111/j.1365-
- 235 3091.1997.tb01523.x.
- Bridge, J.S., and Lunt, I.A., 2006, Depositional models of braided rivers: International
- Association of Sedimentologists Special Publication, v. 36, p. 11–50.
- Blum, M.D., and Törnqvist, T.E., 2000, Fluvial responses to climate and sea level
- change: A review and look forward: Sedimentology, v. 47, p. 2–48,
- 240 doi:10.1046/j.1365-3091.2000.00008.x.
- 241 Ethridge, F.G., 2011, Interpretation of ancient fluvial channel deposits: Review and
- 242 recommendations: Tulsa, Oklahoma, Society for Sedimentary Geology (SEPM)
- 243 Special Publication, v. 97, p. 9–35.
- Fielding, C.R., Allen, J.P., Alexander, J., and Gibling, M.R., 2009, Facies model for
- fluvial systems in the seasonal tropics and subtropics: Geology, v. 37, p. 623–626,
- doi:10.1130/G25727A.1.
- 247 Leclair, S.F., 2011, Interpreting fluvial hydromorphology from the rock record: Large-
- 248 river peak flows leave no clear signature: Tulsa, Oklahoma, Society for Sedimentary
- 249 Geology (SEPM) Special Publication 97, p. 113–123.
- 250

- 251 Miall, A.D., 2006, How do we identify big rivers? And how big is big?: Sedimentary
- 252 Geology, v. 186, p. 39–50, doi:10.1016/j.sedgeo.2005.10.001.
- 253 Nicholas, A.P., 2013, Morphodynamic diversity of the world's largest rivers: Geology,
- 254 v. 41, p. 475–478, doi:10.1130/G34016.1.
- 255 Nicholas, A.P., Ashworth, P.J., Sambrook Smith, G.H., and Sandbach, S.D., 2013,
- 256 Numerical simulation of bar and island morphodynamics in anabranching
- 257 megarivers: Journal of Geophysical Research: Earth Surface, v. 118, p. 2019–2044,
- 258 doi:10.1002/jgrf.20132.
- 259 Paola, C., and Borgman, L., 1991, Reconstructing random topography from preserved
- 260 stratification: Sedimentology, v. 38, p. 553–565, doi:10.1111/j.1365-
- 261 3091.1991.tb01008.x.
- 262 Plink-Björklund, P., 2015, Morphodynamics of rivers strongly affected by monsoon
- 263 precipitation: Review of depositional style and forcing factors: Sedimentary
- 264 Geology, v. 323, p. 110-147.
- 265 Reesink, A.J.H., et al., 2014, Scales and causes of heterogeneity in bars in a large multi-
- 266 channel river: Río Paraná, Argentina: Sedimentology, v. 61, p. 1055–1085,
- 267 doi:10.1111/sed.12092.
- 268 Sambrook Smith, G.H., Ashworth, P.J., Best, J.L., Lunt, I.A., Orfeo, O., and Parsons,
- 269 D.R., 2009, The sedimentology and alluvial architecture of a large braid bar, Río
- 270 Paraná, Argentina: Journal of Sedimentary Research, v. 79, p. 629–642,
- 271 doi:10.2110/jsr.2009.066.
- 272 Schuurman, F., Marra, W.A., and Kleinhans, M.G., 2013, Physics-based modeling of
- 273 large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity:

- Journal of Geophysical Research: Earth Surface, v. 118, p. 2509–2527,
- 275 doi:10.1002/2013JF002896.
- 276 Straub, K.M., Ganti, V., Paola, C., and Foufoula-Georgiou, E., 2012, Prevalence of
- 277 exponential bed thickness distributions in the stratigraphic record: Journal of
- 278 Geophysical Research: Earth Surface, v. 117, doi:10.1029/2011JF002034.
- 279 Strauss, D., and Sadler, P.M., 1989, Stochastic-models for the completeness of
- 280 stratigraphic sections: Mathematical Geology, v. 21, p. 37–59,
- 281 doi:10.1007/BF00897239.
- 282 Tamminga, A.D., Eaton, B.C., and Hugenholtz, C.H., 2015, UAS-based remote sensing
- 283 of fluvial change following an extreme flood event: Earth Surface Processes and
- 284 Landforms, v. 40, p. 1464–1476, doi:10.1002/esp.3728.
- van de Lageweg, W.I., van Dijk, W.M., and Kleinhans, M.G., 2013, Channel belt
- architecture formed by a meandering river: Sedimentology, v. 60, p. 840–859,
- 287 doi:10.1111/j.1365-3091.2012.01365.x.
- van Rijn, L.C., 1984, Sediment transport, Part III: Bedforms and alluvial roughness:
- 289 Journal of Hydraulic Engineering, v. 110, p. 1733–1754, doi:10.1061/(ASCE)0733-
- 290 9429(1984)110:12(1733).
- 291 Wilbers, A.W.E., and Ten Brinke, W.B.M., 2003, The response of subaqueous dunes to
- floods in sand and gravel bed reaches of the Dutch Rhine: Sedimentology, v. 50,
- 293 p. 1013–1034, doi:10.1046/j.1365-3091.2003.00585.x.
- 294

296	Figure 1. (A) Simulated anabranching channel. Colour bars show water depth at low				
297	flow, bed height above low flow and floodplain age; (B) Bar locations on the Río Paraná,				
298	Argentina, at which GPR data shown in panel E were collected; (C) Modeled deposits				
299	along the streamwise axis of a typical braid bar. Lines represent erosion surfaces (red),				
300	morphological surfaces (black) and slackwater deposits (blue). Green bars indicate dunes.				
301	Absence of green bar indicates ripples; (D) Time series of bed elevation at the location				
302	within the grey box in panel (C); (E) Relationship between mean bar set thickness and				
303	depth below bar surface for GPR data (circles) and simulations of low sinuosity				
304	anabranching channels. Model results are shown at three points during each simulation,				
305	for simulations with contrasting bank erodibility (E) . Low values of E promote narrower,				
306	deeper channels.				
307					
308	Figure 2. Plots of: A) Mean set thickness against flow depth; B) Probability density				
309	functions of erosion and deposition event magnitude; C) Mean set thickness divided by				
310	flow depth, shown for simulations that generate low sinuosity anabranching channels, run				
311	with different hydrologic regimes (x axis) and contrasting bank erodibility (E); and D)				
312	Mean set thickness vs the standard deviation of erosion and deposition events. In panels				
313	A, C and D each point is a single simulation. Closed red squares are simulations that use				
314	constant discharge; equivalent simulations with variable discharge are indicated by a				
315	green triangle (T = 2 y where T is hydrograph duration), purple X (T = 4 y) and open				
216					
316	circle (T = 8 y); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue diamonds are all other simulations run with variable discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = $(T = 8 y)$); blue discharge (T = 8 y); blue discharge (T = $(T = 8 y)$); blue discharge (T = 8 y); blue discharge (T = 8				

318 Erosion and deposition magnitudes (Δz) in B and D are calculated as the total vertical

319	thickness of bed-level change within individual model grid cells during periods of
320	continuous erosion or deposition.
321	
322	Figure 3. Deposit characteristics and channel morphology for rivers with contrasting
323	patterns and hydrologic regimes: (A) to (C) show the % of sediment in each grid cell
324	deposited in sets thicker than twice the mean set thickness for the river as a whole.
325	Results are shown for a meandering channel (A); low sinuosity anabranching channel
326	formed under variable discharge (B); and low sinuosity anabranching channel formed
327	under constant discharge (C). (D) to (F) show the standard deviation of the paleocurrent
328	direction (σ_V), for a braided river with sinuous individual channels (D); low sinuosity
329	anabranching channel formed under variable discharge (E); and low sinuosity
330	anabranching channel formed under constant discharge (F). (G) shows the morphology of
331	four typical simulated channels (from left to right: meandering, sinuous braided, low
332	sinuosity anabranching formed under variable discharge, and low sinuosity anabranching
333	formed under constant discharge). Color schemes in (G) are those used in Figure 1A.
334 335 336 337	
 338 339 340 341 342 343 344 345 346 347 348 	
240	

351 352 353

TABLE 1. CHARACTERISTICS OF SIMULATED DEPOSITS

TABLE 1. CHARACTERISTICS OF SIMULATED DEPOSITS					
Channel pattern	Meandering	Sinuous braided	Low-sir anabra	Low-sinuosity anabranching	
Discharge	Variable	Variable	Variable	Constant	
-	(T = 2yr)	(T = 2yr)	(T = 2yr)		
λ(m)	2.33	1.97	1.56	2.55	
Lxy (Dune)	1.89	1.83	2.51	2.95	
Lxy (Ripple)	2.01	1.91	2.71	3.22	
Lxy (Large)	1.99	1.89	2.56	3.21	
σ _{v90} (rad)	1.03	0.92	0.61	0.45	
ψ (Dune)	7.54	3.80	2.26	5.37	
ψ (Ripple)	0.44	0.66	0.75	1.69	
ψ (Slackwater)	0.19	0.11	0.13	0.22	

V(slackwater) [0.19 0.11 0.13 0.22 Note: Columns 2 and 3 show results for two simulations with contrasting morphology (see Fig. 3). Columns 4 and 5 show mean of results for six simulations of anabranching channels that use variable discharge (hydrograph duration, T = 2 yr) and constant discharge. λ is the mean set thickness. Lxy is the ratio of the average downstream and cross-stream lengths of contiguous model grid cells classified by deposit type as: Dunes (cells where >90% of sediment is classed as dunes); Ripples (cells where >10% of sediment is classed as ripples); and Large Sets (cells where >50% of sediment comprises sets thicker than twice the mean set thickness). σ_{V90} is the 90th percentile of the probability density function of the standard deviation of paleocurrent direction. ψ is the mean thickness of contiguous vertical packages of each deposit type.

354

Nicholas et al. (Figure 1)

- 358
- 359
- 360

Nicholas et al. (Figure 2)

369

Nicholas et al. (Figure 3)