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Abstract 15 

Massive rock avalanches form some of the largest landslide deposits on Earth and are major 16 

geohazards in high-relief mountains. This work reinterprets a previously-reported glacial deposit in 17 

the Alai Valley of Kyrgyzstan as the result of an extremely long-runout, probably coseismic, rock 18 

avalanche from the Komansu River catchment. Total runout of the rock avalanche is ~28 km, 19 

making it one of the longest-runout subaerial non-volcanic rock avalanches thus far identified on 20 

Earth. This runout length appears to require a rock volume of ~20 km
3
; however the likely source 21 

zone in the Trans Alai range likely contained just ~4 km
3
 of rock and presently the deposit has a 22 

volume of only 3-5
 
km

3
; a pure rock avalanche volume of > 10 km

3
 is therefore impossible, so the 23 

event was much more mobile than most non-volcanic rock avalanches. Explaining this exceptional 24 

mobility is crucial for present day hazard analysis. There is unequivocal sedimentary evidence for 25 

intense basal fragmentation, and the deposit in the Alai valley has prominent hummocks; these 26 

indicate a rock avalanche rather than a rock-ice avalanche origin. The event occurred 5000-11000 yr 27 

B.P., after the region’s glaciers had begun retreating, implying that supraglacial runout was limited. 28 

Current volume – runout relationships suggest a maximum runout of ~10 km for a 4 km
3
 rock 29 

avalanche. Volcanic debris avalanches, however, are more mobile than non-volcanic rock avalanches 30 

due to their much higher source water content; a rock avalanche containing a similarly high water 31 

content would require a volume of about 8 km
3
 to explain the extreme runout of the Komansu event. 32 

Rock and debris avalanches can entrain large amounts of material during runout, with some doubling 33 

their initial volume. The best current explanation of the Komansu rock avalanche thus involves an 34 
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initial failure of ~4 km
3
 of rock debris, with high water content probably deriving from large glaciers 35 

on the edifice, that subsequently entrained ~4 km
3
 of valley material together with further glacial ice, 36 

resulting in a total runout of 28 km. It is as yet unclear whether glacial retreat has rendered a present-37 

day repetition of such an event impossible. 38 

 39 
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 43 

Introduction 44 

Large (>10
6
 m

3
) rock avalanches with unusually long run-out distances (up to tens of kilometres) 45 

occur infrequently in mountain ranges and from volcanic edifices. Rock avalanche deposits have 46 

been identified at numerous locations on Earth as well as on Mars and the Moon (e.g. Lucchitta, 47 

1978; Quantin et al., 2004; Lucas and Mangeney, 2007). Their deposits often bear a striking 48 

morphometric resemblance to glacial deposits, sometimes resulting in misinterpretation: for 49 

example, re-examination of deposits in the Karakoram Himalayas by Hewitt (1999) resulted in 15 50 

previously-reported glacial deposits being re-interpreted as rock avalanche deposits. Similar re-51 

interpretations have also occurred elsewhere (e.g. McColl and Davies, 2010; Barth, 2013). 52 

Incorrectly identifying rock avalanche deposits as glacial deposits can result in underestimated 53 

geohazards risk (McColl and Davies, 2010), whilst also contaminating regional paleoclimate 54 

reconstructions vital for understanding global climate dynamics (Reznichenko et al, 2012). 55 

Large rock avalanches are typically characterised by long runouts resulting in unusually small 56 

apparent coefficients of friction (=H/L; where H is the total fall height and L is the total travel 57 

distance; Hsü, 1975). Many explanations for this apparent reduction of friction have been proposed 58 

including air cushioning (Shreve, 1966), acoustic fluidisation (Melosh, 1979), mechanical 59 

fluidisation (Davies, 1982), and lubrication from molten basal layers (Erismann, 1979). However, 60 

currently none of these explanations are generally accepted within the scientific community (Davies 61 

and McSaveney, 2012). Rock avalanches can be triggered by a number of different factors including 62 

strong ground motions during earthquakes, volcanic eruptions, heavy or long-duration rainfall, rapid 63 

snow melt, or a combination of these. In addition, some lack any definitive trigger (e.g. Sigurdsson 64 

and Williams, 1991; McSaveney, 2002; Hauser, 2002). Identifying the cause of a prehistoric event is 65 

therefore difficult; however, analysis of the local and regional environment as well as estimates of 66 

the timing of the event can provide some insights. Additionally, analysis of the deposit morphology 67 

and of the internal structure, if exposed, can offer understanding of the emplacement dynamics.  68 
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The intramontane Alai Valley in the Northern Pamir Mountains of Kyrgyzstan (Fig. 1) has numerous 69 

large-scale deposits previously interpreted as glacial moraines (e.g. Nikonov et al., 1983; 70 

Arrowsmith and Strecker, 1999; Strecker et al., 2003). However, recent analysis by Reznichenko et 71 

al. (2013) of a deposit on the true right of the Komansu River determined that it is of rock avalanche 72 

origin. This deposit (Fig. 2) was first identified as a rock avalanche by Kurdiukov (1964), however 73 

was later reinterpreted by Nikonov et al. (1983) as a moraine, and recently Strom (2014) suggested it 74 

was the result of a mixed rock-ice avalanche. The deposit extends north from the Trans Alai ranges 75 

of the Pamir Mountains for 28 km to the foothills of the Tien Shan Mountains (Fig. 2), making it one 76 

of the longest-runout subaerial rock avalanche deposits identified on Earth. The deposit is exposed at 77 

the surface only for the distal half of its runout, with no evidence identified in the proximal section of 78 

the runout (Fig. 2). Present-day surface expression of the deposit covers an area of 64 km
2
 however 79 

the original deposit likely covered an area of the order of 100-150 km
2
 immediately after it was 80 

emplaced (Fig. 2), the rest having been eroded or buried subsequently. 81 

This study aims to clarify the nature of the Komansu rock avalanche event including the failure 82 

mechanism and the dynamic processes involved during runout, based on field surveys and the 83 

interpretation of aerial and satellite images. We also discuss the implications for hazard analysis of 84 

such events. 85 

 86 

Fig 1 Satellite image of the Alai Valley showing the major villages, rivers, mountain ranges within the 87 

region. MPT – Main Pamir Thrust. Boxes indicate areas shown in Figures 2 & 4a 88 



 4 

 89 

Fig 2 Komansu River catchment showing the exposed Komansu rock avalanche deposit, with probable 90 

source headscarp and runout path. Black lines show fault scarps; MPT – Main Pamir Thrust; thick 91 

black arrow shows likely runout path; solid red lines show surficial exposure of the deposit; dashed red 92 

line shows possible rock avalanche deposit; yellow dashed lines show inferred extent of the deposit 93 

immediately after emplacement; blue lines show the inferred position of the Komansu River 94 

immediately after emplacement (see text); black circles show location of figures. Boxes indicates area 95 

shown in corresponding figures. 96 

 97 

Regional Setting 98 

Tectonics 99 

The Komansu deposit lies in the centre of the Alai Valley in southern Kyrgyzstan, between the Pamir 100 

and Tien Shan Mountains (Fig. 1). The Alai Valley separates the Trans Alai (also known as Zaalai) 101 

range of the Northern Pamir from the Tien Shan and was formerly part of a contiguous Cenozoic 102 

sedimentary basin, connecting the Tajik depression in the west with the Tarim basin in the east 103 

(Strecker et al, 2003). The Trans Alai range, which makes up the southern boundary of the Alai 104 

Valley, formed as a result of Eurasian crust being over-thrust by the Pamir block during the late 105 

Oligocene-early Miocene (Burtman and Molnar, 1993; Coutand et al., 2002) due to the Indo-106 

Eurasian collision to the south. As a result, the Trans Alai range reaches elevations over 7000 m with 107 
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3000-3500 m of relief. The range is composed mainly of amalgamated and heavily deformed 108 

Paleozoic and Mesozoic terrains while the Alai Valley consists primarily of large Quaternary alluvial 109 

fans, moraines, and landslide deposits (Arrowsmith and Strecker, 1999). North of the valley, the Tien 110 

Shan rises to over 5000 m with 2000-2500 m relief and is characterised by Devonian limestones and 111 

Carboniferous metasediments overlain by Jurrasic conglomerates and sandstones (Strecker et al., 112 

2003). 113 

Present shortening between the Trans Alai range and Tien Shan estimated from repeated GPS 114 

measurements is 15-30 mm yr
-1

 (Burtman and Molnar, 1993; Arrowsmith and Strecker, 1999) which 115 

accommodates between 
1
/3 and 

2
/3 of the relative Indo-Eurasian Plate deformation at this location. 116 

Most of this shortening is thought to occur along the range-bounding Main Pamir Thrust (MPT; Figs. 117 

1 & 2). Arrowsmith and Strecker (1999) estimated that the dip-slip rate along this fault must be at 118 

least 6 mm yr
-1

 based on geologic observations while Krumbiegel et al. (2011) estimate a rate of 13 119 

mm yr
-1

 based on geodetic observations. These rapid rates of convergence are supported by the high 120 

seismicity along the MPT with several recent major earthquakes along the fault including M7.4 in 121 

1949; M7.3 in 1974 (Zubovich et al, 2009); M6.5 in 1978 (Fan et al, 1994) and M6.7 in 2008 122 

(Zubovich et al, 2009; Krumbiegel et al, 2011).  123 

 124 

Quaternary History 125 

Due to the remote location and high elevation relatively limited research has been undertaken in the 126 

area, resulting in an incomplete Quaternary history. Nevertheless, recent work by Shatravin (2000) 127 

used oxide/protoxide ratios of alluvial and proluvial deposits and proposed that the last maximum 128 

glacial extent occurred 30,000 years before present (yr B.P.) with a smaller Holocene re-advance 129 

around 8,000 yr B.P. According to Arrowsmith and Strecker (1999) and Shatravin (2000) the period 130 

between the Pleistocene glacial maximum and the Holocene re-advance is represented in the 131 

geologic record by numerous large landslide deposits. These deposits consist mainly of Neogene 132 

sandstones and argillites sourced from the Trans Alai range and typically have a hummocky 133 

topography and corresponding arcuate detachment scars (Arrowsmith and Strecker, 1999). 134 

Arrowsmith and Strecker (1999) suggested that the largest of these had a runout of 5-6 km from the 135 

mountain front.  136 

 137 

The Komansu source and deposit 138 

Our re-interpretation of the Komansu deposit from a moraine to a rock avalanche event is the result 139 

of detailed ground investigations including analysis of the geomorphology as well as the 140 

sedimentology of the deposit (Reznichenko et al, 2013).  141 
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 142 

Source  143 

The location and extent of the Komansu deposit suggest that the rock avalanche has a source zone in 144 

the Trans Alai range (Fig. 2). This range is >7000 m high, and contains numerous glaciers. As a 145 

result we could not definitively identify the source zone. Nevertheless, far-field observation of the 146 

mountain range combined with satellite images and field mapping allowed us to identify a probable 147 

source zone (Figs. 2 & 3). This shows the arcuate bowl shape typical of a large rock avalanche 148 

source (Turnbull & Davies, 2006) and is suitably located and orientated to generate the current 149 

Komansu rock avalanche deposit (Fig. 2). We have attempted to reconstruct the pre-failure paleo-150 

topography of this source zone in order to estimate the likely initial volume of debris involved in the 151 

collapse (Fig. 4). These estimates suggest that the initial landslide body contained a volume of up to 152 

4 km
3
 of initially intact rock and, including a 25% bulking factor due to fragmentation, gives a 153 

maximum total failure volume of ~4-5 km
3
. Smaller volumes are of course possible corresponding to 154 

reconstructions that put the paleo-ridgeline at a lower elevation 155 

Other large scars are present within the area, including one 8 km east of the suggested source zone 156 

(Fig. 2). However, this is much less suitably orientated to generate a deposit in the same location as 157 

the Komansu deposit, and, although larger, would mean an even longer runout. 158 

 159 

 160 

Fig 3 a) Field photograph looking SW at the probable source zone for the Komansu rock avalanche 161 

deposit with dimensions (see Fig 2 for location); b) Google Earth image (looking SE) of the probable 162 

source zone showing the detachment scar. Another large scar 8 km farther east is less well situated with 163 

respect to the deposit so was discounted. 164 
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 165 

Fig 4 Reconstruction of source area pre-collapse topography. a) Interpreted position of original 166 

ridgeline; solid line shows present day ridgeline; dashed line shows inferred paleo-ridgeline; triangles 167 

denote rock avalanche scar; profile A-A’ shown in b). b) Present day topography (shaded) derived from 168 

Google Earth with inferred paleo-topography (red) denoting the landslide body. c) Google Earth view 169 

of the source zone looking east showing the inferred paleo-topography 170 

 171 

Deposit dimensions 172 

As shown in Fig. 2, the deposit extends across the full width of the Alai valley, and extends a short 173 

distance up the southern slopes of the Tien Shan. It is exposed at the surface only for the distal half 174 
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of its runout, with no evidence identified in the proximal section of the runout (Fig. 2). The present-175 

day surface expression of the deposit is not continuous, but is divided into a number of discrete areas 176 

by fluvially-altered terrain. We assume that the original deposit was contiguous, and has been 177 

partially reworked since emplacement by fluvial activity.  178 

Only very limited deposits corresponding to that in the Alai valley have been found between the 179 

source area and the Alai valley (the valley reach). We assume that the event deposited material here 180 

which has subsequently been eroded or buried by glaciofluvial processes. The present area of rock-181 

avalanche deposit is 64 km
2
, however the original deposit likely covered an area of 100-150 km

2
 182 

immediately after it was emplaced (Fig. 2), the rest having been eroded or buried subsequently. 183 

 184 

Deposit volume 185 

The volume of the event can be estimated from its deposit area, if a deposit depth is known or can be 186 

estimated. Unfortunately the basal contact of the deposit is only visible at the distal end, where the 187 

depth is ~ 10 m. This is expected to be the minimum, since all large-volume mass movements are 188 

thinnest distally. The prominent hummocks are ~ 20 m and up to 40 m high over most of the 189 

remaining deposit, suggesting a deposit depth of several tens of metres, so the inferred surface area 190 

of 100-150 km
2
 would give a total volume of about 3-5 km

3
. The depth of deposit in the valley reach 191 

would be likely to be significantly greater than on the flat Alai valley, so this estimate seems likely to 192 

be rather low and 5-10 km
3
 may be more realistic for a total volume. However we note that this is 193 

substantially larger than the volume contained in the source zone, suggesting the event may have had 194 

substantial entrainment. 195 

A further volume estimate can be derived from regression of runout length against volume for other 196 

rock avalanches. Without accurate, reliable volume data for the Komansu event, regression analysis 197 

allows us to estimate the volume necessary to explain the runout length. One of the simplest 198 

regressions was that of Davies (1982) who found that for rock avalanches in non-glaciated 199 

environments 200 

L ~ 10(V)
1/3

      (1) 201 

where L is the deposit length and V is the deposit volume. If L = 26 km (total runout less headscarp 202 

length), then V ~ 2.6
3
 = 18 km

3
. This is significantly greater than either the deposit volume or the 203 

headscarp volume, indicating that the Komansu event was significantly more mobile than most other 204 

large rock avalanches. 205 

 206 

Surface Morphology 207 
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The Komansu deposit is clearly distinguishable from the surrounding alluvial deposits by its 208 

pronounced hummocky terrain. These hummocks are small conical hills, averaging around 20 m in 209 

height but up to 40 m in places, and averaging 50-60 m in diameter (Fig. 5). Arrowsmith and 210 

Strecker (1999) described hummocky topography as being present in both glacial and landslide 211 

deposits within the Alai Valley, and such hummocks have been identified in other large rock 212 

avalanche deposits including those at Socompa in Chile (Wadge et al, 1995) and Fernpass in the 213 

European Alps (Prager et al., 2006) amongst others. Hummocky terrain in the rock avalanche deposit 214 

from Round Top in New Zealand is thought to have resulted from runout over outwash surface 215 

(Dufresne et al., 2010) which would also have occurred during the Komansu event. Nevertheless, 216 

hummocks are not definitive evidence of rock avalanches because they can also be characteristic of 217 

moraines, and thus Nikonov et al. (1983) and Arrowsmith and Strecker (1999) interpreted the 218 

Komansu deposit as of glacial origin. However, in the Alai Valley glacial hummocks are typically 219 

larger than those of the Komansu deposit and contain kettle-hole deposits formed during glacial 220 

melt-out, none of which were identified in the Komansu deposit (Reznichenko et al, 2013).  Figure 6 221 

shows a comparison of the larger hummocks of the Achiktash catchment glacial deposit ~20 km east 222 

of the study area and the smaller, more uniform hummocks of the Komansu rock avalanche deposit. 223 

 224 

 225 

Fig 5 Hummocky terrain of the Komansu deposit with the Trans Alai range in the background. View 226 

looking SW (see Fig. 2 for location). 227 

 228 
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 229 

Fig 6 Comparison of hummocks from the a) Achiktash moraine deposit and b) Komansu rock 230 

avalanche deposit. Images from Google Earth. 231 

 232 

Sedimentology 233 

Clast counts were undertaken at several locations on the Komansu rock avalanche deposit to 234 

characterise lithology, clast size, and roundness in an attempt to infer its likely origin. The deposit is 235 

matrix-supported (although appears clast-supported in places) and dominated by angular to very 236 

angular and occasionally sub-rounded argillite and quartzite clasts of fine pebble to boulder size, in a 237 

matrix of very much finer material. These sediment characteristics correspond closely to reported 238 

descriptions of rock avalanche deposits which comprise a fragmented mass of angular to very 239 

angular clasts of the source lithology. Hewitt (1999) used this description to identify 15 rock 240 

avalanche deposits in the Karakorum Himalayas previously identified as moraines. The mainly 241 

argillite composition of the Komansu deposit agrees with the observation of Arrowsmith and 242 

Strecker (1999) of the lithologic composition of several other landslide deposits in the region whose 243 

sources are also in the Trans Alai range. 244 

Reznichenko et al. (2012) developed a method to identify sediment of rock avalanche origin by the 245 

presence of characteristic micron-scale agglomerates of widely-graded, largely subangular sub-246 

micron clasts of parent material lithologies, as observed under a Scanning Electron Microscope 247 

(SEM). These agglomerates are the result of intense comminution of intact rock, and rebonding of 248 

the smallest fragments, under rapid, high-stress conditions during rock avalanche runout, and are 249 

absent from sediments produced in lower stress and strain-rate glacial processes. Samples from the 250 

Komansu deposit were shown by Reznichenko et al. (2013) to contain micron scale agglomerates 251 

and hence they deduced a rock avalanche origin of the hummocky deposit, confirming our 252 

sedimentologic and morphologic deduction. 253 
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 254 

Basal Contact 255 

The Kyzylsu River, which flows east-west through the Alai Valley (Fig. 2), has eroded through the 256 

distal part of the deposit and exposed a long basal contact (Fig. 7). This sharp unconformity 257 

separates the rock avalanche body from the alluvial terrace deposits beneath. At the eastern extent of 258 

the outcrop the contact curves upwards before flattening out, thinning the rock avalanche deposit 259 

(Fig. 8a). Planar horizontal bedding in the underlying alluvium is clearly truncated at this contact 260 

(Fig. 8b) and we interpret this alluvium as an ancient Kyzylsu River terrace which was over-ridden 261 

and partly preserved by the rock avalanche. The lack of erosion and preservation of underlying 262 

alluvial stratigraphy is further evidence of a rock avalanche origin rather than a glacial origin. 263 

In the distal exposure of the Komansu deposit we found a concentrated basal shear layer (Fig. 9), 264 

where clasts had been ground excessively fine by interparticle stresses due to the shearing motion 265 

during runout (Davies & McSaveney, 2009).  266 

 267 

 268 

Fig 7 Basal contact between Komansu rock avalanche deposit and alluvial deposits. Maximum cliff 269 

height is ~15m. View looking north (see Fig 2 for location). 270 

 271 

 272 

Fig 8 a) View of rock avalanche basal contact with underlying alluvial deposits, looking NE (see Fig 2 273 

for location); b) Interpretation. Maximum cliff height is ~15m. Red line shows position of basal contact. 274 
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 275 

Overlying Units 276 

Overlying the rock avalanche deposit is a variable cover of fine-grained loess with thicknesses 277 

ranging from tens of centimetres to several metres. However, most of the loess and characteristic 278 

hummocks in the central section of the deposit have been eroded away, corresponding with the 279 

location of an abandoned river course (Fig. 2). Here the overlying deposits consist of alluvial 280 

sediments similar to those beneath the rock avalanche deposit in Figs. 8 and 9. It is inferred that after 281 

the rock avalanche deposit was emplaced, the Komansu River flowed through the centre of the 282 

deposit, eroding it and depositing alluvial sediments. Subsequently the river changed course to its 283 

present position on the western flank of the deposit where it incised into its present canyon during 284 

uplift along the MPT. 285 

 286 

Fig 9 Interpreted photo (a) and sketch (b) of basal contact between rock avalanche deposit and alluvial 287 

deposits. Note the highly sheared material at the base of the rock avalanche deposit which has flowed 288 

over the alluvial deposits without moving the large clast at the right of the image. This suggests 289 

relatively low basal shear stress as required by the long runout. 290 

 291 

The emplacement event 292 

Based on the descriptions above we now consider the characteristics of the emplacement event.  293 

 294 

Timing  295 

Arrowsmith and Strecker (1999) suggested that the majority of landslide deposits they identified in 296 

the region date to the Late Pleistocene and Early Holocene. We identify circumstantial evidence 297 

which suggests that the Komansu rock avalanche also corresponds to the Holocene. 298 

The rock avalanche deposit itself has two continuous thrust fault scarps of the MPT running through 299 

it (Fig. 2) with 30 m high surface displacements. These scarps represent multiple surface ruptures 300 
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along the MPT through the deposit since it was emplaced. On major faults such as the MPT, 301 

recurrence intervals between major earthquakes are at least several hundred years (e.g. Lienkaemper 302 

et al. 2012) which suggests a deposit age of at least several thousand years is required. Using the 303 

estimated slip rates along the MPT suggests an age of 2,300-5,000 years. However, field mapping 304 

during this study identified an additional trace of the MPT with tens of metres of offset at the 305 

surface, 10 km north of the main MPT trace (Fig. 2). Two traces of the fault requires the 2.3-5.0 ka 306 

ages to be doubled to ~5 to 11 ka, if both traces of the fault accommodate regional deformation. 307 

Alternatively, however, the deposit could have overridden and preserved these fault scarps similar to 308 

the preserved Kyzylsu River terrace at the distal end (Fig. 8). This would suggest the deposit was 309 

very much younger than the 5-11 ka suggested however, the fragmented nature of the present-day 310 

surficial exposure, and the absence of debris in the reach valleys (Fig. 2), suggest an age of several 311 

thousand years is most likely. 312 

The lack of surficial exposure of the deposit in its proximal confined-valley section has two possible 313 

explanations relevant to the timing of the event. Either the rock avalanche travelled across a glacier 314 

and did not deposit any material, or the deposit was subsequently eroded or buried by glaciofluvial 315 

processes. For the rock avalanche to have travelled the first ~15 km of its runout along glacial ice 316 

requires it to have occurred at a time when the glaciers were substantially more advanced than at 317 

present. Despite the suggested age for the deposit being considerably after the last glacial maximum, 318 

the upper age estimate corresponds to a time when the regions glaciers were likely to still be more 319 

advanced than today. In any case, however, it seems extremely unlikely that a rock avalanche would 320 

travel for such a large distance – even over ice - without depositing any material. While other rock 321 

avalanches have been known not to generate proximal deposits (e.g. Seit in central Kyrgyzstan; 322 

Strom, 2006) the area without deposit is in these cases is relatively small and far less than the 15 km 323 

seen in the Komansu event; further, most rock avalanches that travel over glaciers completely cover 324 

the proximal area with debris. This strongly (but not conclusively) suggests that deposition occurred 325 

in the upper valley reaches but was subsequently eroded or buried by glaciofluvial processes. 326 

Analysis of the deposit age alone is therefore insufficient to determine whether or not runout over 327 

glacial ice occurred; however, inspection of the excessive runout length may provide some insight.  328 

 329 

Runout Velocity 330 

The deposit is present on both banks of the Kyzylsu River (Fig. 2) and clearly moved uphill as it 331 

reached the opposing slope of the Tien Shan. The distal end of the deposit is up to 100 m higher than 332 

its lowest point on the true left bank of the Kyzylsu River. If the kinetic energy of the rock avalanche 333 

was converted completely to gravitational potential energy as it ran uphill, the rock avalanche must 334 
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have been travelling at least 45 m s
-1

 (~160 km hr
-1

) when it reached the Tien Shan. This is a 335 

minimum estimate of its velocity assuming that all kinetic energy was transferred to potential energy; 336 

in reality much of the kinetic energy will be lost to friction, heat, sound etc. so the velocity would 337 

have been greater. A rock avalanche travelling at this velocity, unimpeded, would likely continue to 338 

runout for several additional kilometres. 339 

 340 

Initiation 341 

Establishing the trigger for a prehistoric event such as the Komansu rock avalanche is difficult and 342 

requires a number of assumptions. Nevertheless, a most likely cause can be arrived at by a process of 343 

elimination. This region is especially arid and has likely been so for the majority of the Quaternary 344 

period (e.g. Abramowski et al., 2006), making heavy or long-duration precipitation unlikely. 345 

Furthermore, rainstorms rarely result in large, deep-seated rock slope failures such as that required 346 

for the Komansu event, thus we do not consider this a likely cause. Similarly, rapid snow melt and 347 

permafrost degradation are unlikely to result in deep-seated failures. The most likely trigger is 348 

therefore strong ground motion during a large local earthquake. The MPT is the main structure that 349 

has accommodated tectonic uplift in this region throughout the last several million years; 350 

importantly, there are MPT fault scarps up to ~30 m high running through the deposit that represent 351 

multiple ruptures along the MPT in the area since the rock avalanche was deposited (Arrowsmith and 352 

Stecker, 1999).  Furthermore, the MPT is known to be capable of generating large (>M7.0) 353 

earthquakes and is sufficiently close to the Trans Alai ranges to generate high intensity shaking in 354 

the source region, with substantial topographic amplification in the upper parts of the range (Buech 355 

et al., 2010). Historically, large earthquakes are known to have caused large-volume rock avalanches 356 

with excessive runouts. The Bogd Fault, Saidmarreh, Green Lake, Tsergo Ri, Falling Mountain and 357 

Lluta events are all inferred to have seismic triggers associated with nearby major fault systems 358 

(Phillip and Ritz, 1999; Roberts and Evans, 2013; Hancox and Perrin, 1994; Weidinger et al., 1996; 359 

Davies and McSaveney, 2002; Strasser and Schulnegger, 2005). It therefore seems likely that the 360 

Komansu rock avalanche was initiated by a large (>M7.0) earthquake occurring on the MPT in the 361 

central Alai Valley.  362 

 363 

Emplacement mechanism 364 

The unusually high mobility of the Komansu deposit is its best-contrained characteristic, and is also 365 

a serious concern from a hazard perspective; if a rock avalanche can run out twice as far as others of 366 

its type, there is a need to understand why. The long runout can be explained in a number of different 367 

ways: a) the original volume was very much larger than the remaining deposits; b) the incorporation 368 
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of large volumes of ice into the rock debris; or c) the runout took place over glacier ice. We now 369 

consider each of these in turn. 370 

 371 

1. Large-volume rock avalanche 372 

The identification by Reznichenko et al. (2013) of rock-avalanche-sourced fines in the distal basal 373 

layer of the deposit is indicative of a rock avalanche. Such fines are not produced by the lower 374 

stress and strain rates of glacial processes, and have not been identified in historic rock-ice 375 

avalanche deposits; the latter, being saturated, would be unlikely to show the basal shear seen in 376 

the Komansu deposit.  377 

 378 

To date only two reported terrestrial subaerial non-volcanic rock avalanches have runouts greater 379 

than 28 km (Table 1). If the Komansu event follows the deposit length–volume relationships for 380 

rock avalanches identified by many authors since Scheidegger (1973) (e.g. Eq. 1), then the 381 

volume must have been ~20 km
3
. This would make the Komansu event one of the largest 382 

identified terrestrial rock avalanches (Table 1). As noted above, the dimensions of the source area 383 

show that the initial volume is substantially less than the ~20 km
3
 required for a rock avalanche 384 

with 28 km runout. An alternative mechanism is therefore likely to have been involved. 385 

 386 

Rock Avalanche Volume 

(km
3
) 

Runout length 

(km) 

Friction 

coefficient 

Reference 

Bogd Fault (Mongolia) 50 5 0.2 Phillip & Ritz (1999) 

Saidmarreh (Iran) 45 19 0.04 Roberts & Evans (2013) 

Socompa (Chile)
a 

36 40 0.07-0.14 Wadge et al. (1995) 

Nomal (Pakistan) 31 11 0.2 Hewitt (2001) 

Green Lake (New Zealand) 27 9 ~0.07 Hancox & Perrin (1994) 

Lluta (Peru) 26 ~40 ~0.06 Strasser & Schlunegger 

(2005) 

Flims (Switzerland) 12 16.5 0.12 Pollet & Schneider (2004) 

Tsergo Ri (Nepal) 10 ~12 ~0.22 Ibetsberger (1996) 

Cerrillos Negros (Peru) >9 43 0.08 Crosta et al. (2012) 

Komansu (Kyrgyzstan) ~8
b 

28 0.11 This Study 

Kolka-Karmadon (Russia)
c 

0.1 20 (35
e
) 0.08-0.15 Huggel et al. (2005) 

Huascarán (Peru)
c, d 

0.05 14 (180
e
) 0.01 Evans et al. (2009) 
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Table 1 – Comparison of selected massive subaerial rock avalanches from around the world. 
a 
Volcanic 387 

debris avalanche. 
b
 Total volume including entrained material (see text). 

c 
Rock/Ice avalanches; 388 

brackets show the total runout length including the fluidised runout phase – see text for discussion. 
d 389 

This refers to the 1970 event; a similar but smaller event also occurred in 1962. 
e
 Total runout with 390 

secondary debris-/hyperconcentrated flow phase. 391 

 392 

2. Rock-ice avalanche  393 

A rock-ice avalanche (e.g. Schneider et al., 2011) occurs when a rock avalanche falls onto and 394 

erodes large quantities of ice, incorporating it into the moving mass. The ice melts, saturating the 395 

rock mass and increasing the mobility of the avalanche. A large proportion of ice to rock (2:1 or 396 

more) is required to saturate the debris and alter the mode of motion (Sosio et al, 2012). There are 397 

several examples of extremely mobile rock-ice avalanches with which the Komansu deposit can 398 

be compared, the most notable of which are the 1970 Huascarán event in Peru (Evans et al., 399 

2009), the 1987 Rìo Colorado event in Chile (Hauser, 2002) and the 2002 Kolka-Karmadon event 400 

in Russia (Huggel et al., 2005). In each of these events a moderately large (~10
7
 m

3
) collapse of 401 

rock and ice fell from glaciated mountains and travelled huge distances downstream: in the 402 

Huascarán event, debris reached the Pacific Ocean 180 km away (Evans et al., 2009). However, 403 

each event contained at least two different phases of motion: an initial (proximal) rock-ice 404 

avalanche phase followed by a distal debris- or hyperconcentrated flow. In each case the extent of 405 

the rock-ice avalanche phase is comparable to the Komansu deposit, albeit with very much 406 

smaller volumes. No evidence of a debris flow or hyperconcentrated flow was found downstream 407 

of the Komansu deposit, but given the age of the event this does not conclusively disprove the 408 

occurrence of a rock-ice avalanche. 409 

The basal fragmented layer found in the distal exposure of the Komansu event, however, is 410 

difficult to reconcile with the water-saturated motion of a rock-ice avalanche, which would be 411 

likely to move as a fine-sediment slurry containing larger material (Fig. 10). 412 

It is certainly likely that a significant amount of ice was included in the Komansu runout. Strom 413 

(2014) suggested that the presence of ice explained the chaotic hummocky topography; however, 414 

it is significant that the Komansu deposit bears little morphological resemblance to the three 415 

examples of rock-ice avalanche deposits discussed. Furthermore, the presence of hummocks in 416 

the Socompa volcanic debris avalanche deposit, which did not involve ice, shows that ice is not 417 

required to generate such hummocks. Rock-ice avalanche deposits resemble those of slurry flows 418 

in their distal regions (Fig. 10); photos from the Kolka-Karmadon (Huggel et al, 2005) and 419 
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Huascarán (Evans et al., 2009) deposits show that the fluid material forms flat surfaces, lobes or 420 

compression ridges rather than hummocks.  421 

 422 

Fig. 10  Comparison of a) rock-ice avalanche deposit above person (Huggel et al., 2002) and b) 423 

Komansu rock avalanche deposit (Strom, 2014); the rock-in-slurry composition of the rock-ice 424 

avalanche is evident in contrast with the Komansu deposit exposures. Note the jigsaw-like 425 

structure of the Komansu deposit showing entrarinment of rounded fluvial material (lighter). 426 

 427 

Both the Huascarán and Kolka-Karmamdon events involved very large quantities of ice. The 428 

initial failure of the Huascarán event involved ~6 × 10
6
 m

3
 of rock debris and ~1 × 10

6
 m

3
 of ice, 429 

with >15 × 10
6
 m

3
 of snow and ice being entrained in the flow (Evans et al., 2009), giving a total 430 

ice-to-rock ratio of ~2.7:1. During the Kolka-Karmadon event, an initial failure of  >10 × 10
6
 m

3
 431 

of rock debris and >8 × 10
6
 m

3
 of ice fell onto the Kolka glacier, eroding away between 60 and 90 432 

× 10
6
 m

3
 of ice from the glacier (Huggel et al., 2005) with an ice-to-rock ratio of between 7:1 and 433 

10:1. The Komansu deposit is considerably larger than the Huascarán (0.05 km
3
), Rìo Colorado 434 

(0.015 km
3
), and Kolka-Karmadon (0.1 km

3
) events. If the present day volume of 3-5 km

3
 435 

corresponds to the total volume of the Komansu event, at least 6-10 km
3
 of ice would have been 436 

required to generate a rock-ice avalanche; correspondingly more would be needed to cause the 437 

inferred 5-10 km
3 

event into a rock-ice avalanche. It is difficult to explain the availability of such 438 
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a large volume of ice, especially given that the age of the deposit appears to correspond to a time 439 

after the region’s glaciers began to retreat.  440 

Despite a rock-ice avalanche mechanism being able to explain the extreme mobility of the 441 

Komansu deposit, the morphological and sedimentary evidence, combined with the requirement 442 

for an extremely large volume of ice, suggest this was not the mode of emplacement. 443 

 444 

Parameter Value 

Debris volume, V (m
3
)
a 

~8 × 10
10 

Final deposit elevation (m) 2,800 

Source zone elevation (m) 5,800 

Fall height, 𝑯 (m) 3,000 

Runout length, 𝑳 (m) 28,000 

Apparent coefficient of friction 0.11 

Fahrböschung (tan
-1

 H/L) 6.1° 

Table 2 Runout parameters of the Komansu rock avalanche. 
a
 Refers to total volume including 445 

entrained material (see text). 446 

 447 

3. Supraglacial travel 448 

Rock avalanches that travel over glaciers are very much thinner (usually ~ 10 m), and spread 449 

much more, than those that travel over non-glaciated terrain, having a basal friction coefficient of 450 

~0.1 (e.g. McSaveney, 1978; Eisbacher, 1979; Evans and Clague, 1988). This suggests that the 451 

Komansu event could achieve its 28 km runout with a volume of a few cubic kilometres if it was 452 

emplaced supraglacially. However, supraglacial rock avalanche deposits commonly have 453 

longitudinal ridges rather than well-defined hummocks (e.g. Sherman Glacier, Alaska 454 

(McSaveney, 1978): Mt Munday, Canada (Delaney and Evans 2014)), and these are absent from 455 

the Komansu deposit. In addition, the thickness of the Komansu deposit with up to 40-m high 456 

distal hummocks suggests that distal emplacement, at least, was not supraglacial. Finally, the 457 

inferred mid-Holocene timing of the event suggests that glaciers at that time were not greatly 458 

more extensive than at present, so that only part of the confined valley travel could have been 459 

supraglacial, and this on its own cannot explain the runout. 460 

 461 

Thus, while all three of these emplacement mechanisms are feasible, none adequately explains the 462 

extreme mobility observed. The available morphological and sedimentary evidence favours a rock 463 

avalanche origin with a volume much greater than the present-day exposed deposits, but such a 464 
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volume is not feasible. It is critical from a present-day hazards perspective to conclusively identify a 465 

runout mode; for instance, if substantial glaciers were required to explain the runout distance, then 466 

present-day conditions might imply that such long runout is not possible under modern conditions.  467 

We attempt to resolve this conundrum by considering the mobility and morphology of volcanic 468 

debris avalanches, whose runout lengths are typically larger than those of rock avalanches of similar 469 

volumes.  470 

 471 

Comparison with Socompa volcanic debris avalanche 472 

The basal contact shown in Figs. 7 and 8 has a thin (~10 cm) layer of very fine-grained material 473 

separating the mass movement deposit from the alluvial deposits (Fig. 9). This material has a 474 

consistent fine-sand-to-clay size distribution and distinct upper and lower boundaries (Fig. 9). The 475 

overlying ~10 m thick rock avalanche unit contains large (up to boulder size), angular clasts 476 

supported in a fine (up to coarse sand size) matrix. This stratification is likely the result of high 477 

normal and shear stresses in the basal region resulting in concentrated comminution of rock debris in 478 

this area (Davies et al., 2010).  479 

Similar stratification has been identified in the Socompa volcanic debris avalanche deposit in Chile 480 

(Le Corvec, 2005) which occurred 7,200 yr B.P., had a total volume of 36
 
km

3 
(only ~25 km

3
 was 481 

involved in the runout however, with the rest remaining proximal to the volcano), and a runout of 40 482 

km (Wadge et al. 1995; Van Wyk de Vries et al., 2001). The Socompa deposit has a heavily 483 

fragmented lower unit containing thin internal shear bands and an overlying, less fragmented breccia 484 

deposit (Wadge et al. 1995; Le Corvec, 2005). Furthermore, the Socompa deposit also has prominent 485 

non-striated hummocky topography and an average thickness on the order of 40 m (Davies et al., 486 

2010) and therefore bears notable similarities to the Komansu deposit.  487 

The process of dynamic rock fragmentation proposed by Davies et al. (2010) provides a plausible 488 

mechanism for the occurrence of low basal shear resistance. This suggests that when fragmentation 489 

is concentrated in a basal layer, continuous and widespread explosive failure of rock particles exerts 490 

a pressure on the overlying material, supporting its weight and reducing the basal effective stress, 491 

and thus the apparent coefficient of friction. This mechanism is therefore able to explain the presence 492 

of a highly fragmented basal unit, an overlying less fragmented unit, and the reduced basal shear 493 

resistance noted in both the Socompa debris avalanche deposit and the Komansu deposit. Lateral and 494 

longitudinal spreading of the deposit over the weak basal layer explains the hummocky morphology. 495 

However, it is not able to explain why the Komansu friction coefficient (Table 2) corresponds to a 496 

debris volume significantly larger than that which appears to have been involved. 497 
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The Socompa event was a volcanic debris avalanche, and these generally appear to involve higher 498 

mobility than non-volcanic rock avalanches (by a factor of about 2; Legros, 2000; Ui, 1983; Siebert, 499 

1984; Dade and Huppert, 1998), but the absence of volcanoes in the Trans Alai range appears to 500 

preclude this mechanism as an explanation of the Komansu runout.  However, the reason that 501 

volcanic debris avalanches are more mobile than non-volcanic rock avalanches is not because of 502 

differences in rock properties, but rather due to the high voids ratio and water content of a volcanic 503 

edifice (e.g. Glicken, 1996) compared to the relatively void-free intact rock that forms the source of a 504 

rock avalanche (Davies & McSaveney, 2009). Despite having a high water content, volcanic debris 505 

avalanches such as Socompa have still produced a highly fragmented basal layer demonstrating that 506 

while they have sufficient water content to increase mobility they are not saturated. Glicken (1996) 507 

confirmed this; he estimated that the edifice of Mt St Helens had an initial porosity of about 14% and 508 

was about 92% saturated, while following deposition the debris avalanche had 25% porosity and 509 

45% saturation due to a total volume increase of 0.4 km
3
 by bulking of the debris. A non-volcanic 510 

rock avalanche, by contrast, will be essentially completely dry because the source rock contains very 511 

little water, and the high bulking creates large volumes of void space. 512 

 513 

Proposed emplacement sequence 514 

At the time the Komansu event occurred there was certainly a large amount of ice and snow present 515 

in the Trans Alai range. If it we assume the source zone was covered in 50-100 m of ice, which 516 

seems reasonable given the current levels of ice in the present-day range, then a total of 0.5 km
3
 of 517 

ice may have been involved in the initial failure. We estimate that the total rock volume from the 518 

source area was 4 km
3
 (Fig. 4) which likely bulked to 5 km

3
 resulting in a void space of 1 km

3
. Thus 519 

the 0.5 km
3
 available ice would have resulted in a saturation of ~50%, which is remarkably similar to 520 

Glicken (1996)’s estimate of the Mt St Helens debris avalanche. It is therefore likely that the 521 

Komansu rock debris would have behaved in a similar manner to a volcanic debris avalanche. To 522 

explain the Socompa runout requires that Eq. (1)  becomes 523 

L = 14(V)
1/3

       (2) 524 

On this basis a runout of 28 km requires V = 2
3
 = 8 km

3
. Thus it is possible to explain the extreme 525 

mobility of the Komansu event with a smaller volume than required by dry rock avalanche 526 

mechanisms, assuming mobility similar to that of Socompa and Mt St Helens.  527 

However, this volume is still at least twice that of the probable source zone. Nevertheless, several 528 

historic rock avalanches have entrained a large amount of material during runout, increasing their 529 

volume and mobility substantially. Hungr and Evans (2004) reported multiple rock avalanche events 530 

of various volumes which had entrainment ratios (volume entrained/collapse volume) >1, especially 531 
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those which interacted with colluvium, alluvium, and glacial deposits. The Komansu deposit is likely 532 

to have interacted with all three of these deposits during its long runout. The observed entrainment 533 

ratios are sufficient to increase the initial 4 km
3
 debris volume suggested from the source zone, to the 534 

8 km
3
 volume required to explain a 28 km runout length. Furthermore, this large scale entrainment of 535 

material appears to conform with observations by Strom (2014) of abundant fluvial material within 536 

the deposit (Fig. 10). Assuming most of this entrainment happened during the first half of the runout 537 

(15 km), the debris would have filled the valley reach which has an average width of ~4 km (Fig. 2) 538 

suggesting an erosional depth of ~60 m. If entrainment occurred along the entire runout this depth 539 

would obviously be substantially less. 540 

We therefore suggest that a likely explanation for the extreme mobility of the Komansu event is an 541 

initial failure of ~4 km
3
 of dry rock debris, together with a large volume of glacial ice, which during 542 

proximal runout entrained a further ~4 km
3
 of substrate plus more glacial ice, resulting in 543 

unsaturated flow processes similar to a volcanic debris avalanche with intense basal fragmentation, 544 

generating a runout length of 28 km. While this suggestion includes several assumptions, it is able to 545 

adequately explain the morphological and sedimentary evidence observed and is consistent with 546 

source volume. 547 

 548 

Runout over Frozen Ground 549 

A final factor which should be considered is the effects of the rock avalanche moving across frozen 550 

ground. Due to its elevation, the region is exceptionally cold for at least half the year and has likely 551 

been so for most of the Holocene. Given the large volume and the proximity to a large, active fault, a 552 

seismic initiation is most likely and thus there is a 50% chance the event occurred when the ground 553 

was frozen. Runout over frozen ground is likely to reduce basal friction and increase mobility 554 

however, it is not known how much of an influence this is likely to have. Thus it is not currently 555 

possible to say whether, and how much, this influenced runout. 556 

 557 

Hazard 558 

The identification of the Komansu rock avalanche presents several important issues for future hazard 559 

analysis. Firstly, the re-interpretation of this deposit as a rock avalanche deposit rather than a glacial 560 

deposit, combined with several other notable examples globally, suggests that massive landslides 561 

may be more common than previously thought, as found by Hewitt (1999) in the Karakoram 562 

Himalaya. Further assessment of other deposits within the Alai Valley is required in order to 563 

understand how frequently such events occur in this region. Continued global assessment of deposits 564 

such as the Komansu deposit are likely to yield further examples of this misinterpretation. Thus 565 
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mountainous areas with glacial deposits, particularly those close to active faults, are likely to have a 566 

higher rock avalanche hazard than currently believed. Further, if sufficient ice can be incorporated, 567 

the runout of rock avalanches in glaciated mountains may be significantly longer than that in the 568 

absence of glaciers. 569 

The mechanism(s) involved in the excessive runout length are also important. Most villages within 570 

the Alai Valley are situated at its northern extent, at the base of the Tien Shan (Fig 1). Prior to 571 

identification of the Komansu rock avalanche, the major mass movement hazard perceived to these 572 

villages was that from the Tien Shan. However, the Komansu rock avalanche suggests that these 573 

locations have always had the additional threat of long runout rock avalanches originating in the 574 

Trans Alai. Our work demonstrates that this runout was the result of rock debris and ice collapsing 575 

and entraining large volumes of material resulting in an excessive runout length. If runout over 576 

glacial ice was necessary to explain the deposit extent then the retreat of glaciers in the region would 577 

suggest that a recurrence of a similar event is unlikely as future events would have only limited 578 

runout length over ice. Similarly, glacial retreat reduces the possibility of very large amounts of ice 579 

being included in any future event, and thus the possibility of a long runout rock-ice avalanche. 580 

However, since the runout appears to be satisfactorily explained by wet rock debris entraining large 581 

volumes of material during initial runout, it is possible that a long runout rock avalanche could occur 582 

at any time. Quantification of this hazard requires knowledge of how the ice:rock ratio affects 583 

increases in runout distances, which is an important topic for future work. Given the potential for a 584 

large-magnitude earthquake in the region, the occurrence of a future large-volume wet rock 585 

avalanche with similar runout characteristics cannot yet be discounted. Understanding the 586 

mechanism involved during runout is therefore vital to better understanding these events and the 587 

hazard they pose. 588 

 589 

Conclusions 590 

Reanalysis of a deposit in the central Alai Valley in southern Kyrgyzstan that has previously been 591 

thought to be of glacial origin shows instead that it is a massive coseismic rock avalanche deposit. 592 

This deposit, on the true right of the Komansu River, originally covered an area ~100-150 km
2
, 593 

contained a volume of about 8 km
3
, and had a total runout length of ~28 km. It is thus one of the 594 

longest-runout subaerial, non-volcanic rock avalanches thus far identified on Earth. Runout of the 595 

debris was halted when it reached the lower slopes of the Tien Shan at the northern boundary of the 596 

Alai Valley. Here the debris ran uphill for up to 100 m suggesting a velocity of > 45 m s
-1

 before it 597 

began to run uphill. The event appears to have occurred about 5,000-11,000 years ago, and at least 598 

50% of the deposit has been eroded or buried since emplacement. The most likely trigger was a large 599 
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(>M7) earthquake on the range-bounding Main Pamir Thrust; this fault has a fast slip-rate and has 600 

produced earthquakes of this size in recent history. The mechanism responsible for the long runout 601 

appears to have been a rock avalanche that was wet but not saturated, and behaved in a similar way 602 

to a volcanic debris avalanche; this allows the source area rock volume (~ 4 km
3
), together with 603 

substantial ice, to fall and entrain a similar volume of substrate and further glacial ice, giving 604 

mobility similar to that of the Socompa volcanic debris avalanche. Additional mapping, field 605 

investigations, and analysis of other glacial landforms in active mountain belts worldwide may assist 606 

with the discovery of other large-runout rock avalanches and with correspondingly improved hazard 607 

assessments. 608 
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