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Abstract

A simple 2-dimensional model is introduced to study molecular stacking in planar-non-ionic chromonics.

The model allows changes in aggregation, arising from changes in interaction regions within a chromonic

molecule, to be quantified.  Application of the model to a typical hydrophobic core – hydrophilic corona

molecule, such as the triphenylene-based chromonic TP6EO2M, shows the energetically preferred stacking

arrangement of molecules is dependent on the preferred inter-molecule separation and the relative sizes of

the triphenylene core and poly(ethylene-glycol) corona. Further, we show a minimum aromatic core size is

required to form chromonic phases, explaining why functionalised benzene rings do not form chromonic

phases.  

Introduction

Chromonic mesogens are non-conventional  amphiphiles  [1],  which self-assemble in  aqueous solution to

form aggregate structures: rods [2], stacks [3] or layers [4]. These aggregates can subsequently self-organise

to form chromonic mesophases.  Initial self-assembly is strikingly different to that seen in most conventional

amphiphiles: typically being promoted by the interaction of aromatic ring systems and taking place in the

absence of a critical micelle concentration. The driving force for chromonic aggregation is hotly debated. For

different chromonic systems, static charges, polar and quadrupolar interactions [5], microphase segregation

and entropic contributions to the hydrophobic effect have all been claimed to be significant [6].

Chromonic molecules come in a plethora of shapes and sizes, with a few uniform characteristics: namely, a

rigid core, often regarded as disc-shaped, and pendant solubilising groups. Most known chromonics are ionic

in the sense that the aggregating species is a large molecular ion. The majority of well-studied systems have

tended to be anionic [7], but a few cationic examples exist also [8]. The rigid core is usually composed of

multiple aromatic rings, with charged solubilising groups, such as carboxylate or sulfonate. The counter ion

affiliated with the solubilising group is associated in the crystal form, but, in solution fully solvates and

interacts minimally with the chromonic aggregate [9]. 



Non-ionic chromonics are a separate family of chromonic molecules with similar characteristics to their

ionic  counterparts.  Here,  solubilising  groups  are  composed  of  non-ionic  hydrophilic  groups  such  as

polyethylene oxide. The molecule 2,3,6,7,10,11-hexa-(1,4,7-trioxaoctyl)-triphenylene, TP6EO2M [10,11,12]

(figure 1) is an example of a typical non-ionic chromonic: a triphenylene core provides a rigid hydrophobic

disc, while a corona of six ethylene oxide arms provide a level of solubility in water.  

Figure  1.  A TP6EO2M  molecule  (left)  and  a  discretized  2-dimensional  representation  of  a  chromonic

molecule on a 10×10 grid (right).

In principle, one might expect a simple substituted phenyl ring (a benzene core substituted with multiple

solubilising groups) to behave as the smallest possible non-ionic chromonic. The smaller size of a substituted

benzene molecule, in comparison with a substituted triphenylene molecule, would have favourable properties

such as reducing the cross sectional area of a column and hence increasing the aspect ratio of an aggregate.

An aggregate with a large aspect ratio should form a nematic phase at a lower density and hence at a lower

concentration. However, to date, no chromonic behaviour has been reported for a substituted phenyl ring.

The natural explanation for this is the association energy for two phenyl rings is too small for a chromonic

phase to exist within the accessible temperature range of the solvent (water). 

The interaction between two phenyl rings is often used as a simple model to study the nature of the  π-π

interaction (an interaction critical in, for example, stabilising the double helix of DNA [13]) but is known to

be  non-trivial  to  study accurately, either  experimentally  or  computationally. The  π-electrons,  present  in



benzene, require high level simulations, such as  ab initio calculations at the CCSD(T) level, to accurately

reflect  their  highly  correlated  nature  [14,  15].  In  general  benzene  itself  has  two  strongly  bound

configurations: T-shaped [16], where the vectors defining the plane of each benzene ring are orthogonal, and

parallel-displaced [17], where the two rings are parallel and the vector between the two centre of masses is

not identical to the vector defining the plane of the rings (see figure 2.). In chromonic systems only the

parallel-displaced configuration leads to the formation of chromonic phases.  To use high level  ab initio

simulations  to  study  the  formation  of  chromonic  molecule  dimers  remains  extremely  computationally

demanding, even with the best computational resources available today. Hence, a simplified approach is

required. 

Figure 2.  The configuration of  a T-shaped benzene dimer  (left),  and a  parallel-displaced benzene dimer

(right), where v1 is the unit vector normal to the parallel rings, v2 is the unit vector between the two centres of

masses, and d is the displacement distance.    

In this report we introduce a simple 2-dimensional model to study molecular stacking in planar-non-ionic

chromonics, and use the model to study stacking in molecules of the TP6EO2M type. We assume that while

van  der  Waal's  interactions  will  be  present  between two  chromonic  molecules,  they  will  be  of  similar

magnitude per unit area across the disc. In this case the dominant interaction in terms of determining the

arrangement of a disc in a chromonic stack is electrostatic in nature. In the model, each disc has a core unit



with a set charge density and a corona with a cancelling charge density, resulting in a non-ionic species. This

model  captures  well  the  type  of  electrostatic  interactions  seen  in  2,3,6,7,10,11-hexa-(1,4,7-trioxaoctyl)-

triphenylene, TP6EO2M molecule (figure 1), or in a substituted benzene molecule, by simply adjusting the

size (and charge) of the core and corona units. 

While  this  paper  concentrates  on  TP6EO2M,  the  basic  model  can  easily  be  extended to  include  many

chromonic molecules of the core/corona type, including those molecules where neither core or corona are

circular.  Moreover,  although  we  concentrate  on  the  effects  of  Coulombic  interactions,  mimicking

quadrupolar, dipolar and static charges on the interaction potential. In principle the model can be extended to

include cases where the van der Waal's interactions per unit area are not the same, i.e. where van der Waal's

interactions specifically favour microphase segregation.   

Computational Model

A two dimensional disc with radius, r, and corona size, α, is discretized to fit within a 100 by 100 grid (see

figure 1 which shows a 10 by 10 grid for clarity). A unit charge is placed at the centre of each grid element.

The grid is composed of one of three charges, 0 for grid units outside the corona radius, + a for grid units

located in the corona and -b for grid units located in the core. The size of the charges a and b were set such

that the complete system has a zero total charge (ana = bnb where na is the number of grid components with

charge a and nb is the number of grid components with charge -b). The disc was replicated with the image

disc  placed at  a  vertical  distance  z  (along vector  v1 in  figure  2).  An intermolecular  potential  was  then

calculated from the Coulombic interaction between the two discs as a function of the horizontal displacement

distance d.  Permutations of the disc internal parameters (r,  α and a) were performed for vertical distances

0.2 Å < z < 35  Å in increments of 0.2 Å , while a was varied between 0.1 e Å-2 and 10.0 e Å-2 in increments

of 0.1 eÅ-2. A complete scan of this variable set was applied to a disc with a radius r = 10 Å, with the corona

size 1 Å < α < 10 Å.  

A typical shape for the electrostatic interaction as a function of the displacement  d is shown in figure 3,

which gives three specific energies:

i) The effective binding energy is taken as the energy gap between the energy minimum and the



infinite separation energy at 0 kJ mol-1;

ii) The energy barrier to binding is taken as the energy difference between no interaction (0 kJmol -1)

and the local maximum;

iii) The absolute maximum energy, seen at d = 0, corresponds to the case where two discs lie directly

above each other. This is unfavourable from an electrostatic point of view, though, in principle, could

become energetically favourable in the presence of strong van der Waal's interactions.

Figure 3. Example binding potential showing the effective binding energy and the energy barrier to binding.

Results and discussion

a) Effects of interlayer distance z

The inter-molecule distance,  z, has a strong effect on the  d-dependence of the potential. The latter can be

categorized into one of two main types, corresponding to long and short distances of separation. At large  z,

the d-dependent potential (figure 4) starts at a global maximum for zero displacements and then decays to a

non-interacting state. At short interlayer distances the molecules show an initial global maximum where the

two discs are eclipsed followed by a global energy minimum (below zero) representing a bound state. The

global minimum state is followed by a local maximum (energy barrier to binding) and a slow decay to no

interaction as d → ∞. Between these two extremes exists a small range of interlayer distances where a local

minimum exists, which is higher in energy than the non-interacting state. 



The energy minimum gives the favourable stacking arrangement for two discs, which can be controlled by

the relative size and shape of the core disc and corona. In experimental studies of chromonic aggregation,

individual chromonic molecules aggregate into stacks where local stacking is controlled by the strength of

this interaction. Here, a local energy maximum is also important, as this helps to stabilise a nematic phase

over a biphasic system where the stacks associate and undergo phase separation from the solvent. 

The location of the global minimum is strongly z-dependent, only at larger values of z. A disc core of 10 Å

with a corona of 1 Å, at  a  z value of  1.0 Å has a minimum in the  d-dependent  potential  located at  a

displacement of 13.86 Å. This is an identical displacement to that found for the same disc with a  z value

within the typical experimental range (3.4 – 3.6 Å). However, at the binding limit of z = 12.4 Å the minimum

is located at a displacement of 17.6 Å, implying that the potential is only sensitive to  z at larger values.

Naturally, the  z  limit  of  the  binding  is  dependent  also  on  the  molecule  size  (table  1).  Experimentally

determined,  π-π  stacking distances  are  usually  quoted at  ≈  3.4 − 3.6 Å.  At  shorter  distances  than this,

strongly repulsive  molecular  interactions  dominate  the  potential,  and at  larger  distances  van der  Waal's

attractions are significantly reduced. So in the further studies below we choose a value of  z  = 3.6 Å as a

representative stacking distance for the model chromonics.



Figure 4. Graph showing how vertical distance of separation, z, affects the potential of a disc with a core of

10 Å and a corona of 1 Å, the solid red line is indicative of a small inter-molecule separation (not scaled), the

dashed green line is indicative of a large interlayer separation (scaled by a factor of 100) and the dotted blue

line is indicative of an intermediate inter-molecule separation (scaled by a factor of 25), with a local bound

minimum. The scaling of the potentials is to enable a comparison of the three function shapes. 

Table 1. Table of disc models, with the maximum vertical binding distance as the first vertical distance that

produces only positive energies (intermediate inter-molecule separation) and extrapolated minimum core

sizes. The minimum core size refers to the minimum size of core necessary for favourable binding.  

Core:corona
ratio

Total disc size  / Å Maximum vertical binding distance  / Å Minimum core size  / Å

10:1 11 12.4 2.82

5:1 12 13.2 2.65

10:3 13 13.6 2.57

5:2 14 14.2 2.46

2:1 15 14.8 2.36

5:3 16 15.2 2.30

10:7 17 15.6 2.24

5:4 18 16.2 2.16

10:9 19 16.6 2.11

1:1 20 17.0 2.06



b) Influence of the magnitude of charge separation

The effect of increasing the magnitude of charge on the core (and counter charge on the corona) is easy to

identify from figure 5.  Increasing the charge separation has no effect on the position of stationary points or

any of the roots of the potential function, but does increase both the effective binding energy and the local

maximum.  A potential  curve  calculated  for  a  given  core  charge  can  therefore  be  transformed  into  the

potential for any other charge using a simple scalar. 

Figure 5.  Graph showing the dependence of potential  on the magnitude of the charge on the core (and

counter charge on the corona) for z = 3.6 Å. The inset shows an expanded section of the potential between

the two roots. The charge refers to the excess electron present in the core (1e≡1.602×10−19 C).  

c) Effects of molecular geometry r and a

The sizes of the core and corona regions have a significantly impact  on  d-dependence of the potential,

influencing both the calculated maximum and minimum (see figure 6). At a fixed distance of z = 3.6 Å the

location of the global minimum can be controlled by varying either the size of the core or the size of the

corona. Figure 7 shows the change in the global minimum by varying the corona size for a fixed core size of

10 Å. The position of the energy minimum can be fitted by the relation 4/3 r + 9/16 α. While we place no

physical importance on the 4/3 and 9/16 terms, given they will be dependent on the interlayer distance, we

do note that this provides a simple relationship to calculate the ideal displacement distance for a chromonic



molecule with particular  sizes of core and corona.



Figure 6. Graph showing the effect on binding potential at a vertical separation of 3.6 Å for a model with a

fixed r = 10 Å core and corona with 1 Å < α < 10 Å.

Figure 7. Correlation between the size (10 Å) of the corona (α Å) and the minimum energy displacement,

points represent simulation minima, the line represents a line of best fit. Position of the minimum in the

binding energy  = 1.34r + 0.557α or approximately (4/3)r + (3/4)2α. for short z distances. 

Naturally, the minimum energy displacement calculated in this manner represents only the effects of charge



separation. Non-uniform van der Waal's interactions could in principle influence separation as could solvent

effects. While a full treatment of these factors is beyond the scope of the current study, it is possible to make

the general comment that to reduce unfavourable hydrophobic effects, the solvent accessible surface area of

the aggregate (in this case dimer) should be reduced. In all cases this can be accommodated by reducing the

displacement distance d. Hence we expect the hydrophobic effect to reduce the position of the minimum

displacement.     

 

d) Minimum size for a chromonic mesogen

Given that  there  is  an inter-molecule  distance,  z,  above which no bound configuration occurs,  and that

reducing the core size is equivalent to decreasing the distance at which this condition is met;  we can infer

that there is a minimum core size (rmin) that still gives a bound configuration at z =  3.5 Å. The minimum core

size for each model is given in table 1. Using a linear extrapolation, a single phenyl ring of core size r = 1 Å

would require a corona of at least α = 22 Å to provide a bound configuration. While this is not completely

infeasible, branched functional groups would be necessary to fully fill the corona around the phenyl ring to a

distance of 22 Å. These would almost certainly fill configurational space out of plane of the ring, reducing

the disc-like nature of the molecule and hence eliminating any chromonic behaviour.   

Conclusions

Charge based contributions to chromonic aggregation have been studied using a simple core-corona model

which reproduces the expected binding profile for chromonic molecules. The size of the binding potential

can be increased by increasing the size of the charge separation between core and corona. Changing vertical

separation between discs gives rise to two forms for the  d-dependent  potential.  At short  separations the

potential has an attractive minimum, which favours a bound molecule. Additionally, the presence of a local

maximum in this  potential,  contributes  to  the  stabilization of  chromonic  molecules  in  stacks,  i.e.  helps

prevent phase segregate by providing an energy cost associated with the aggregation of multiple stacks. At

large distances the potential is purely repulsive and favours an unbound state. The size of the core and corona

affect the potential subtly by shifting the position of the minimum and local maximum.

The relationship between the size of the cores, the interlayer distance and the potential function, allows a

theoretical minimum size to be determined for the core of a model commensurate with a stacking of 3.5  Å.



This helps to explain why no chromonic phases have been observed for small core molecules such as a

substituted phenyl ring. 
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