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Intercombination effects in resonant energy transfer

C. L. Vaillant,* R. M. Potvliege, and M. P. A. Jones†

Department of Physics, Joint Quantum Centre Durham-Newcastle, Durham University, South Road,
Durham DH1 3LE, England, United Kingdom

(Received 25 March 2015; published 14 October 2015)

We investigate the effect of intercombination transitions in excitation hopping processes such as those found
in Förster resonance energy transfer. Taking strontium Rydberg states as our model system, the breakdown of
LS coupling leads to weakly allowed transitions between Rydberg states of different spin quantum number.
We show that the long-range interactions between two Rydberg atoms can be affected by these weakly allowed
spin transitions, and the effect is greatest when there is a near degeneracy between the initial state and a
state with a different spin quantum number. We also consider a case of four atoms in a spin chain and
show that a spin impurity can resonantly hop along the chain. By engineering the many-body energy levels
of the spin chain, the breakdown of LS coupling due to interelectronic effects in individual atoms can be
mapped onto a spatial separation of the total spin and the total orbital angular momentum along the spin
chain.
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I. INTRODUCTION

Nonradiative exchanges of energy mediated by dipole-
dipole interactions play a crucial role in a variety of processes,
ranging from photosynthesis in natural biological systems [1]
to highly efficient light emission in organic devices [2]. The
usual requirements for a significant energy transfer are an
electric dipole-dipole interaction between donor and acceptor
molecules and a near degeneracy between the initial and
final states that ensures the process is always resonant [3].
Resonant energy transfer has also been extensively studied in
atomic physics, where these conditions are easily met. For
example, dipole-dipole interactions in dense, optically excited
samples can lead to cooperative Lamb shifts [4,5]. By using
Rydberg states, rather than low-lying electronic states, the
strength of the interaction can be increased by many orders
of magnitude, leading to energy exchange over macroscopic
distances [6–14].

It is often assumed, in agreement with the electric dipole
selection rules, that only states with the same value of the
total electron spin quantum number S are coupled through
dipole-dipole interactions. This assumption is justified for in-
teractions between alkali atoms, since S = 1/2 for all the states
relevant in this context. However, in atomic and molecular
systems with more than one valence electron, S is at best
an approximately good quantum number owing to interelec-
tronic interactions and spin-orbit coupling. Intercombination
transitions in resonant energy transfer have been considered
in molecules [15] and quantum dots [16], and experimental
observations [17,18] include important applications in effi-
cient organic light-emitting devices [2]. In general, strong
coupling to a bath of rotational, vibrational, and motional
states prevents the observation of coherent transport in these
systems.

In this paper, we examine the impact of singlet-triplet mix-
ing on the long-range interaction between isolated ultracold
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atoms in the excitonic regime [19], where dephasing due to
effects such as molecular motion is sufficiently small that the
transport may be considered coherent. Our treatment may also
find applications in molecular systems where coherent transfer
plays a role. First we consider the effect of intercombination
transitions on nonresonant van der Waals-type interactions,
and second we consider the effect of spin mixing on resonant
hopping processes. We find that even in systems where
spin mixing is relatively weak, near degeneracies between
donor and acceptor states such as those that occur in Förster
resonances can lead to novel transport effects which depend
on the value of the spin quantum number S—here we refer
to the actual electronic spin, rather than, e.g., to two-level
excitation mapped to a pseudospin or to the spin magnetic
quantum number MS (i.e., the spin orientation). Excitation
transport in atomic lattices is an area of great current interest
due to potential applications of cold-atom model systems
to condensed-matter research [20,21]. Here we consider a
one-dimensional lattice of strontium atoms in 5snd Rydberg
states, thus adding strong intersite interactions and extending
the study of many-body systems beyond the two-level Hubbard
model in cold atoms [22–24]. Ultracold Rydberg gases of
divalent atoms are of growing interest in atomic physics
[25–30], and as well as systems where the precise details of
the electronic wave function are known [31–36] they provide a
route to precise control of the interparticle spacing via optical
lattices or tweezer arrays [37–41].

Since strontium has two valence electrons, two 5snd

Rydberg series with total angular momentum J = 2 exist,
one labeled as the singlet and one labeled as a triplet. Early
theoretical and experimental work showed that these energy
eigenstates do not have a well-defined spin due to their
interaction with doubly excited “perturbers” of mixed singlet-
triplet character [31,32,42]. These perturbers are coupled to
the Rydberg states by interelectronic interactions, resulting
in a breakdown of LS coupling, which in turn affects the
long-range interatomic interactions; the situation is depicted
pictorially in Fig. 1(a). We find that, for two interacting
strontium atoms, the |n 3D2, n

3D2〉 states are close in energy
to the |(n − 2) 1F3, (n − 3) 3F3〉 states near n = 30 [as shown
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FIG. 1. (Color online) (a) Two Rydberg atoms separated by a
distance R are prepared in different spin states. Interactions between
core and valence electrons (purple dashed arrow) lead to a breakdown
of LS coupling, enabling an otherwise forbidden dipole-dipole inter-
action to take place (green dotted arrow). (b) The energy separation
between the |30 3D2,30 3D2〉 pair states and the energetically closest
spin allowed (red squares) and spin forbidden (blue circles) final pair
states, showing a spin-forbidden resonance.

in Fig. 1(b)], which, combined with the spin mixing in
the Rydberg series, allows near-resonant transfer between
two-atom states. The impact of these intercombination near
degeneracies on the van der Waals coefficients is considered
in Sec. II. Finally, in Sec. III we consider the case of four
atoms and find that a spin impurity (a 28 1F3 atom) in a chain
of 30 3D2 atoms can hop resonantly from site to site, showing
a spin-forbidden propagation along the chain.

The data used in this publication are available through [43].

II. MULTICHANNEL DIPOLE-DIPOLE
INTERACTIONS

We begin by considering two atoms in 5snd 3D2 states.
Theoretically, this situation is most easily treated using
multichannel quantum defect theory (MQDT), which provides
a wave function for each single-atom energy eigenstate in
terms of a superposition of LS-coupled channels. Recently, we
carried out an improved MQDT analysis of these states based
on up-to-date experimental results, which gave the amount and
nature of each electronic state (singlet and triplet perturber)
present in each of the J = 2 energy eigenstates [31]. We use
these wave functions to examine the long-range interaction
between a pair of atoms prepared in the same 5snd 3D2 energy
eigenstate. Each of these pair states is coupled by electric
dipole transitions to other final pair states (e.g., |P,P 〉, |P,F 〉,
and |F,F 〉). Because of spin mixing, the final states may or
may not differ in S from the initial state. A key parameter is
the energy difference between the final state and the initial
state—the so-called Förster defect—which must be compared
to the strength of the coupling. Figure 1(b) shows an example
where a near degeneracy occurs in the spin-forbidden channel,
i.e., where the spin labels of the initial and final states are
different. Thus, although the spin mixing, and hence the
coupling, is weak, this spin-forbidden process can become
important.

More concretely, to describe the long-range interactions,
we consider each atomic energy eigenstate state, �, to be
a sum over the MQDT channel states, φk , such that � =∑

k Ākφkχk (where χk is a function describing the angular,
spin, and remnant core state wave functions [31]). Using these
state vectors, the long-range interactions can be calculated
either perturbatively or nonperturbatively (by diagonalizing
an effective Hamiltonian matrix in a basis of pair states [44]).
The values of the coefficients Āk , as well as numerical dipole
matrix elements, are provided in [31]. Throughout this paper,
we only consider atoms that are initially in a stretched state
(J = |MJ |), with the internuclear axes of the interacting atoms
being aligned with the z axis. Stretched states do not have any
degeneracies in MJ1 + MJ2 , thereby reducing the number of
states that need to be considered (even allowing for the fact
that the dipole-dipole interaction couples stretched states to
nonstretched states).

The dipole-dipole interaction Hamiltonian for two atoms
with the internuclear axis aligned with the z axis is given by
[44,45]

H dd = − 4π

3R3
r1r2(Y1,1(r̂1)Y1,−1(r̂2)

+Y1,−1(r̂1)Y1,1(r̂2) + 2Y1,0(r̂1)Y1,0(r̂2)), (1)

where R is the interatomic distance, r1 and r2 are the radial
electronic coordinates for atoms 1 and 2, r̂1 and r̂2 are the
angular electronic coordinates, and Ylm denotes a spherical
harmonic. The matrix elements of Eq. (1) are thus products
of angular factors and dipole matrix elements for each atom,
with a R−3 dependence.

Treating the dipole-dipole interaction using perturbation
theory the first-order expression vanishes for two atoms in
the same state. Second-order perturbation theory results in a
C6R

−6 interaction, with [44]

C6 = R6
∑

i
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1 �

(i)
2

∣∣H dd
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(0)
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(0)
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(0)
2 − E

(i)
1 − E

(i)
2

, (2)

where atom 1 is in state |�(0)
1 〉 and atom 2 is in state |�(0)

2 〉 (note
that these are not necessarily the same states), and the sum over
i runs over all the pair states dipole coupled to |�(0)

1 �
(0)
2 〉. By

using the MQDT expansions of the wave functions in terms of
channels and using the channel fractions and doubly excited
state dipole matrix elements from [31], Eq. (2) can be evaluated
numerically.

The resulting values of the C6 coefficients for a pair of
Sr atoms both in the same 5snd 1D2 (|MJ | = 2) state or the
same 5snd 3D2 (|MJ | = 2) state are shown in Table I. The
contributions from “spin-allowed” (i.e., singlet-singlet and
triplet-triplet) and “spin-forbidden” (singlet-triplet) interme-
diate pair states are presented in Fig. 2. Large contributions
from singlet-triplet pair states are found in both series around
n = 16 where the effect of the 4d6s 1D2 and 3D2 perturbers
is at its maximum [32,44]. The overall C6 coefficients for
states in this region differ significantly from predictions
based on single-channel quantum defect calculations for
Rydberg states below n = 30 [46]. Above n = 30, however,
the calculated single-channel and multichannel values differ
by less than 2% of the overall C6, thus validating the use of a
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TABLE I. The C6 coefficients for the singlet and triplet J =
2 5snd (|MJ | = 2) configurations of Sr (where n denotes the principal
quantum number). The coefficients are given in atomic units, where
C6 (GHz μm6) = 1.4448 × 10−19C6 (atomic units).

n 1D2
3D2

7 −7.98 × 107 −1.42 × 108

8 −1.29 × 109 6.79 × 108

9 −2.17 × 1010 6.83 × 108

10 −2.95 × 1011 1.03 × 1010

11 −7.59 × 1010 8.73 × 1010

12 −9.53 × 1009 4.03 × 1010

13 −1.21 × 1013 1.47 × 1012

14 −3.37 × 1012 3.54 × 1013

15 −3.51 × 1012 4.35 × 1012

16 −3.83 × 1013 −3.25 × 1012

17 −2.51 × 1013 7.58 × 1012

18 −2.36 × 1013 −4.47 × 1013

19 −1.44 × 1013 2.52 × 1014

20 1.89 × 1013 −3.48 × 1015

21 1.05 × 1014 −8.88 × 1014

22 3.01 × 1014 −6.83 × 1014

23 7.01 × 1014 −4.84 × 1014

24 1.44 × 1015 −2.44 × 1014

25 2.77 × 1015 1.92 × 1015

26 5.12 × 1015 4.26 × 1015

27 9.04 × 1015 9.86 × 1015

28 1.55 × 1016 2.34 × 1016

29 2.61 × 1016 7.37 × 1016

30 4.21 × 1016 4.08 × 1016

31 6.66 × 1016 1.41 × 1017

32 1.03 × 1017 2.92 × 1017

33 1.57 × 1017 5.83 × 1017

34 2.35 × 1017 1.15 × 1018

35 3.46 × 1017 2.43 × 1018

36 5.03 × 1017 5.59 × 1018

37 7.22 × 1017 1.70 × 1019

38 1.02 × 1018 −1.14 × 1021

39 1.44 × 1018 −3.51 × 1019

40 1.99 × 1018 −2.55 × 1019

one-electron treatment for high-lying Rydberg states of stron-
tium [36,44,47].

Also visible in Fig. 2 is a large singlet-triplet contribution
for 3D2 states close to n = 30. This arises due to the Förster res-
onance in the |n 3D2,n

3D2〉 → |(n − 2) 1F3,(n − 3) 3F3〉 chan-
nel shown in Fig. 1(b). The uncertainties in the energy levels
used to calculate the C6 coefficients [44] are large enough
that the location of the Förster resonance can change by one
value of n; however, the resonance is always present to within
the error of these energy-level measurements [32,44,48]. The
small Förster defect in this channel means that second-order
perturbation theory breaks down at relatively large interatomic
distances. We therefore turn to a nonperturbative calculation.
Figure 3 shows the nonperturbative Born-Oppenheimer po-
tential curves in the vicinity of the |30 3D2, 30 3D2〉 asymptote,
which has a spin-forbidden avoided crossing at relatively large
distances (R ∼ 0.5 μm) with the |28 1F3, 27 3F3〉 asymptotic
pair state. Without the mixing between the triplet and singlet
series, the avoided crossing would not exist. While this Förster

FIG. 2. (Color online) Absolute value of the contributions to the
C6 coefficients in atomic units (with the dominant n11 scaling factored
out for clarity) from the singlet-singlet (light blue diagonally lined
bars), singlet-triplet (dark green), and triplet-triplet (light green
horizontally lined bars) pair states acting as intermediate states. The
initial states are taken to be in their stretched state, with J = MJ .

defect (522 MHz) is not small compared to that found in alkali
atoms [49–51], the key point here is that it is much smaller than
the defect for the dipole-allowed pair states (8.84 GHz). As a
result, the interaction between the spin-forbidden pair states

FIG. 3. (Color online) Dipole-dipole potential curves for two
atoms around the state labeled |30 3D2, 30 3D2〉 at infinity. The blue
dashed curves represent the full nonperturbative calculation including
all the relevant pair states, and the solid curves show the results of
the four-level approximation (the red curve highlights the initial state,
|30 3D2, 30 3D2〉). Only the MJ1 = MJ2 = 2 states are shown for the
|30 3D2, 30 3D2〉 state.
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is stronger than could be expected in view of the smallness of
the singlet-triplet mixing in these Rydberg states.

III. SPIN CHAIN OF STRONTIUM RYDBERG ATOMS

As another illustration of the impact of this intercom-
bination Förster resonance on resonant energy transfer, we
now examine the propagation of a singlet “impurity” in a
short chain of four equally spaced atoms. While studies of
state transport in lattices of Rydberg atoms have already
been carried out [52,53], as far as we know the impact of
singlet-triplet mixing in this context has not been previously
considered. Denoting the 30 3D2, 28 1F3, 27 3F3, and 28 3F3

states by |0〉, |1〉, |2〉, and |3〉, respectively, we numerically
calculate the time evolution of the system at time t after the
|1000〉 state is prepared. Restricting the dynamics of each atom
to these four states is justified by the fact that the C6 coefficient
of the |30 3D2, 30 3D2〉 is dominated by the Förster-resonant
|28 1F3, 27 3F3〉 and the nonresonant |28 3F3, 27 3F3〉 pair states.
All other pair states contribute less than 15% to the C6

coefficient of the |30 3D2, 30 3D2〉 state and are far enough away
in energy to be neglected. Figure 3 shows the consequence
of only choosing the four single atom states, 30 3D2, 28 3F3,
27 3F3, and 28 1F3. The potential curve for the |30 3D2, 30 3D2〉
asymptote is well reproduced. We include all values of MJ

that contribute.
In order to perform the time-dependent calculation of the

spin chain, we write the total Hamiltonian as H = H0 + Hint,
where H0 is the Hamiltonian of the four atoms with infinite
lattice spacing. The interaction Hamiltonian Hint can be written
as

Hint =
∑

i,j

V ji
∣∣�(i)

1 �
(i)
2 �

(i)
3 �

(i)
4

〉〈
�

(j )
1 �

(j )
2 �

(j )
3 �

(j )
4

∣∣, (3)

where i and j label the many-body states and the matrix
element V ji is given by

V ji =
∑

p<q

〈
�

(i)
1 �

(i)
2 �

(i)
3 �

(i)
4

∣∣H dd
pq

∣∣�(j )
1 �

(j )
2 �

(j )
3 �

(j )
4

〉
. (4)

Here H dd
pq is the dipole-dipole interaction Hamiltonian given

in Eq. (1) between lattice sites p and q.
As the dipole-dipole interaction is a time-independent per-

turbation, we expand the eigenstates of H , |�α(a,t)〉, in terms
of the four-atom states of the lattice with infinite spacing, such
that |�α(a,t)〉 = exp(iεα(a)t)

∑
j U

(j )
α (a)|�(j )

1 �
(j )
2 �

(j )
3 �

(j )
4 〉,

where εα(a) are the eigenenergies of H . The initial state vector
|�(0)

1 �
(0)
2 �

(0)
3 �

(0)
4 〉 is projected from the basis of the bare pair

states into the eigenbasis. The exp(iεαt) factors are then easily
determined, and the final state vectors are projected back into
the original basis. To calculate the probabilities of the spin
chain to be in a state i, we use the square magnitude of the
coefficients:

c(i)(a,t) =
∑

α

(
U (0)

α

)∗
exp(iεαt) U (i)

α . (5)

Figure 4 shows the evolution of the probability of each atom
being in a singlet state for a lattice spacing of 2 μm (a spacing
that can be engineered using two crossed 1550-nm laser beams
[29,54]). The spin can be seen to propagate along the chain
of atoms and back, although there is additional state transfer

FIG. 4. (Color online) (a) Spin-forbidden propagation of a sin-
glet spin impurity (28 1F3, initially located at atom 1) along a short
chain of triplet (30 3D2) Rydberg atoms, with a spacing of a = 2.0 μm
between the atoms. Shading indicates the probability of each atom
being in a S = 0 state as a function of time. (b) and (c) Time evolution
of the probability of finding the atom in a state with spin quantum
number S = 0 (b) and total angular momentum quantum number
J = 3 (c) for different atoms along the four-atom chain. Line styles
denote atom 1 (thick blue), atom 2 (medium green), atom 3 (thin
black), and atom 4 (thin red).

due to competing second-order interactions. The calculation
shown in Fig. 4 includes the interactions between all the
atoms, not just nearest-neighbor interactions. Nevertheless,
a clear propagation of a spin singlet state through the chain
can be seen, a phenomenon that can only occur due to spin
mixing.

For the parameters of Fig. 4, the dynamics arise primarily
from the spin-forbidden dipole-dipole coupling between the
four linearly independent states of the 0,0,0,1 family, namely,
the states which reduce to linear combinations of the |1000〉,
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FIG. 5. (Color online) (a) Born-Oppenheimer energy curves for
a spin chain of four atoms equally separated by a distance a from
their nearest neighbors, with the energy of one of the states of the
0,0,0,1 family (solid black curve) and one of the states of the 0,1,1,2
family (dashed black curve) highlighted for clarity. (b) and (c) The
probability of atoms in the spin chain to be in a S = 0 (b) and a
J = 3 state (c), for a lattice spacing of a = 1.35 μm. Line styles
denote atom 1 (thick blue), atom 2 (medium green), atom 3 (thin
black), and atom 4 (thin red).

|0100〉, |0010〉, and |0001〉 states in the limit of infinite
lattice spacing. As states 2 and 3 are unimportant here, there
is essentially no difference between the probability for a
particular atom of the chain being in a S = 0 state, P (S = 0),
and the probability of it being in a J = 3 state, P (J = 3)
[compare parts (b) and (c) of Fig. 4]. However, this is not
the case for smaller lattice spacings. As shown in Fig. 5(a),
the four 0,0,0,1 states exhibit avoided crossings between 1.2
and 1.6 μm with the 0,1,1,2 family of states, namely, states
in which, for a → ∞, one of the four atoms is in state zero,
two are in state one, and one is in state two. Due to these

spin-forbidden Förster resonances and to the larger strength
of the dipole-dipole interaction, the dynamics of the chain at
a = 1.35 μm is more complex than at a = 2 μm [compare
Figs. 5(b) and 5(c) with Figs. 4(b) and 4(c)]. In particular,
for some of the atoms the stronger coupling with state 2
at this smaller lattice spacing results in striking differences
between P (S = 0) and P (J = 3) (Fig. 5). By contrast, there
is hardly any difference in how these two quantities vary at
a = 2 μm (Fig. 4). The key feature remains that the spin-orbit
and interelectronic effects responsible for the breakdown of LS

coupling within each atom manifest spatially in the collective
state of the spin chain.

In regards to an experimental study of this intercombination
dynamics, we note that the natural lifetimes of the 30 3D2

and 28 1F3 states (2.3 and 6.9 μs, respectively [31,55])
are much longer than its time scale. The triplet F state
lifetimes are unknown, but can be expected to be similar in
magnitude to that of the 30 3D2 and 28 1F3 states. A possible
experimental realization could employ a strontium quantum
gas microscope (QGM) [56,57], where atoms are loaded into
the lowest vibrational band of a three-dimensional lattice
using a Mott-insulator transition [58], and a high numerical
aperture objective provides the required single-site readout.
Single-site detection of Rydberg atoms in a QGM has already
been demonstrated [59]. Since the atoms are in the lowest
band, dephasing effects due to the uncertainty in the initial
positions [6,7,9,60] are minimized. Localization to <50 nm
is possible for reasonable lattice depths [56], which is less
than the width of the avoided crossing in Fig. 5, and which is
sufficient to observe coherent transport under the conditions of
Fig. 4. We note that due to the fast time scales the lattice could
be switched off during the transport process. Finally, in order
to image the state of the chain, short microwave pulses could
be used to state-selectively transfer the population to other
Rydberg states that do not interact resonantly, thus “freezing”
the dynamics.

IV. CONCLUSIONS

In conclusion, we have shown that intercombination transi-
tions in Sr Rydberg atoms not only lead to a breakdown of LS

coupling but also allow dipole-forbidden excitation hopping
along a chain of atoms via resonant long-range dipole-dipole
interactions. We find that intercombination Förster resonances
can have a substantial impact on long-range interaction. They
can also lead to spatially separated dynamics between spin
angular momentum and total angular momentum. Although
we use Sr Rydberg states as an example, the ubiquity of
spin mixing makes it likely that other systems may also show
similar effects.
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[5] R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, and R. Rüffer,
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