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Summary  

The cortical endoplasmic reticulum (ER) network in plants is a highly dynamic 

structure and it contacts the plasma membrane (PM) at ER/PM anchor/contact sites. 

These sites are known to be essential for communication between the ER and PM for 

lipid transport, calcium influx and ER morphology in mammalian and fungal cells. 

The nature of these contact sites is unknown in plants [1, 2] and here we have 

identified a complex that forms this bridge. This complex includes (i) NET3C which 

belongs to a plant specific super-family (NET) of actin-binding proteins [3]. (ii) 

VAP27, a plant homologue of the yeast Scs2 ER/PM contact site protein [4, 5]
 
and (iii) 

the actin and microtubule networks. We demonstrate that NET3C and VAP27 localise 

to punctae at the PM, that NET3C and VAP27 form homodimers/oligomers and 

together form complexes with actin and microtubules. We show that F-actin 

modulates the turnover of NET3C at these punctae and microtubules regulate the 

exchange of VAP27 at the same sites. Based on these data, we propose a model for 

the structure of the plant ER/PM contact sites.   
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Highlights 

1. NET3C belongs to a plant specific NET super-family. 

2. NET3C links the actin cytoskeleton to ER/PM contact/anchor sites. 

3. VAP27 is phylogenetically conserved and interacts with NET3C.  

4. A novel complex for plant ER/PM contact site is identified from our study. 

 

Results and Discussion 

NET3C localises to ER/PM-associated punctae.  

The actin cytoskeleton is a dynamic filament network that is involved in many 

cellular processes [6, 7]. In plants, it plays a unique role in organelle movement 

and endomembrane trafficking [8, 9], a role normally played by microtubules in 

animals [10, 11]. However, we know little about the proteins that are involved in 

linking the actin cytoskeleton to the plant endomembrane system.  For example, 

it is known that the actin cytoskeleton is involved in ER movement but how they 

are linked is still an enigma.  [12]. Substances made in the ER are transported to 

various destinations through vesicular trafficking pathways [13]. Although, 

direct association between ER and other membrane compartments also exists, 

which may provide alternative routes for material transport [14, 15]. In this 

context, the ER and PM are connected via ER/PM anchor/contact sites/junctions 

[16-19] but the nature of these sites in plants is unknown.  

NET3C belongs to a plant specific NET super-family, which is a group of proteins 

that link the actin cytoskeleton to specific endomembrane compartments [3].The 

protein contains two functional domains (Figure 1A); a NAB (NET-Actin-Binding, 

a.a.1-94) domain and a coiled-coil domain (a.a.139-194). Here we show that 

NET3C binds F-actin.  An actin co-sedimentation assay was performed using leaf 

extracts from N. benthamiana expressing GFP-NET3C. NET3C was found in the 

pellet fraction (lane4) in the presence of F-actin (Figure 1F). When expressed in 

N. benthamiana leaves, GFP-NET3C gave a Ǯbeads on a stringǯ localisation, which 

is a characteristic of members of the NET superfamily [3] (Figure 1B-D). The 

beads represent numerous immobile punctae (0.25-1.0µm) that appear to 
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associate with the ER (Figure 1B; Movie S1). These NET3C punctae resemble the 

ER punctae that were previously suggested to be putative ER/PM contact sites [1, 

2, 20]  

The association of NET3C punctae with the ER membrane was found to be 

independent of the actin cytoskeleton; 87.9±10.1% of NET3C punctae associated 

with the ER (Figure 1B) and when the cells were treated with the actin 

depolymerizing drug latrunculin B (Figure 1C), this association did not change 

significantly (87.4±8.3%; p=0.47).  NET3C punctae are F-actin associated with 

92.0±3.1% contacting the actin network (RFP-Lifact; Figure 1D). The NET3C 

punctae that are associated with the ER or F-actin compared to non-associated is 

significantly different (chi-square tests, p<0.01; Figure S1 A-C). 

This association is further emphasized by showing that the turnover of NET3C 

punctae as assessed by FRAP, is influenced by F-actin but not by microtubules. 

The recovery of GFP-NET3C in the photo-beached region was enhanced 

significantly from 44.6±12.1% to 77.6±18.5% (max recovery, p=1.03x10-7) when 

treated with latrunculin B (Figure 1E).  In contrast, treatment of the cells with 

the microtubule depolymerizing drug, oryzalin, had little effect on NET3C 

turnover. These data indicate that NET3C localization is independent of F-actin 

but that once the punctae are attached to the F-actin, the exchange of NET3C is 

restrained. 

As the ER association of NET3C is independent of actin and the interaction with 

actin is at the N-terminus of NET3C, we assessed whether the C-terminus is 

responsible for membrane localization.  A NAB domain deleted NET3C was 

generated ȋNET3C∆NABȌ and this is shown to localize to the ER and PM (Figure 

S1D-F), confirming that the C-terminus is essential for membrane localization. In 

addition, NET3C lacking the C-terminal sequence (NET3C∆C-term) did not 

associate with either F-actin or membrane compartments (Figure S1G).  

In order to confirm that the localization of the GFP-NET3C in transiently 

expressing N. benthamiana cells is similar to the intracellular localization of 

native NET3C in Arabidopsis, immunofluorescence studies were performed 
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using anti-NET3C.  Western-blotting using anti-NET3C identified a single band of 

the appropriate molecular weight in Arabidopsis cell extracts (Figure S1I).  

Immunofluorescence was performed on Arabidopsis root tips expressing either 

GFP-HDEL(ER) or GFP-FABD2 (F-actin).  Anti-NET3C labeled punctate structures 

that closely associate with the ER (96.4±5.6%, Figure 1H) and F-actin 

(96.2±7.3%, Figure S1H) at the cell cortex.  Furthermore, immuno-gold labeling 

of Arabidopsis root tips showed gold particles at the PM in close proximity with 

the ER (Figure S1K) as well as at putative ER/PM contact sites (Figure 1G). The 

enrichment of anti-NET3C gold beads at the PM was confirmed statistically using 

chi-square tests (Figure S1L). These results on endogenous NET3C are consistent 

with the tobacco transient expression (Figure 1B), and confirm that NET3C is 

specifically found at punctae at the PM and putative ER/PM contact sites.  

Furthermore a double mutant, NET3C RNAi/net3b is shown to be gamete lethal 

indicating that NET3B/C are essential genes. (Figure S2C-F) 

Studies in yeast have suggested that C-terminal basic motifs (lysine/arginine 

residues) in many proteins are required for phospholipid binding [21]. The 

sequence of the NET3C C-terminus encodes several lysine residues, including a 

lysine at position 211 (Figure 2A). A mutant where the lysine is substituted for 

alanine (GFP-NET3C K211A) was generated. This mutant is still able to form 

punctae that associate with F-actin and the ER (Figure 2B & F). However, most 

are mobile, which indicates that PM association is reduced (Movie S2). The ratio 

of fluorescence intensity at the cell cortex to the nucleoplasm was determined to 

be 10.9±4.1 (arbitrary units) for NET3C and 0.88±0.86 for NET3C-K211A (Figure 

2E), indicating that the fluorescent signal for NET3C K211A accumulated in the 

nucleus,  a feature of many cytoplasmic protein/FP constructs. [22, 23](Figure 

2C-D). 

When the GFP-NET3C∆NAB mutant, which on its own is evenly distributed on 

the ER and PM (Figure S1D), was expressed with full length RFP-NET3C, the 

deletion mutant was recruited to the punctae identified by the RFP-NET3C 

(Figure 2G). This indicates that native NET3C may exist as a dimer/oligomer 

through an interaction between the C-terminal sequences. This interaction was 
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confirmed by immunoprecipitation (Figure 2H) and FRET-FLIM experiments. In 

the FRET-FLIM, the lifetime of GFP-NET3C was found to be 2.21±0.03ns in the 

presence of RFP-NET3C, which is significantly reduced (by 0.24ns) when 

compared to GFP-NET3C on its own (2.45±0.03ns, p=9.07x10-7), indicating a 

physical interaction [24, 25]. In comparison, the lifetime of the GFP-RFP fusion 

positive control was found to be 2.14±0.06ns (Figure 2I). 

These data suggest a model where the NET3C dimerises/oligomerises at the C-

terminal ends, the C-terminus binds the puncta to the membrane and the N-

terminus binds F –actin. The association between NET3C and the PM is likely to 

be through direct lipid binding via the C-terminal basic motif or alternatively, 

through the interaction with other membrane localised proteins. NET3C is also 

likely to form anti-parallel dimers/oligomers that link the ER and PM as GFP-

NET3C∆NAB localizes to the ER and PM. F-actin appears to stabilize the 

association of NET3C.(Figure 2J).  

VAP27 localises to ER/PM contact sites 

VAPs are phylogenetically conserved proteins [26-29]. They comprise a C-

terminal transmembrane domain (a.a.234-253), an N-terminal major sperm 

domain (a.a.1-129) and a coiled-coil domain (a.a.178-234; Figure 3A). VAP27-

YFP expressed in N. benthamiana leaves localises to the ER network as well as 

immobile punctate structures (0.25-1.2µm; Figure 3B), reminiscent of the 

putative ER/PM anchor sites observed in previous studies [1, 2] and in other 

organisms [17, 19]. These punctae are stationary while the majority of the ER 

network remodels (Figure S3A; Movie S3A).  The VAP27-YFP punctae are located 

along ER tubules but not generally associated with three way junctions (Figure 

3B).  Stable Arabidopsis lines expressing VAP27-GFP under its endogenous 

promoter were generated, and the same ER associated punctae were identified 

(Figure S3B, Movie S3B). At the ultrastructural level, in Arabidopsis expressing 

VAP-27-YFP, attachment sites of the ER to PM were found. The sites are 0.5-1.0 

µm, consistent with the size of VAP27 punctae observed using light microscopy 

(Figure S3C).   
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Yeast Scs2p is a known ER/PM contact site protein [4, 5, 16] and has 54% 

similarity to full length VAP27 (Figure S3E). When expressed in plants, Scs2p-

GFP co-localized with VAP27-YFP at the ER and the putative ER/PM contact sites 

(Figure S3D). However, the Scs2p labeled ER/PM contact sites were less distinct, 

presumably because the two proteins compete at the same site. This result 

suggests that Scs2p co-localizes with VAP27 at equivalent ER/PM contact sites in 

plants.     

Statistical analysis shows that 81.2±9.4% of VAP27-YFP labeled ER/PM contact 

sites associated with F-actin (GFP-Lifeact), whereas  59.5±4.3% were found to 

associate with KMD-RFP labeled microtubules[30] (Figure 3C-D).  FRAP was 

used to study the dynamics of VAP27 turnover. ER membrane proteins 

(calnexin-GFP) exhibit a fast recovery at the ER cisternae (T1/2=1.8-2.2 seconds) 

and has a large mobile fraction (Rmax=86-89%; Figure S3F). However, the 

recovery of VAP27-YFP at the ER/PM contact site was slow in comparison, with 

the maximum recovery reduced to 54.1±12.6% and a half-time of recovery of 

15.0±7.6 seconds. The slow recovery suggests that VAP27 is part of a protein 

complex that affects its mobility. In addition, the turnover of VAP27-YFP 

dramatically increased when microtubules were depolymerized 

(Rmax=70.3±12.6%, p=0.006), indicating that VAP27 has some functional 

association with microtubules. On the other hand, recovery was unaffected when 

F-actin was removed (Rmax=49.9±10.4%; Figure 3E). These data indicate that 

the microtubule network has an impact on the dynamics of VAP27 at the ER/PM 

contact sites.  

To further confirm an interaction between VAP27 and microtubules, total 

protein extracts from N. benthamiana leaves expressing VAP27-mRFP were co-

incubated with microtubules and the mixture subjected to centrifugation. 

VAP27-mRFP was only detected in the pellet in the presence of microtubules 

(Figure 3F), confirming an interaction in vitro.  This finding is consistent with the 

FRAP data described above. In conclusion, VAP27 is part of the ER/PM contact 

sites in plants and it associates with microtubules that constrain its mobility.  
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In addition, VAP27 is able to form dimers/oligomers in vivo like its mammalian 

equivalent[27], which was confirmed by immunoprecipitation (Figure S3G) and 

FRET-FLIM (Figure 3G). The lifetime of VAP27-GFP was reduced by 0.42ns to 

2.06±0.1ns when co-expressed with VAP27-RFP which is significantly different 

from the VAP27-GFP control (2.48±0.04ns), indicating a physical interaction.  

NET3C interacts with VAP27 at the ER/PM contact sites 

The localisations of NET3C and VAP27 appear similar so we performed 

colocalisation studies. VAP27-YFP was co-expressed with  CFP-HDEL (ER) and 

RFP-NET3C in N. benthamiana leaves and the results show that they co-localise 

at  the ER/PM contact sites (Figure 4A). Interestingly, yeast Scs2-YFP also co-

localised with NET3C at these contact sites, which further indicates that the 

localization of Scs2 in plant cells is the same as VAP27 (Figure S4A).  

To investigate whether VAP27 and NET3C interact we used co-

immunoprecipitation and FRET-FLIM.  RFP-NET3C was found in the pellet 

fraction only when co-expressed with VAP27-YFP (Figure S4B) and the 

fluorescence lifetime of GFP-VAP27 was reduced by 0.29ns to 2.13±0.06 in the 

presence of RFP-NET3C compared to control (2.42ns±0.02).  These data indicate 

a close association of NET3C/VAP27 in vivo (Figure 4B). Furthermore, 

immunostaining an Arabidopsis line stably transformed with 35S:VAP27-YFP 

using anti-NET3C and anti-GFP, showed that VAP27 punctae were also labeled 

with the NET3C antibody (Figure S4C).  

The major sperm domain of VAP27 is conserved (Figure S3E) and previous 

studies suggest that a lysine residue at position 58 and two tyrosine residues at 

position 59/60 are necessary for VAP to interact with other proteins [29].  We 

mutated the lysine 58 and tyrosine 59/60 to asparagine and alanine respectively. 

The resulting mutants were still ER localised but failed to label any ER/PM 

contact sites (Figure 4C & S4D). Moreover, the mutants did not appear to co-

localise with NET3C.  This suggests that the mutation of these residues in the 

major sperm domain prevents the NET3C/VAP27 interaction and ER/PM 

association (Figure 4D).  
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Further mutagenesis was performed at the NET3C C-terminus (Figure 2A). 

Substitution of phenylalanine residues at positions 209 and 210 with alanine did 

not affect its interaction with VAP27 (Figure S4G).  However, the association of 

NET3C F209/210A labelled punctae with F-actin was enhanced (Figure S4E-F), 

and the ER network was distorted (Figure S4H). In addition, the structure of 

VAP27 labelled ER/PM contact sites was also affected, as they became more 

mobile in the presence of NET3C F209/210A (Movie S5).  These results suggest 

that specific residues at the C-terminus are essential for the association of NET3C 

with F-actin and membrane and they also appear to be important for 

maintaining ER structure.  

 

NET3C-VAP27, Microtubule and Actin Model 

Here we demonstrate that NET3C, VAP27 and the cytoskeleton are involved in 

organizing ER/PM contact/anchor sites (Figure 4E). We suggest two possible 

structural models explaining this association: (i) VAP27 may directly link the ER 

and PM and interact with PM/ER associated NET3C and as yet unknown PM 

proteins (Figure 4F). The actin and microtubule networks fix NET3C and VAP27 

respectively at the contact sites; (ii) NET3C forms a pre-existing platform with 

other unknown proteins at the ER/PM and VAP27 is recruited to these sites 

upon certain signal stimuli or protein modification (Figure 4G). In both cases the 

cytoskeleton is responsible for stabilizing NET3C and VAP27 at the contact sites.   
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Figure legends 

Figure 1. NET3C localises to PM/ER contact sites and F-actin. 

(a) Diagrammatic illustration of the GFP-NET3C fusion; NET actin binding domain 

(a.a.1-a.a.94) and coiled-coil domain (a.a.139-a.a.194). (B) GFP-NET3C labelled 

immobile punctae co-locate along the ER (red) in leaf epidermal cells. NET3C punctae 

were associated (87.8 ± 10.1% of association) with the persistent ER nodules that are 

known as ER/PM contact sites (high magnification inset). (C) NET3C associates with the 

PM/ER contact sites independent of F-actin. When cells were treated with latrunculin 

(Lat B), NET3C punctae were associated with the ER network (87.4% ± 8.3 association). 

(D) NET3C punctae associate with F-actin (RFP-Lifact) producing a typical beads-on-

string pattern (high magnification inset). Statistical analysis of NET3C punctae and F-

actin association indicates a strong correlation (92.8 ± 3.1%). (E) Fluorescence-recovery 

after photobleaching (FRAP) of GFP-NET3C with different drug treatments. The mobility 

of GFP-NET3C was enhanced (reflected by an increase of max recovery) when actin 

filaments were removed with Lat B (p=1.03x10-7). Little difference was found between 

oryzalin treatment (to remove microtubules) and the control (p=0.791). (F) Western 

blot probed with GFP-antibody showing co-sedimentation of GFP-NET3C with actin-

filaments. After ultra-centrifugation, the supernatant (S) and pellet (P) fractions of GFP-

NET3C  with and without F-actin were fractionated on a gel. GFP-NET3C was found in 

the pellet fraction in the presence of F-actin. Lane 1, GFP-NET3C alone (S); Lane 2, GFP-

NET3C alone (P); Lane 3, GFP-NET3C + F-actin (S); Lane 4, GFP-NET3C + F-actin (P).  (G) 

Immuno-gold labeling of sections taken through Arabidopsis root tips using anti-NET3C 

showing NET3C associates  with the PM as well as the ER/PM junctions. Gold particles 

were enhanced (larger dots overlaid on the original gold particles) using Photoshop for 

better visualisation. (H) Immuno-fluorescence of GFP-HDEL (ER marker) expressing 

Arabidopsis root tips with NET3C and GFP antibodies.  Endogenous NET3C labels  

punctae and associates with the ER (96.4±5.6% association; scale bar = 10 µm for 

confocal; scale bar = 100 nm for TEM). 

 

Figure 2. NET3C is able to self-interact and is recruited to the plasma membrane 

via the C-terminus. 

(A) Diagrammatic illustration of NET3C showing  the last ten amino, two phenoanalines 

(FF) are found at position 209/210  and a lysine (K) at 211. (B) Site-direct mutation of 

the C-terminal putative lipid binding motif on NET3C. GFP-NET3C K211A, which became 
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more cytoplasmically localised, labeled F-actin and mobile punctae. (C) & (D) Nuclear 

accumulation of GFP-NET3C K211A was found compared to control, indicating an 

enhanced cytoplasmic pool. The fluorescence intensity at the cell cortex and nuclear 

region are shown on the image. (E) Fluorescence ratio of cell cortex to  nucleus . A high 

ratio (10.9±4.1) was found for GFP-NET3C, whereas a low ratio (0.88±0.86) was found 

with GFP-NET3C K211A.  (F) Punctae labeled with GFP-NET3C K211A were still F-actin 

and ER associated. (G) GFP-NET3C∆NAB was recruited to the punctae when co-

expressed with RFP-NET3C, suggesting that NET3C may self-interact through its C-

terminal sequence. (H) Immuno-precipitation of RFP-NET3C and GFP-NET3C using a 

RFP antibody. GFP-NET3C was only found in the pellet fraction in the presence of RFP-

NET3C (lane 1 and 2) indicating that the protein is able to self-interact. (I) FRET-FLIM 

analysis of NET3C interactions. Images were pseudo-coloured according to the GFP 

lifetime. The lifetime of GFP-NET3C (donor alone) was measured at 2.45±0.03 ns, 

whereas the lifetime of GFP was significantly reduced to 2.21±0.09 ns (p=9.07x10-7) in 

the presence of RFP-NET3C (acceptor), suggesting NET3C is able to self-interact.  In 

contrast, the positive control (GFP linked directly to RFP) had  an  average lifetime of 

2.14±0.04 ns, indicating that a ca. 0.3ns reduction is found in a close association. The 

value of x2 is close to 1 (indicative of good curve fitting) for all measurements. Please 

note that the peak of  the lifetime frequency shifted to the left when the average 

fluorescence lifetime was reduced.  (J) Diagram of possible plasma membrane 

recruitment of NET3C. NET3C dimer/oligomer binds to the PM or ER membrane via its 

C-terminus and binds to F-actin through the N-terminal NAB domain (I). NET3C could 

possibly form antiparallel dimers/oligomers that bridge between ER/PM (III). The 

K211A mutation prevents the membrane association of NET3C (II)&(IV) (scale bar = 10 

µm).    

 

Figure 3. VAP27 is an ER membrane protein and also localises to PM/ER contact 

sites 

(A) Diagrammatic illustration of the VAP27-YFP fusion; major sperm domain (a.a.1-

a.a.129), coiled-coil domain (a.a.178-a.a.234) and transmembrane domain (a.a.234-

a.a.253). (B) VAP27-YFP localizes to the ER as well as PM/ER contact sites, Calnexin-GFP 

is a marker for the ER membrane (high magnification inset). (C) VAP27-YFP punctae at 

the ER/PM contact sites associate with F-actin (GFP-Lifact; 81.2±9.4% co-alignment; 

high magnification inset).  (D) VAP27-YFP punctae associate with microtubules (KMD-

RFP is the marker). Statistical analysis indicates a moderate ratio of co-alignment 
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(59.5±4.3%; high magnification inset). (E) Fluorescence-recovery after photobleaching 

(FRAP) of VAP27-YFP at the PM/ER contact sites following different drug treatments. 

The mobility of VAP27-YFP did not chang when actin filaments were removed with LAT 

B (p=0.465). A significant increase (reflected BY an increase in max recovery) was found 

with oryzalin treatment (p=0.006). (F) Western blot probed with RFP-antibody showing 

co-sedimentation of VAP27-mRFP with microtubules.  After ultra-centrifugation, the 

supernatant (S) and pellet (P) fractions in the presence or absence of microtubules were 

run on the gel. VAP27 was found in the pellet fraction in the presence of microtubules. 

Lane 1, VAP27-RFP + MT (S); Lane 2, VAP27-RFP + MT (P); Lane 3, VAP27-RFP alone (S); 

Lane 4, VAP27-RFP alone (P).  (G) FRET-FLIM analysis of VAP27 interaction. The 

lifetime of VAP27-GFP (donor alone) was measured at 2.48±0.04ns, whereas the lifetime 

of GFP was significantly reduced to 2.06±0.01ns (p=3.49 x10-9) in the presence of 

VAP27-RFP (scale bar = 10 µm). 

 

Figure 4. VAP27 interacts with NET3C.  

(A)The ER network was labeled by CFP-HDEL and RFP-NET3C co-localised with VAP27-

YFP at the ER/PM contact sites. (B) FRET-FLIM analysis of the NET3C/VAP27 

interaction. GFP-VAP27 has a lifetime of 2.42±0.02ns on its own. The fluorescence 

lifetime of GFP-VAP27 was reduced to 2.13±0.06 ns (p=1.23x10-12) when co-expressed 

with RFP-NET3C, indicating an interaction between the two proteins. (C) Site-directed 

mutation in  the major sperm domain. VAP27 T59/60A was still found at the ER 

network but failed to concentrate at the ER/PM contact site and to colocalise with RFP-

NET3C. (D) Propose illustration of VAP27-PM association. Point mutations on the major 

sperm domain prevent VAP27 associating with PM/ER contact site. (E) Diagram 

showing VAP27 (at the ER) interacting with NET3C (at the PM),  forming a stationary 

complex at the ER/PM contact site. The cytoskeleton was found associated with these 

complexes interacting with NET3C and VAP27. Two possible models are suggested: (F) 

VAP27 may directly link the ER/PM and interact with PM associated NET3C.;(G) 

Alternatively, NET3C may form a pre-existing platform with other proteins at the 

plasma membrane. In addition to NET3C and VAP27, other proteins may also be 

required for the function and structure of ER/PM contact sites (scale bar = 10 µm).   
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Accession number  

The Arabidopsis genome accession number for NET3C is At2g47920 and for 

VAP27 it is At3g60600. 
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Figure S1. NET3C punctae distribution is enriched at the ER and PM, and its C-terminal 

sequence is essential for this localisation. Related to Figure 1 & 2. 

 (A)-(C) Analysis of NET3C co-alignment with the ER network (A) or F-actin (B) using chi-

square tests. The distribution of NET3C punctae were scored as ER-associated or non-ER 

associated over 303.5µm2. The association of NET3C on the ER network (151/23) is 

significantly different from that were the distribution to be random (91.5/82.5; p=4.83x10-26). 

Similarly, the distribution of NET3C punctae with F-actin was performed in the same way 

showing that their association is not random (p= 1x10-06).  (D) NET3C lacking the NAB domain ȋNET3C∆NABȌ was not able to bind to actin. GFP-NET3C∆NAB localized evenly to the ER 

network as well as the plasma membrane. (E) GFP-NET3C∆NAB co-expressed with cytosolic 

RFP. The PM fluorescence labeled by GFP-NET3C∆NAB ȋgreenȌ is distinct from cytosolic RFP 

(red). (F) The Pearson’s correlation of co-localisation at cell cortex was measured at 0.37 

(indicating a medium level of correlation), suggesting that GFP-NET3C∆NAB and cytosolic RFP 

are partially co-localised. (G) NET3C lacking the C-terminal sequence (GFP-NET3C∆C-term) is 

cytosolic, suggesting that this sequence is essential for both membrane and F-actin association. 

(H) Immuno-fluorescence of GFP-FABD2 (F-actin marker) expressing Arabidopsis root tips with 

NET3C and GFP antibodies.  Endogenous NET3C forms punctae and associates with the actin 

cytoskeleton (96.2% association). (I) Western blot of total Arabidopsis seedling protein using a 

polyclonal NET3C antibody (1:500 dilution) showing a clear band at 25 kDa.  (J) Original of 

Figure 1F without enhancement. Gold particles were found at the plasma membrane as well as 

the ER/PM junctions. (K) Immuno-gold labeling of NET3C in Arabidopsis root tips, gold 

particles were found at the PM as well as in a close proximity with the ER. (L) A total number of 

143 anti-NET3C gold particles (from 14 individual EM images) were analyzed; the distribution 

of gold between the cytoplasm and the plasma membrane was compared. The p value calculated 

from chi-square tests indicate that gold particles are enriched at the plasma membrane. (scale 

bar = 10 µm for confocal; scale bar = 100 nm for TEM). 

 





Figure S2. NET3C localises to PM/ER contact sites and with NET3B is essential for normal 

development. Related to Figure 1 & 2. 

 (A) Graphic illustration of the genetic segregation of the NET3C RNAi/net3b double mutant 

(NET3C RNAi (AGRIKOLA)/net3b (SALK_129238C)). Pollen (RT) from the NET3C RNAi line 

was used to pollinate the net3b T-DNA homozygous line (rt), producing the F1 generation that 

contains both alleles (RrTt). A quarter of the haploid are homozygous for both NET3C RNAi and 

net3b T-DNA (Rt). (B)First-strand cDNA from various NET3 mutants was used for RT-PCR. In 

the single mutants, the transcription of NET3C was significantly knocked-down, whereas full 

length NET3B transcripts were completely disrupted (upper panel). In the NET3C RNAi/net3b-1 

double mutant (lower panel), the NET3C transcript was knocked-down and had no effect on 

NET3B, indicating NET3C RNAi allele is dominant and net3b-1 T-DNA is recessive. (C) Some 

pollen grains from NET3C RNAi/net3b-1 double mutant were abnormal (arrow) and unable to 

germinate. The defective pollen do not contain any DNA as indicated by DAPI staining. The 

development of pollen showed an average ca.  25% abnormality, which is in agreement 

with the  prediction that a quarter of haploid cells inherit both alleles.  (D) Statistical 

analysis of pollen and seed development in NET3C RNAi/net3b double mutant. Three individual 

plants were analyzed and the ratio of abnormality is shown in the table.  (E) Siliques from 

NET3C RNAi/net3b-1 double mutant contain a number of non-developed seeds.  (F) The 

development of those seeds is disrupted at a very early stage. About 34% of seed 

development is disrupted at the early ovule stage. A similar phenotype (34.6% non-

developed seeds, n>500) was observed when the NET3C RNAi/net3b double 

heterozygote was crossed with wild-type pollen, indicating the defect in seed 

development is likely to be at the haploid stage.  

 





Figure S3. VAP27 is an ER membrane protein and also localises to PM/ER contact sites. 

Related to Figure 3.  

(A) Time series of VAP27-YFP over 30 seconds. Each picture represents a time point from Movie 

S2 and is pseudo-coloured to represent the different time frames; red (0 seconds), green (15 

seconds) and cyan (30 seconds). A merged picture indicates that the punctae are persistent 

(magenta) while the rest of the ER network remodels. (B) Expression of VAP27-GFP in 

Arabidopsis driven by its endogenous promoter. Static punctae at the ER/PM contact sites were 

observed, similar to those from transient expression studies. Notably, the size of VAP27 punctae 

varies from 0.25 to 1.5µm. (C) TEM images of Arabidopsis expressing VAP27-YFP (35S 

promoter). Close association between the ER and PM was also observed at the ultra-structural 

level.  The size of ER/PM site 1 and 2 were measured and found to be about 0.5 and 1.0µm 

respectively, which is consistent with those observed using confocal microscopy. (D) 

Expression of yeast Scs2p-GFP with VAP27-YFP in plants. The two proteins co-localise at the ER 

network as well as at the  ER/PM contact sites.  (E) Alignment of VAP homologues in 

Arabidopsis (VAP27) and Saccharomyces (Scs2). Lysine 58, tyrosine 59 & 60 are conserved 

(highlighted in red) and these residues are involved in protein interactions through a FFAT 

motif in animals and yeast. The functional major sperm domain is highlighted in blue. (F) 

Fluorescence-recovery after photobleaching (FRAP) of calnexin-GFP (ER membrane protein, the 

transmembrane domain of calnexin fused to GFP) at ER cisternae with different drug treatments. 

Protein mobility on the ER membrane is not affected when cells were treated with either 

latruculin B (Rmax=86.7±5.1) or oryzalin (Rmax=89.2±7.4). (G) Immuno-precipitation of 

VAP27-RFP and VAP27-YFP using a RFP antibody. VAP27-YFP was found in the pellet fraction in 

the presence of VAP27-RFP (lane 1 and 2) indicating the protein is able to self-interact (scale 

bar = 5 µm for confocal; scale bar = 500 nm for TEM).  

 





Figure S4. VAP27 interacts with NET3C. Related to Figure 4.  

(A) Similar to VAP27, Scs2-YFP also co-localised with GFP-NET3C at the ER/PM contact site. (B) 

Immuno-precipitation of RFP-NET3C and VAP27-YFP using GFP antibody. The Western blot was 

probed with either NET3C or GFP antibody. Note RFP-NET3C is found in the pellet fraction 

when co-expressed with VAP27-YFP (Sample 1), while the RFP-NET3C control (sample 2) is 

only found in the supernatant. (C) Immunofluorescence of NET3C in a stable Arabidopsis line 

expressing VAP27-YFP (35S promoter). Note the co-localisation of two proteins at punctae in 

the hypocotyl cells. (D) Site-directed mutagenesis in the major sperm domain. VAP27 K58N is 

still found at the ER network but fails to associate with the ER/PM contact site and NET3C.  

(E)Max projection of GFP-NET3C F209/210A in transient expressed cells. The mutant binds to 

F-actin producing the characteristic beads-on-string pattern. (F) GFP-NET3C F209/210A 

labeled filaments are sensitive to lactruculin B treatment (max projection).  (G) GFP-NET3C 

F209/210A still interacts with VAP27 but the structure of VAP27 labeled ER/PM contact sites is  

affected.   (H) Site-direct mutagenesis at the C-terminal tail of NET3C.  NET3C F209/210A binds 

to F-actin but fails to associate with any membrane compartment. The ER network (Red) is 

distorted and fragmented in the presence of NET3C F209/210A mutant (Scale bar = 10 µm). 

 



Supplemental Experimental Procedures 

Plant material and transformations 

Arabidopsis (Col-0) was grown on either ½ MS agar or compost in a growth chamber 

with 16hr light (22 °C) and 8hr darkness (18 °C). Stable Arabidopsis lines were 

transformed by floral-dipping as described in Zhang et al. [S1]. Nicotiana benthamiana 

was kept in a growth room with 16hr light (25°C) and 8hr darkness (18°C). Transient 

expression was performed by leaf infiltration according to Sparkes et al. [S2]. 

Molecular cloning 

The cDNAs of NET3C and VAP27 were cloned from 10 day old Arabidopsis seedlings by 

RT-PCR (Invitrogen). Scs2 was cloned from total cDNA of Saccharomyces cerevisiae. The 

fluorescent protein fusions of NET3C and VAP27 were cloned into various binary 

vectors by Gateway reactions (Invitrogen). pMDC43 (N-terminal GFP), pMDC83 (C-

terminal GFP), pH7WGR2 (N-terminal mRFP) and pCAMBIA1300-Cas-YFP (C-terminal 

YFP) were used.  The VAP27 gene (genomic sequence including 2Kb upstream of ATG) 

cloned into pMDC107 for endogenous expression of GFP tagged VAP27. Domain 

deletion constructs were generated by over-lap PCR according to Heckman and Pease 

[S3]. Point mutation was performed according to the protocol provided with the site-

direct mutagenesis kit (Agilent Technologies). The antigen fragment of NET3C was 

cloned into pGAT4 Gateway vector [S4] (with N-terminal HisTag) for in-vitro protein 

expression in E.coli (Rosetta 2, Novagen). Primers used in this study are listed in 

Supplementary Table S1.  

Antibodies and immunofluorescence 

Antigen peptide of NET3C (residue 120-161) was expressed and purified using nickel 

agarose beads (Qiagen).  Polyclonal antibodies were raised in mice as described in 

Smertenko et al. [S5]. For the immunofluorescence study, root tips were fixed in 4% 

PFA in PIPES buffer (0.1M PIPES pH6.9, 1mM MgSO4, 2mM EGTA) for 90min followed 

by Driselase (2%) digestion for 7min. Samples were treated with 0.5% Triton for 5min 

and incubated in primary and secondary antibody for 3 hours or overnight at 4°C. In 

between each step, samples were washed with PBS buffer for three times. For double 

staining with GFPHDEL or FABD2GFP expressing cells, NET3C anti-serum and GFP 



antibody (Abcam) was used at 1:500 dilutions, followed by secondary antibody 

incubation with TRITC-conjugated against mouse (Jackson ImmunoResearch) and 

Alexa488-conjugated against rabbit (Invitrogen).  Samples were mounted with 

Vectashield prior to imaging.  

Live cell imaging and FRET-FLIM 

Transient transformed N. benthamiana and N.tobaccum were imaged two days after 

infiltration using laser scanning confocal microscopes (LSCM, Leica SP5 or Zeiss 

Meta510). Images were taken in multi-track mode with line switching when multi 

fluorescence was used.  FRAP experiments and data analyses were performed as 

described in Wang et al. [S6]; a minimum number of 12 areas of interest were bleached 

from each individual cells.  NET3C and VAP27 co-alignment on ER or cytoskeleton was 

analysed in 8 individual cells; an area of 100µm2 from each cell was used. For drug 

treatment, leaf segments were incubated in 25 µM latrunculin B (40min) or 20 µM 

Oryzalin (30min) to depolymerise actin filaments or microtubules respectively.   

FRET-FLIM experiments were carried out using a LeicaSP5 LSCM installed with 

fluorescence lifetime system (PicoQuant). The data acquisition and analysis were 

performed using SymPho Time software (PicoQuant). The lifetime of the GFP donor 

construct alone was measured as the negative control, whereas the GFP lifetime of GFP-

RFP protein fusion was used as a positive control. All measurements were taken from 

whole field images expressing fluorescence protein at the similar level.  

Transmission electron microscopy and immune-gold labeling  

Arabidopsis tissue was fixed by high-pressure freezing with freeze substitution as 

described in Deeks et al. [S7]. NET3C anti-serum was used at 1:100 dilution and 

detected by 5nm gold-conjugated anti mouse antibody.   

Co-immunoprecipitation assay and western blotting 

Transformed N. benthamiana leaf transiently expressing proteins of interest were 

homogenised in protein extraction buffer (NaCl 150mM, Tris-HCl 50mM pH8.0, EDTA 

5mM pH8.0, DTT 5mM, Triton X-100 1%, glycerol 10% and complete proteinase 

inhibiter). The extract was centrifuged at 13,000 rpm for 10min (4°C). GFP-antibody 

(Abcam) was added to the supernatant and incubated on ice for 2 hours before adding 



protein A-coupled agarose beads (Sigma). The mixture was then incubated at 4°C for 1 

hour with agitation and centrifuged at 13,000rpm for 1min. The pellet was washed 

three times with extraction buffer then boiled at 95°C in SDS buffer. Samples were 

loaded onto a 12.5% SDS-gel followed by electrophoresis and protein transfer. For 

detection, the membrane was incubated in 2xTBST buffer with 5% milk prior to 

primary antibody incubation (1:500-1000) at room temperature for 3 hours.  After 

three washes in TBST buffer, the membrane was blotted in HRP-conjugated mouse 

secondary antibody (1:3000) and developed using an ECL reagent (GE heathcare). 

Co-sedimentation assay 

Protein extracts from N. benthamiana leaves transiently expressing VAP27-mRFP were 

used for the microtubule co-sedimentation assay. Polymerized microtubules were 

prepared as described in Smertanko et al. [S8]. Extraction buffer M (NaCl 100mM, Tris-

HCl 50mM pH8.0, EGTA 5mM pH8.0, MgCl2 5mM and Triton X-100 0.5%) was used for 

the microtubule experiments. Before adding to the reaction tube, the extract was 

centrifuged at 13,000 rpm for 5min followed by 90,000 rpm for 15min (4°C) to remove 

cell debris or insoluble proteins. Protein and microtubules were mixed and incubated at 

room temperature for 15min. The mixture was then centrifuged at 70,000 rpm for 

15min.  

Protein extraction of NET3C from N. benthamiana leaves for F-actin co-sedimentation 

assays was performed similar to above, except extraction buffer A (KCl 20mM, Tris-HCl 

5mM pH8.0, DDT 0.2mM, EGTA 2mM pH8.0, MgSO4 0.4mM and Triton X-100 0.1%) was 

used. Total protein containing GFP-NET3C was added to F-actin as described in Deeks et 

al. [S7]. For both experiments, supernatant and pellets (washed with extraction buffer) 

were mixed with SDS buffer then analyzed by western blotting. 

 

Reverse genetics 
 

The NET3B SALK T-DNA insertion line was ordered from NASC. Homozygosity was 

confirmed by PCR using gene specific primers, and T-DNA specific primer LBa1. There 

are no available insertion lines for NET3C.  NET3C RNAi lines were ordered from 

AGRIKOLA. The RNAi insertion was confirmed using Agri primers as described in Hilson 

et al. [S9]. Total RNA was extracted from mature floral tissue (Qiagen). Frist-strand 



cDNA was synthesized using Superscript III (Invitrogen) according to the manufacturer’s protocol.  RT-PCR was used to assess the presence of  the full-length 

transcripts in net3b and NET3C RNAi. As a control, gene specific primers that amplify 

EF1a were used. Equal amounts of cDNA from either wild type or mutant Arabidopsis 

was used. All primers used in this study are listed in Supplementary table s1. 

For phenotype studies, samples were viewed using a Zeiss Axioskop light microscope 

and an Olympus Research Stereo SZH10 microscope with appropriate magnification. 

Images were taken using Photometrics Coolsnap cf video camera and Openlab 3.1.1 

software. Pollen grains were stained in DAPI solution (0.1M sodium phosphate butter, 

1mM EDTA, 0.1% triton X-100, 0.4µg/ml DAPI) and studied using a Zeiss Meta510 

confocal microscope with excitation at 405nm laser.    

Chi-square analysis 
 

In order to confirm that the association between NET3C punctae and the ER is  not a 

coincidental event, chi-square tests were applied.  The area of ER membrane and the 

ER-free area were measured, and the distribution of NET3C punctae scored as ER-

associated or non-ER associated. The p value was calculated based on the real 

distribution of NET3C compared to the expected number from a random distribution.  

The same approach was used for the analysis of  the NET3C/F-actin and NET3C/PM 

associations.  

 

 

 

 

 

 

 

 

 

 

 



Supplemental table, list of primers used. 

Name of Primer Sequence ȋ5’-3’Ȍ 

NET3C Constructs 

NET3C-F gggg aca agt ttg tac aaa aaa gca ggc ttc ccg cca   ATG  GTT AGA GAA GAG 

GAG AAA TC 

NET3C-RN gggg acc ac ttt gta caa gaa agc tgg gtc CTA  AAG GAC CTT GTT GCC ATC NET3C∆NAB-F gggg aca agt ttg tac aaa aaa gca ggc ttc ccg cca   ATG  TCT TCC GAC CAC 

TAT GGA TC 

NET3C-Antigen-F gggg aca agt ttg tac aaa aaa gca ggc ttc ccg cca   ATG  GAA GAC CCC CTT 

CAA GAT GA  

NET3C-Antigen-R gggg acc ac ttt gta caa gaa agc tgg gtc CTA  GTC TAA GAG CTG TTT CCT 

CA 

NET3C-K211A-RN gggg acc ac ttt gta caa gaa agc tgg gtc CTA AAG GAC CGC GGC GCC ATC 

GCA C 

NET3C-F209/210A-F GCCACT AAACAAGGCC GCT GGGAAGC TGTTTTAC 

NET3C-F209/210A-R GTAAAACAGCTTCCCAGCGGCCTTGTTTAGTGGC 

VAP Constructs 

VAP27-F gggg aca agt ttg tac aaa aaa gca ggc ttc ccg cca ATG AGT AAC ATC GAT 

CTG 

VAP27-RC gggg acc ac ttt gta caa gaa agc tgg gtc TGTCCTCTTC 

VAP27-RN gggg acc ac ttt gta caa gaa agc tgg gtc TTA TGTCCTCTTC 

VAP27 T59/60A-F GCCTTTAAGGTTAAGGCGGCGAATCCGAAAAAG 

VAP27 T59/60A-R CTTTTTCGGATTCGCCGCCTTAACCTTAAAGGC 

VAP27 K58N-F GTTGCCTTTAAGGTTAACACGACGAATCCGAAAAAG 

VAP27 K58N-R CTTTTTCGGATTCGTCGTGTTAACCTTAAAGGCAAC 

VAP27 Geno-F gggg aca agt ttg tac aaa aaa gca ggc ttc ccg cca   TTC ATA TCG GCT TCT 

TAC TCT 

VAP27 Geno-R gggg acc ac ttt gta caa gaa agc tgg gtc TGTCCTCTTCATAATGTATCCCA    

Scs2p-F gggg aca agt ttg tac aaa aaa gca ggc ttc ccg cca  ATG TCT GCT GTT GAA 

ATT TCC 

Scs2p-RC gggg acc ac ttt gta caa gaa agc tgg gtc TCT GTA GAA CCA TCC TAA AAC 

C 

Reverse Genetics and Genotyping 

NET3B-F ATGGGTGAGACATCAAAATG 

NET3B-R CTA AAA CGA AAA CAT TAT GAG AAA ATA G 

NET3C-F ATG  GTT AGA GAA GAG GAG AAA TC 

NET3C-R CTA  AAG GAC CTT GTT GCC ATC 

EF1a-F CCCATTTGTGCCCATCTCT 

EF1a-R CACCGTTCCAATACCACCAA 

Agri51 CAA CCA CGT CTT CAA AGC AA 

Agri56 CTG GGG TAC CGA ATT CCT C 

Agri64 CTT GCG CTG CAG TTA TCA TC 

Agri69 AGG CGT CTC GCA TAT CTC AT 
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