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The moduli space of centred Bogomolny–Prasad–Sommerfield 2-monopole fields is a 4-dimensional 
manifold M with a natural metric, and the geodesics on M correspond to slow-motion monopole 
dynamics. The best-known case is that of monopoles on R3, where M is the Atiyah–Hitchin space. More 
recently, the case of monopoles periodic in one direction (monopole chains) was studied a few years ago. 
Our aim in this note is to investigate M for doubly-periodic fields, which may be visualized as monopole 
walls. We identify some of the geodesics on M as fixed-point sets of discrete symmetries, and interpret 
these in terms of monopole scattering and bound orbits, concentrating on novel features that arise as a 
consequence of the periodicity.
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1. Introduction

The observation that the dynamics of Bogomolny–Prasad–Som-
merfield (BPS) monopoles can be approximated as geodesics on 
the moduli space M of static solutions [1] has proved to be 
far-reaching. Not only does it reveal much about monopole dy-
namics, but the moduli spaces themselves are of considerable 
interest, for example in string theory. The best-known case is 
that of the centred 2-monopole system on R3, where M is a 
4-dimensional asymptotically-locally-flat (ALF) space, namely the 
Atiyah–Hitchin manifold [2,3]. For monopoles periodic in one di-
rection, in other words on R2 × S1, the asymptotic behaviour of 
the centred 2-monopole moduli space is different, and is called 
ALG [4]. In this case, the generalized Nahm transform has been 
used to describe some of the geodesics on the moduli space, and 
their interpretation in terms of periodic monopole dynamics [5,6].

This paper focuses on the doubly-periodic case, namely BPS 
monopoles on T 2 × R, also referred to as monopole walls [7,8]. 
An N-monopole field which is periodic in the x- and y-directions 
may be viewed as a set of N monopole walls, each extended in 
the xy-direction. Much is known about the general classification of 
the moduli spaces of such solutions, and their string-theoretic in-
terpretation [8,9]. We shall restrict our attention here to the case 
of smooth 2-monopole fields with gauge group SU(2); the centred 
moduli space M is then a four-dimensional hyperkähler manifold 
with so-called ALH boundary behaviour [10]. The asymptotic form 
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of its metric has recently been derived [11]. Our aim here is to 
identify some of the geodesics on M as fixed-point sets of discrete 
symmetries, and to interpret these in terms of monopole scatter-
ing, concentrating on novel features that arise as a consequence of 
the periodicity.

The system, therefore, consists of a smooth SU(2) gauge poten-
tial A j on T 2 × R, plus a Higgs field Φ in the adjoint representa-
tion. The fields satisfy the Bogomolny equation D jΦ = −B j , where 
B j = 1

2 ε jkl Fkl is the SU(2) magnetic field. The coordinates are x j =
(x, y, z), where x and y are periodic with period 1, and z ∈ R. The 
boundary condition (see [7,8] for more detail) is |Φ|/|z| → const
as z → ±∞. There are two topological charges Q ± , which are 
non-negative integers defined in terms of the winding number 
of Φ . More precisely, if Φc := Φ|z=c , then Φ̂c := Φc/|Φc| is a 
map from T 2 to S2, and we define Q ± := ± deg Φ̂±c for c � 1. 
The number of monopoles is N = Q + + Q − , and we are inter-
ested in the case N = 2, so there are three possibilities, namely 
(Q −, Q +) = (1, 1), (0, 2) or (2, 0). In fact, the corresponding mod-
uli spaces are isometric [9]. In what follows, we shall concentrate 
on the (1, 1) wall, namely Q − = Q + = 1.

2. Parameters and moduli of the (1, 1) wall

We begin by reviewing the parameters, the moduli, the energy, 
and the spectral data of the (1, 1) wall, using the same conventions 
and notation as in [8]. There exists a (non-periodic) gauge such 
that the boundary behaviour of the fields is

Φ ∼ 2π i(z + M±)σ3, A j → π i(y − 2p±,−x − 2q±,0)σ3 (1)

as z → ±∞. The six real constants (M±, p±, q±) are the boundary-
value parameters, with M± ∈ R and p±, q± ∈ (− 1 , 1 ]. Fixing the 
2 2
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centre-of-mass of the system amounts to fixing (M−, p−, q−) in 
terms of the other three parameters (M+, p+, q+). Henceforth, we 
fix the centre-of-mass to be at the point (x, y, z) = ( 1

2 , 12 , 0), and 
the field is then invariant (up to a gauge transformation) under the 
map (x, y, z) �→ (1 − x, 1 − y, −z) plus Φ �→ −Φ . In effect, the sys-
tem as a whole has infinite mass, and only the relative separation 
and phase of the two monopoles appear in the moduli space; the 
space of fields with fixed (M±, p±, q±), modulo gauge transforma-
tions, is our four-dimensional moduli space M.

The energy density is E = |DΦ|2 + |B|2, and E → 8π2 as z →
±∞. The total energy, i.e. E integrated over T 2 ×R, is consequently 
infinite. But the cut-off energy

E L =
L∫

−L

dz

∫ (|DΦ|2 + |B|2)dxdy (2)

is finite, and if L � −M+ it equals the Bogomolny bound [7]

E L = 16π2(L + M+). (3)

Spectral data for this system may be defined as follows [8]. Put

W x = trP exp

1∫

0

(−Ax − iΦ)dx,

W y = trP exp

1∫

0

(−A y − iΦ)dy.

Then W x and W y have the form

W x = W x(s) = (
s + s−1)exp

[
2π(M+ + ip+)

] + 2Dx, (4)

W y = W y(s̃) = (
s̃ + s̃−1)exp

[
2π(M+ + iq+)

] + 2D y, (5)

where s = exp[2π(z − iy)] and s̃ = exp[2π(z + ix)], and where Dx , 
D y are complex constants. The real and imaginary parts of Dx

and D y are moduli; but they are not independent, so do not pro-
vide all the moduli.

The Nahm transform maps walls to walls, although in general 
the gauge group, the topological charges, and the number of Dirac 
singularities change [8,9]. In our case, however, these properties do 
not change: the Nahm transform of a smooth SU(2) wall of charge 
(1, 1) is again of that type. The action of a Nahm transform on the 
parameters and the moduli is as follows:

(M+, p+,q+) �→ (−M+,−p+,−q+), (6)

Dx �→ −Dx exp
[−2π(M+ + ip+)

]
, (7)

D y �→ −D y exp
[−2π(M+ + iq+)

]
. (8)

These expressions follow from the fact that the x-spectral curve, 
given by t2 − tW x(s) + 1 = 0, is invariant under the Nahm trans-
form, which acts by interchanging the variables t and s; and simi-
larly for the y-spectral curve [8].

3. The asymptotic region of M

In order to understand the role played by the parameters and 
the moduli, let us first look at the asymptotic region of moduli 
space M, which consists of those fields for which |Φ|z=0 � 1. It 
follows from this condition that Dx and D y have the approximate 
form

Dx ≈ cosh
[
2π(M + ip)

]
, D y ≈ cosh

[
2π(M + iq)

]
, (9)
Fig. 1. Higgs field and energy density of a well-separated two-wall solution.

with M � max{1, M+}. Three of the four asymptotic moduli are M
and p, q ∈ (− 1

2 , 12 ]. The walls are located at values of z for which 
W x(s) has zeros, and we see from (4) that this occurs for z =
z± = ±(M − M+); so we have two well-separated walls. Note 
that |Dx| ≈ |D y | up to exponentially small corrections, so we 
could equally well have used the zeros of W y(s̃) to define the 
wall locations; but this is only true asymptotically, and not in 
the core region of M. Each wall has a monopole embedded in 
it, the monopole locations R± = (x±, y±, z±) being defined to be 
where W x(s) = 0 = W y(s̃). Numerical solutions indicate that this 
is where Φ is zero, and also where the energy density is peaked. 
It follows from (4, 5) that the location of the z > 0 monopole is 
R+ = ( 1

2 + q − q+, 12 − p + p+, M − M+).
The energy density is approximately zero for z− < z < z+ (be-

tween the two walls), and tends to 8π2 as z → ±∞. See Fig. 1, 
which depicts a solution with M+ = −0.92 and Dx = D y = 6.21; 
this solution was obtained numerically by minimizing the func-
tional (2). The left-hand plot is of |Φ| on the line x = y = 1

2 , where 
the monopoles are located. The right-hand plot is of the normal-
ized, xy-averaged energy density (8π2)−1

∫
Edxdy, as a function 

of z. Between the walls, the function |Φ| is approximately con-
stant; in fact |Φ| ≈ 2π M .

In view of the shape of the energy density, one might have 
expected that E L could be reduced by moving the walls further 
apart, i.e. by increasing M: it looks like an increase δM in M would 
give δE L = −16π2δM , as the central region (where E is zero) in-
creases in size. But in fact as M increases and the walls move 
apart, the energy contained in each monopole increases by 8π2δM . 
This is because each monopole resembles an R3 monopole with 
|Φ|∞ = 2π M and therefore energy 8π2M . So the total energy E L

is independent of M , as it must be from (3). Note, however, that 
stability involves fixing the value of the parameter M+ , and reduc-
ing M+ really does lower the energy. This is analogous to having 
to fix the boundary value of |Φ| in the R3 case.

Furthermore, the size of each monopole core is proportional 
to M−1, and therefore one may think of them as small SU(2) 
monopoles embedded in an ambient U(1) field. So the asymp-
totic moduli are analogous to those of the R3 case: three moduli 
(M, p, q) determine the relative location of the two monopoles, 
and the fourth is a relative phase ω ∈ (−π, π ] between them. The 
asymptotic metric, in our coordinates (M, p, q, ω), takes the hyper-
kähler form [11]

ds2 = π W
(
dM2 + dp2 + dq2)

+ π W −1[dω − 8π(qdp − pdq)
]2

, (10)

where W = W (M) = 8π(2M − M+). Here, for simplicity, we have 
set p+ = q+ = 0. Note from (10) that R = M3/2 is an affine param-
eter on asymptotic ‘radial’ geodesics p, q, ω constant. The volume 
VolR of a ball of radius R scales like VolR ∼ R4/3, and so M is of 
ALH type [10].
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4. The interior of M

If M+ � 1, then the monopoles are always well-localized: the 
monopole size is small compared to unity even when the walls are 
close together. The energy density is strongly peaked at the loca-
tions of the two monopoles, one in each wall; if the monopoles 
coincide, the energy is peaked on a well-localized torus. So we ex-
pect that for M+ � 1, we can interpret the moduli space in terms 
of the locations and relative phase of the two monopoles, taking 
account of the periodicity in the x- and y-directions. If M+ 
 −1, 
the moduli space should be the same (via the Nahm transform), 
although the corresponding monopole picture will differ; in par-
ticular, the monopoles in this case will not be well-localized when 
the walls are close together.

For the case when M+ is close to zero, one may also get infor-
mation by looking at a neighbourhood of the one explicit solution 
which is known, namely the constant-energy solution. In a non-
periodic gauge, this is

Φ(0) = 2π izσ3, A(0) j = π i(y,−x,0)σ3. (11)

It has parameters M+ = p+ = q+ = 0 and moduli Dx = D y = 0, 
and its energy density has the constant value 8π2. To understand 
nearby solutions, we examine perturbations of (11); details have 
appeared in [8], and we summarize them here in a slightly differ-
ent form.

If ε is an infinitesimal parameter, take the Higgs field to be 
Φ = Φ(0) + εΦ(1) + ε2Φ(2) , and similarly for the gauge potential. 
The equations for the first-order perturbation (Φ(1), A(1) j) can be 
solved explicitly in terms of theta-functions. If we write ζ = x + iy, 
and define matrices Ξ and Ψ by 2Ξ = A(1)x + iA(1)y and 2Ψ =
A(1)z + iΦ(1) , then the relevant solution is

Ψ = ig(ζ )Ēσ+, Ξ = i f (ζ̄ )Eσ−, (12)

where E = exp(−2π z2 − 2π iζ̄ y), 2σ± = σ1 ± iσ2, and f (ζ̄ ), g(ζ )

are given by

f (ζ̄ ) = C1
[
ϑ3(πζ )

]2 + C2
[
ϑ1(πζ )

]2
,

g(ζ ) = C3
[
ϑ3(πζ )

]2 + C4
[
ϑ1(πζ )

]2
. (13)

Here the Cα are complex constants, and we are using standard 
theta-function conventions [12], with the nome of the theta func-
tions being q = e−π .

Next, we obtain Φ(2) , etc., by solving to second order in ε. This 
gives Φ(2) = iφσ3 and A(2) j = ia jσ3, where φ and a j satisfy

∂ jφ + ε jkl∂kal = 2
(
2 Re( f ḡ),2 Im( f ḡ), |g|2 − | f |2)

× exp
(−4π z2 − 4π y2). (14)

Here f denotes f (ζ̄ ) and g denotes g(ζ ). (Note that the coeffi-
cients in (14) differ slightly from those in [8].) The values of the 
parameters (M+, p+, q+) for the deformed solution can be com-
puted directly, and one gets

M+ = ε2Υ

4π

(|C3|2 + |C4|2 − |C1|2 − |C2|2
)
,

p+ + iq+ = iε2Υ

2π
(C1C3 + C2C4), (15)

where Υ = ∫ |ϑ1(πζ )|4 exp(−4π y2)dxdy ≈ 0.5902.
Thus of the eight real quantities Cα , three serve to set the 

parameters, four are moduli, and the remaining one is gauge-
removable, since

C1 �→ eiθ C1, C2 �→ eiθ C2,

C3 �→ e−iθ C3, C4 �→ e−iθ C4 (16)
Fig. 2. Higgs field and energy density of two double-wall solutions.

amounts to a gauge transformation. (This gauge freedom corre-
sponds to isorotation about the σ3-axis, which leaves the field (11)
unchanged.) To get the parameter values M+ = p+ = q+ = 0, one 
may take C3 = C2 and C4 = −C1; and the residual gauge freedom 
is Cα �→ −Cα . So for these parameter values, the moduli space has 
a conical singularity at the point (11): the “tangent space” there is 
R

4/Z2. For M+ �= 0, however, the moduli space is smooth.
The expressions above enable us to describe the solutions 

which are close to the constant-energy field (11), either directly 
for small ε, or by using them as starting configurations and then 
minimizing the energy E L to get a numerical solution. This leads 
to the following picture. If C1 = C2 = 0, but |C3|2 + |C4|2 �= 0 and 
hence M+ > 0, one gets monopoles in the plane z = 0. In other 
words, Φ has a pair of zeros, which may coincide, on z = 0; and 
the energy density is peaked at those zeros as usual. The top row 
of Fig. 2 illustrates a numerically-generated solution which is a 
non-infinitesimal version of the Cα = (0, 0, 1, 0) case. The quan-
tities plotted are the same as in Fig. 1. The solution has M+ = 0.2
and Dx = D y = 1.8. There is a double monopole (a torus with its 
axis in the z-direction) at (x, y, z) = ( 1

2 , 12 , 0), and this is where 
the energy density is peaked.

If, however, C3 = C4 = 0, but |C1|2 + |C2|2 �= 0 and hence M+ <

0, then Φ is identically zero on z = 0, whereas the energy den-
sity is minimal on z = 0 and peaked off z = 0. The bottom row 
of Fig. 2 depicts a non-infinitesimal version of the Cα = (0, 1, 0, 0)

case, a solution having M+ = −0.2 and Dx = D y = −0.5. The two 
solutions depicted in Fig. 2 are Nahm transforms of each other, 
with their parameters and moduli being related as in (6, 7).

5. Geodesic surfaces, geodesics, and trajectories

One can identify several geodesics in M as fixed-point sets 
of discrete isometries, and this section describes a few of them, 
together with their interpretation as monopole-scattering trajec-
tories. When the monopoles are well-localized, one may visualize 
such isometries in terms of their action on the two-monopole sys-
tem viewed as a single rigid body, with three principal axes of 
inertia, as in the R3 case [3]. The line joining the two monopoles 
is called the (body-fixed) 3-axis, a head-on collision results in a 
torus whose axis is the 1-axis, and the 2-axis is the line along 
which the monopoles emerge after scattering.
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Let τ0 denote rotation by 180◦ in the xy-plane: in other 
words τ0 : (x, y) �→ (1 − x, 1 − y). Then τ0 maps (M+, p+, q+) to 
(M+, −p+, −q+); so if we take p+ = q+ = 0, as we shall do from 
now on, then τ0 is a symmetry of the system, preserving both the 
Bogomolny equation and the boundary conditions. Also, τ0 leaves 
the relative phase ω of two well-separated monopoles unchanged, 
and maps (Dx, D y) to (D̄x, D̄ y). It follows that the fixed-point 
set of τ0 is a 2-dimensional geodesic surface S in the moduli 
space M.

The quantities Dx and D y are real-valued on S , and in the 
asymptotic region of the moduli space we have |Dx| ≈ |D y| � 1. 
So S has four asymptotic components, according to whether each 
of Dx and D y is positive or negative. This corresponds to having 
two monopoles, well-separated in the z-direction, with the same 
(x, y)-location: namely one of the four possibilities (0, 0), ( 1

2 , 0), 
(0, 12 ) or ( 1

2 , 12 ). The 3-axis is in the z-direction, and the direction 
of the 1-axis in the xy-plane corresponds to the relative phase ω, 
which is unrestricted. So each of the four asymptotic components 
is a cylinder, on which the coordinates are M � 1 and ω ∈ S1.

In order for a monopole pair to be invariant under τ0, its 1-axis 
must either be orthogonal to the z-axis (as in the asymptotic situ-
ation of the previous paragraph) or parallel to it; this gives two 
disjoint components of S , namely S1 and S0 respectively. (The 
same sort of thing happens in the singly-periodic monopole-chain 
case [6]: in that case, M contains a surface for which the 1-axis 
is orthogonal to the periodic axis, plus two surfaces, isometric to 
each other, for which the 1-axis is along the periodic axis.) As 
we shall see below, the four asymptotic cylinders of S referred 
to above are the ends of the single component S1.

We now find geodesics in S1 and S0 by imposing additional 
symmetries. Two such isometries of M correspond to reflections 
in the xy-plane, namely

τ1: x �→ 1 − x, Φ �→ −Φ, (17)

τ2: x �→ y, y �→ x, Φ �→ −Φ. (18)

Note that, on S , τ1 is equivalent to the reflection y �→ 1 − y, and τ2
is equivalent to x �→ −y, y �→ −x; so it is unnecessary to con-
sider these reflections as well. In the asymptotic region, requiring 
invariance under τ1 or τ2 has the effect of restricting the direc-
tion of the 1-axis (the relative phase of the two monopoles), and 
gives us geodesics in S1. The τ1-invariant fields have their 1-axis in 
the x- or y-direction, while the τ2-invariant fields have their 1-axis 
along either x = y or x = −y. So in each asymptotic cylinder of S1, 
we can identify four geodesics, and each of them can be traced 
as it passes through the interior of S1, using the analogous R3

scattering behaviour. (Here we are imagining that the monopoles 
remain well-localized throughout, which is the case if M+ � 1. In 
the M+ 
 −1 case, the moduli space and its geodesics are the 
same, via the Nahm transform, but the scattering interpretation is 
necessarily different.) For example, start on the asymptotic cylin-
der Dx ≈ D y < 0 (monopoles on x = y = 0), with the 1-axis in the 
x-direction. Then the two incoming monopoles merge at x = y =
z = 0, separate along the y-axis, re-merge at (x, y, z) = (0, 12 , 0), 
separate in the z-direction, and finally emerge in the asymptotic 
cylinder with Dx > 0, D y < 0. Each pair of asymptotic cylinders is 
connected by a geodesic (either τ1- or τ2-invariant) in this way, 
and so they are the ends of the single component S1 of the sur-
face S , as mentioned previously.

The fate of generic geodesics starting in the asymptotic region 
of S1 is less clear, but it seems likely that (unlike in the example 
above) they never emerge: they get trapped in the central region 
of S1, and continue travelling around the z = 0 torus.

Let us now turn to geodesics on the other component of S , 
namely S0. As before, we first focus on the M+ > 0 case, where 
the monopoles are localized. They are necessarily confined to the 
z = 0 plane – the two walls coincide, and the monopole motion 
takes place entirely within this double wall. We can get a good 
picture by thinking of perturbations of the constant-energy solu-
tion, as described in the previous section. In particular, we take 
the subclass of perturbations given by C1 = C2 = 0: these fields 
are invariant under the 180◦ rotation τ0, and in effect give us the 
surface S0. We fix |C3|2 + |C4|2 in order to fix M+ > 0, and factor 
out by the phase (16), so S0 is a 2-sphere S2 on which ξ = C4/C3
is a stereographic coordinate. Note, however, that the metric on S0
is not the standard 2-sphere metric.

Four points on this sphere, namely ξ = 0, ∞, 1 and −1, corre-
spond to toroidal double-monopoles at (x, y) = ( 1

2 , 12 ), (0, 0), (0, 12 )

and ( 1
2 , 0) respectively. The point ξ = i corresponds to a pair of 

monopoles at (x, y) = ( 1
4 , 14 ) and ( 3

4 , 34 ), while ξ = −i corresponds 
to a pair of monopoles at (x, y) = ( 1

4 , 34 ) and ( 3
4 , 14 ). Imposing 

various additional symmetries then gives closed geodesics on S0. 
For example, invariance under τ1 gives a geodesic passing through 
ξ = 0, 1, ∞ and −1 in that order; whereas τ2-invariance gives a 
geodesic passing through ξ = 0, i, ∞ and −i. These correspond to 
closed trajectories in which the two monopoles repeatedly scat-
ter at right angles within the periodic xy-plane, via the toroidal 
double-monopoles listed above.

All this has a Nahm-transformed counterpart, with M+ negative 
but close to zero. The fields are perturbations of the constant-
energy solution (11) with C3 = C4 = 0. Recall that the Higgs field 
is now identically zero on z = 0, and that the energy density E
is peaked off z = 0. A geodesic can be visualized in terms of the 
movement of these energy peaks, and one such closed trajectory 
(or rather half of it) is illustrated in Fig. 3. This shows six solutions, 
corresponding to six points on the curve (C1, C2) = (cosη, sinη)

for 0 ≤ η ≤ π , which is a closed geodesic in S0. Each of the figures 
is a 3-dimensional plot of the surface E(x, y, z) = 0.95 max(E), and 
so it indicates where the energy density is peaked. The upper-
left figure shows peaks on (x, y) = ( 1

2 , 12 ). These elongate in the 
y-direction (top row), and re-localize as peaks on (x, y) = ( 1

2 , 0)

(the lower-left figure). They then elongate in the x-direction before 
re-forming as peaks on (x, y) = (0, 0). The rest of the closed trajec-
tory (not shown) then proceeds via peaks at (x, y) = (0, 12 ) before 
returning to the initial field.

6. Concluding remarks

In this paper, we have studied doubly-periodic BPS 2-monopole 
solutions, or double monopole walls. The moduli space of centred 
2-monopole fields is a 4-dimensional manifold M, and the mod-
uli can be interpreted in terms of the relative monopole positions 
and phases. Even though the metric of M is not known explic-
itly (except in its asymptotic region), geodesics can be identified 
as fixed-point sets of discrete isometries, and these may be in-
terpreted as the interaction of parallel monopole walls, or of the 
monopoles embedded in the walls.

For the gauge group SU(2), there are two topological charges 
(Q −, Q +), and the number of monopoles is N = Q − + Q + . In this 
paper, we have only dealt with the charge (1, 1) case. For walls of 
charge (0, 2) or (2, 0), many of the details are similar, in particular 
the geometry of the moduli space. Rather less is currently known 
about N > 2 solutions, and it would be interesting to investigate 
the existence of highly-symmetric multi-monopole-wall configura-
tions along similar lines to the R3 case [3].

It would also be interesting to extend the analysis to the 
case of walls which have hexagonal rather than square symmetry. 
In particular, this would be relevant to the closely-related topic 
of monopole bags in R3 [13–17], which have curved hexagonal 
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Fig. 3. Part of a closed trajectory on S0 with M+ < 0.
monopole walls separating their interior and exterior regions. It 
also motivates the question of the general dynamical behaviour of 
monopole walls, where double periodicity is not necessarily main-
tained, and so there are infinitely many degrees of freedom; little 
is currently known about this more general situation.
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