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It is known that the Yangian of PSU�2; 2j4� is a symmetry of the tree-level S matrix of N � 4 super
Yang-Mills theory. On the other hand, the complete one-loop dilatation operator in the same theory
commutes with the level-one Yangian generators only up to certain boundary terms found by Dolan, Nappi,
and Witten. Using a result by Zwiebel, we show how the Yangian symmetry of the tree-level S matrix of
N � 4 super Yang-Mills theory implies precisely the Yangian invariance, up to boundary terms, of the
one-loop dilatation operator.
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Introduction.—The study of N � 4 supersymmetric
Yang-Mills (SYM) theory has been dominated by two broad
strands of research—the first concentratingon the anomalous
dimensions of local operators (i.e., the spectral problem) and
their correlation functions, and the second investigating the
scattering amplitudes of the theory. The successes in these
twoareas have been considerable in their own right, andat the
current time there is vigorous activity focusing on making
connections between them in order to deepen our under-
standing of this fascinating quantum field theory.
In the planar limit the spectral problem is believed to be

integrable. This was first shown at one loop in Ref. [1] for a
particular sector of the theory. The complete one-loop
dilatation operator was later computed in Ref. [2], follow-
ing earlier results in Ref. [3], and later shown in Ref. [4] to
describe a PSU�2; 2j4� super spin chain. The one-loop
dilatation operator is invariant under the (free) supercon-
formal symmetry, and in fact this condition puts strong
constraints on its form.
One of the key features of integrability is the existence of

an infinite hierarchy of nonlocal charges QA built upon the
basic local (or level-zero) PSU�2; 2j4� Noether charges JA
of the theory. These nonlocal charges, together with the
local ones, obey a Yangian algebra which, in the context of
the one-loop dilatation operator H, was described in
Ref. [5]. Interestingly, it was found in that paper that H
commutes with these additional nonlocal charges up to
certain boundary terms,

�QA;H� ∼ JA1 − JAL; �1�
where L denotes the length of the chain (or the number of
fields in the operator).
The study of scattering amplitudes in N � 4 SYM

theory started off independent from considerations of
integrability, but it has recently begun to be connected
to it in various ways. An important discovery was that of

dual superconformal symmetry of the N � 4 SYM S
matrix. This was conjectured in Ref. [6] and tested in
several cases, and shortly after proved at tree level in
Ref. [7]. At one loop the symmetry is broken because of the
presence of infrared divergences in the amplitudes, and the
breaking is controlled by a dual conformal Ward identity
proposed in Ref. [8] and confirmed with a direct amplitude
calculation at one loop in Ref. [9]. Importantly, in Ref. [10]
the standard and dual superconformal symmetries were
embedded in the Yangian of PSU�2; 2j4�. Explicit expres-
sions of the level-one generators were constructed and
shown to be related to the generators of the dual super-
conformal algebra. At tree level the symmetry is slightly
broken [11] due to collinear singularities of the amplitudes,
leading to anomalies that are supported only on special
kinematic configurations. As mentioned earlier, at one
loop, infrared divergences lead to additional anomalies.
Interestingly, these violations can be absorbed into appro-
priate redefinitions of the Yangian generators at both tree
level [11] and one loop [12].
A direct connection between the one-loop nearest-

neighbor part of the spin-chain dilatation operator and
amplitudes, which will be very relevant for our investiga-
tion, was found in Ref. [13] by Zwiebel, working off of an
earlier observation of Beisert’s. In that paper the one-loop
dilatation operator, expressed in the so-called harmonic
action form [2], was related to the integration of a four-
point superamplitude glued to a tree-level form factor with
two external legs over the two-particle phase space; see
Fig. 1. In Ref. [14], this connection was explained in terms
of one-loop form factors of generic operators. (See also
Refs. [15–20] for related work connecting amplitudes, form
factors, and the dilatation operator.) Specifically, it was
shown there that the result of Ref. [13] is the coefficient of
the discontinuity of a bubble integral associated with this
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one-loop form factor, and it captures the ultraviolet-
divergent part of the calculation.
The presence of a Yangian symmetry on the dilatation

operator and the amplitude sides naturally makes one think
that these symmetries are the manifestation of a single
underlying Yangian symmetry of the theory. However,
these two symmetries are seemingly realized in a different
manner, given Eq. (1) and the fact that on the amplitude
side the symmetry can be realized exactly, with the Yangian
generators annihilating the amplitudes [divided by the
maximally helicity violating (MHV) part]. The goal of
this Letter is that of reconciling these two situations by
finding a proof of Eq. (1) which relies on the Yangian
symmetry of the tree-level Smatrix ofN � 4 SYM theory,
therefore substantiating the connection between the
Yangians of the spin chain and the amplitudes.
In the following, we will use Zwiebel’s formula to show

that the invariance of the amplitudes under the Yangian, and
certain special properties of the Yangian of PSU�2; 2j4�,
lead precisely to the expected result (1). One intriguing
aspect of Eq. (1) is that it mixes tree-level and one-loop
quantities [21]. A manifestation of this fact is that the left-
hand side of Eq. (1) involves an integration, which is absent
on the right-hand side of that equation. Our proof will show
how this property arises naturally from the amplitudes. We
also comment that in our derivation we will not be
assuming the integrability of the theory.
Review and motivation.—In this section we review some

important facts about the dilatation operator and Yangian
symmetry. We will then motivate the calculation of the
commutator �Q;H� performed in the next section using
the representation of the dilatation operator in terms of the
amplitudes and form factors found in Ref. [13].
We consider single-trace local operators in N � 4 SYM

theory of the form Tr�Φ1 � � �ΦL��x�, where the letters Φ
are taken from the list Fαβ;ψαABC;ϕ�AB�; ψ̄ _αA; F̄ _α _β (and
symmetrized covariant derivatives acting on them), where
A � 1;…; 4 is a fundamental SU�4� index.
It is well known that the operators can be described in

terms of the spinor-helicity formalism [22]. The map to the
letters introduced above is

F̄ ↔ ~λ ~λ; ψ̄ ↔ ~λη; ϕ ↔ ηη;

ψ ↔ ληηη; F ↔ λληηηη; �2�

while for derivatives D ↔ λ~λ. As usual in N � 4 SYM
theory, we combine the λ, ~λ, and η variables into a single
object Λa ≔ �λα; ~λ _α; ηA�. In this formalism, a state is
simply a polynomial in the Λ’s satisfying the physical
state condition of vanishing central charge at each
spin-chain site; i.e., it has a sensible translation back to
the letters Fαβ;ψαABC;ϕ�AB�; ψ̄ _αA; F̄ _α _β (and symmetrized
covariant derivatives acting on them), and we denote it as
P�Λ1;…;ΛL�. For instance, the Konishi operator is repre-
sented in this language as ϵABCD�ηA1 ηB1 ��ηC2 ηD2 �. We also
note that in Ref. [14] it was observed that P�Λ1;…;ΛL� is
nothing but the minimal form factor of the operator repre-
sented by the state via the dictionary (2). (The term
“minimal” form factor was introduced in Ref. [23] to denote
form factors where the state contains exactly as many
particles as fields; i.e., the number of fields is the minimal
number required to have a nonzero result at tree level.)
At one loop and in the planar limit, only two neighboring

fields interact, and the one-loop dilatation operator H is the
sum of densities Hii�1, i.e., H � P

L
i�1Hii�1, where L is

the number of fields in the operator (or sites in the spin
chain, of which H is the Hamiltonian), and Hii�1 acts only
on fields at position i and i� 1. The complete one-loop
dilatation operator was derived in Ref. [2], with the result

H12 �
X∞
j�0

2h�j�P12;j: �3�

Here h�j� is the jth harmonic number and P12;j projects
onto a two-particle state with total spin j. The same paper
also introduced an alternative representation of the dilata-
tion operator termed “harmonic action,” which can be
rewritten in terms of spinor-helicity variables as [13]

H12P�Λ1;Λ2� � −
1

π

Z
2π

0

dϕ
Z

π=2

0

dθ cot θ�e2iϕP�Λ0
1;Λ0

2�

− P�Λ1;Λ2��: �4�
Here, by P�Λ1;Λ2� we mean P�� � � ;Λ1;Λ2;…�, where the
dots stand for all of the other fields in the state represented
by P that are not involved in the interaction. Moreover, the
Λ0’s represent “rotated” spinor-helicity variables defined as�
λ01
λ02

�
≔U

�
λ1

λ2

�
;
� ~λ01
~λ02

�
≔U	

� ~λ1
~λ2

�
;
�
η01
η02

�
≔U	

�
η1

η2

�
;

�5�
with the matrix U given by

U ≔
�
cos θ −eiϕ sin θ
sin θ eiϕ cos θ

�
: �6�

Note that while the state P satisfies the central charge
condition, the rotated state in general violates it. The inte-
gration over ϕ in Eq. (4) is precisely enforcing the condition
that the action of H12 on P returns a physical state.

FIG. 1. In Ref. [13] it was shown that the harmonic action (4) is
recovered via the sewing together of a tree-level four-point
superamplitude A and a tree-level form factor P corresponding
to the particular two-site spin-chain state under consideration.
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As a final ingredient, we review an alternative form of
Eq. (4) that was also discussed in Ref. [13], which will be
particularly important for our analysis. [We note that
Ref. [13] credits some unpublished work of Beisert for
pointing out the connection between the rotating oscillator
form of the harmonic action (4) and (7) below.] This
representation for the action of the one-loop dilatation
operator on a state j1; 2i has the form [24]

H12j1;2i �
Z
dΛA�1;2;3;4��P�−4;−3�− rP�1;2��; �7�

where momentum conservation reads p1 � p2 � p3�
p4 � 0. p1 and p2 are the external legs, while p3 and
p4 are integrated over with the appropriate two-particle
phase-space measure

dΛ �
Y4
i�3

d2λid2 ~λid4ηi: �8�

Note that

A�1; 2; 3; 4� � δ�4��p�δ�8��q�
h12ih23ih34ih41i ; �9�

and the labels 1;…; 4 are a shorthand notation for
Λ1;…;Λ4. We have also defined the ratio

r �
�h12i
h34i

�
2

; �10�

which allows us to write the two terms in Eq. (7) as
integrated against the same tree-level amplitude, slightly
departing from Refs. [13,14]. We find our presentation
convenient, as it makes the infrared finiteness of Eq. (7)
more manifest.
The relation between the two expressions for the

dilatation operator (4) and (7) was shown in Ref. [13].
After integrating out the momentum conserving δ functions
there are only two nontrivial integrals left, over θ and ϕ.
The measures are then related by [13]

dΛ�A�1; 2; 3; 4�r� → −
2

2π
dϕdθ cot θ; �11�

and we also have r → e−2iϕ, Λ3 → −Λ0
2, and Λ4 → −Λ0

1.
These replacements take us from Eq. (7) to Eq. (4). As
mentioned in Ref. [24], Eq. (11) is strictly only true up to a
multiplicative numerical coefficient which will cancel in
our final result.
Two observations are in order here. 1. An important fea-

ture of Eq. (7) is that it can be evaluated in four dimensions.
The first term on the right-hand side of Eq. (7) has an infrared
divergence which is canceled by the second term. This can
be understood by observing that because of the four-point
kinematics, the amplitude A�1; 2; 3; 4� develops a simple
pole in the forward-scattering limit

p4 � −p1 p3 � −p2; �12�
which, in turn, generates infrared divergences in the first term
of Eq. (7). It is then clear that the second term in Eq. (7)

removes the pole in the integration. (Similar considerations
weremade in Ref. [9] in order to compute the dual conformal
anomaly of one-loop superamplitudeswith arbitrary helicity.)
2. The fact that Eq. (7) provides a representation of the
complete one-loop dilatation operator ofN � 4 SYM theory
may seem rather mysterious at this point. A neat physical
interpretation of this result was found in Ref. [14]. In that
paper it was observed that the first term on the right-hand side
of Eq. (7) is nothing but the discontinuity (or two-particle cut)
of a one-loop minimal form factor of a generic operator.
This one-loop form factor is ultraviolet as well as infrared
divergent, but the second term in Eq. (7) removes this infrared
divergence, leaving only ultraviolet divergences. At one loop,
the latter are entirely captured by a bubble integral whose
discontinuity is a finite numerical constant. The coefficient of
this discontinuity is minus the one-loop dilatation operator,
and this is precisely the right-hand side of Eq. (7) [14].
Yangians and the commutation relation with level-one

generators from amplitudes.—The action of Yangian
symmetry in the context of the N � 4 dilatation operator
was first considered in Ref. [5]. The level-one generators
are defined as [25]

QA ≔
X
i<j

QA
ij; QA

ij � fACBJ
B
i J

C
j ; �13�

where JA � P
iJ

A
i are level-zero (or superconformal)

generators. Specifically, in Ref. [5] it was found that the
commutator of Q with the complete one-loop dilatation
operator is given by the following boundary term:

�QA;H� � 2�JA1 − JAL�; �14�
for a spin chain of length L. The main part of this Letter
consists in evaluating this commutator �Q;H� using the
expression for H in terms of the amplitudes of Ref. [13]
and the known action of Yangian generators on the ampli-
tudes [6,10]. In this way we both give a very simple proof of
Eq. (14) and at the same time further substantiate the conne-
ction between the spin chain and the amplitude Yangians.
In practice, one computes the commutator �Q;H�j1; 2i,

where j1; 2i is a two-particle state in the spin chain. As
discussed in Ref. [5], the calculation of �Q;H�j1; 2i boils
down to that of the commutator �Q12; H12�j1; 2i, which we
address in this section.
We will now discuss the case of Q � p�1�, namely, the

generator corresponding to dual special conformal trans-
formations K. The commutator in question is equal to

�Q12;H12�j1;2i

�Q12

Z
dΛA�1;2;3;4��P�−4;−3�− rP�1;2��

−
Z

dΛA�1;2;3;4��Q−4;−3P�−4;−3�− rQ12P�1;2��;

�15�
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where [10]

�Qij�α _α��mγ
jαδ

_γ
_α�m̄_γ

j _αδ
γ
α−djδ

γ
αδ

_γ
_α�piγ _γ� q̄j _αCqCiα−�i↔ j�:

�16�
The relevant generators are given by

di �
1

2

�
λαi

∂
∂λαi

� ~λ _αi
∂
∂~λ _αi

�
� 1; �17�

and

mαβ � λ�α∂β�; m̄ _α _β � ~λ� _α∂_β�; qAα � λαη
A;

q̄ _αA � ~λ _α∂A; pα _α � λα ~λ _α:
�18�

We also note that Q−4;−3 � Q34. Furthermore, in the
second line, Q acts only on the form factor P, as required
by the commutator.
We now describe our proof. First, we observe that we can

rewrite Eq. (15) as

�Q12;H12�j1;2i

�
Z
dΛ��Q12�Q34�A�1;2;3;4���P�−4;−3�−rP�1;2��

−
Z
dΛ�Q34−�p3−p4���A�1;2;3;4��P�−4;−3�−rP�1;2���

−P�1;2�
Z
dΛ��Q̂12�Q̂34�r�A�1;2;3;4�

−P�1;2�
Z
dΛ�p1−p2−p3�p4�A�1;2;3;4�r: �19�

In going from Eq. (15) to Eq. (19), we have performed an
integration by parts, taking special care of the multiplicative
part of Qij, obtained from taking the constant piece inside
the dilatation operator. We have defined Q̂ij to be the
differential part of Qij, that is, Q̂ij ≔ Qij � pi − pj.
We will now show that the following statements con-

cerning (19) are true: 1. The first line vanishes due to two
reasons: first,

P
i<jQij is the dual conformal generator K

(up to a linear combination of level-zero generators, which
annihilate the amplitude), which is a symmetry of the
amplitudes; second, the nature of the supergroup
PSU�2; 2j4�, and specifically the vanishing of its dual
Coxeter number. 2. The second line is a total derivative and
integrates to zero. 3. We show that �Q̂12 � Q̂34�r � 0 and
hence the third line vanishes. 4. The last line is the only
nonzero contribution and provides the expected answer for
the commutator. This is shown explicitly below.
1. We rewrite Q12 �Q34 �

P
i<jQij − �Q13 �Q14�

Q23 �Q24�. We then observe that
P

i<jQij is precisely
a Yangian generator, which annihilates the tree amplitude
[10]. We can then recast the second term as

�Q13�Q14�Q23�Q24�A � fACB�J1� J2�B�J3� J4�C
� fACB�J1� J2�BJC

−
1

2
fACBf

BC
D �J1� J2�D; �20�

where J ≔ J1 � � � � � J4. [We note the similarity between
the right-hand side of Eq. (20) and Eq. (3) of Ref. [26].] The
last term in Eq. (20) is proportional to the dual Coxeter
number of PSU�2; 2j4� and hence vanishes. The penulti-
mate term in Eq. (20) contains a level-zero generator JC,
which annihilates the amplitude. Thus,

�Q13 �Q14 �Q23 �Q24�A�1; 2; 3; 4� � 0: �21�
There is another way to appreciate this. Indeed, the fact that
Q13 �Q14 �Q23 �Q24 annihilates the amplitude is due
to the fact that Yangian symmetry is compatible with the
cyclicity of amplitudes. In more detail,X
1≤i<j≤4

Qij−
X

3≤i<j≤6
Qij� 2�Q13�Q14�Q23�Q24�; �22�

where we identify particle i with i� 4. The two expres-
sions

P
1≤i<j≤4Qij and

P
3≤i<j≤6Qij provide two repre-

sentations of the level-one Yangian generator differing by a
shift by two units of the particle labels. It is known from the
work of Ref. [10] that the Yangian is consistent with the
cyclicity of the scattering amplitudes; hence, both expres-
sions annihilate the tree amplitude.
2.We consider the second term inEq. (19), which contains

the combination Q34 − �p3 − p4�, and show that it can be
rewritten as a total derivative. Looking at the expression for
Qij in Eq. (16), we note that the terms involvingm, m̄, and q̄q
are total derivatives. We only need to focus on the term
involving the tree-level dilatation operator d. To this end, we
note that the relevant term is −d4p3 � d3p4 − p3 � p4 �
−�d4 � 1�p3 � �d3 � 1�p4. We can then write its action on
a function f as a total derivative,

�1� di�f �
�
2� 1

2

�
λαi

∂
∂λαi

� ~λ _αi
∂
∂~λ _αi

��
f

� 1

2

�
∂
∂λαi

�λαi f� �
∂
∂~λ _αi

�~λ _αi f�
�
: �23�

The second line in Eq. (19) is then a boundary term which
vanishes. Note that the integration can be carried out in four
dimensions since the integral is finite.
3. A short calculation shows that the stronger statements

Q̂12r � Q̂34r � 0 �24�
are true. Since r � e−2iϕ and the integration over ϕ imposes
the vanishing of the central charge on the physical states,
this condition should be equivalent to the fact that the
central charge commutes with all generators of the algebra
and hence also with Q̂.
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4. Finally, the last term is the only one that contributes to
the commutator. We can now evaluate it using the para-
metrization introduced in Ref. [13]. All variables except θ
and ϕ can be integrated trivially using δ functions, and one
is left with the following effective parametrization for the
loop momenta:

λ3 � λ1 sin θ� eiϕλ2 cos θ;

~λ3 � −�~λ1 sin θ� e−iϕ ~λ2 cos θ�;
λ4 � λ1 cos θ − eiϕλ2 sin θ;

~λ4 � −�~λ1 cos θ − e−iϕ ~λ2 sin θ�: �25�
We then find

p3−p4−�p1−p2��2�sin2θ�p2−p1�
−cosθsinθ�λ1 ~λ2e−iϕ�λ2 ~λ1eiϕ��: �26�

After integrating out all of the δ functions, the integration
measure dΛA�1; 2; 3; 4� in the last line of Eq. (19) becomes
equal to the expression given in Eq. (11) [27], where θ ∈
�0; π=2� and ϕ ∈ �0; 2π�. Using Eqs. (26) and (11), one
then findsZ
dΛA�1;2;3;4�r�p3−p4−�p1−p2���2�p1−p2�; �27�

where terms proportional to e
iϕ in Eq. (26) trivially
integrate to zero. In conclusion, the right-hand side of
Eq. (19) is

−P�1; 2�
Z

dΛ�p1 − p2 − p3 � p4�A�1; 2; 3; 4�r

� 2�p1 − p2�P�1; 2�; �28�
in agreement with Ref. [5]. This is the main result of the
Letter.
A few comments are in order.
First, we observe that it is not necessary to check

commutators with other level-one generators, given the
invariance of H under the standard superconformal group.
To see this, we note that �QA; JB� � fABCQC and assume
that Eq. (14) holds for QA. Therefore,

fBAC�H12; QC� � ��QA; JB�; H12� � �JB; �H12; QA��
� 2�JB; �JA�1 − �JA�2�
� 2fBAC��JC�1 − �JC�2�; �29�

where, in the second equality, we have used the fact that the
level-zero generators commute with H12. We have thus
shown that Eq. (14) holds also for QC. We have also
confirmed this fact by an explicit check for the level-one
generator associated with supersymmetry q.
We also note that, in principle, one could try to compute

the commutator �Q12; H12�j1; 2i starting from Eq. (4);

however, it is not immediate to extract the commutator
directly and, in particular, to see the universal structure of
the right-hand side of Eq. (14). It is precisely this feature
that we have proved using the representation (7) provided
by Ref. [13], and using the known action of Yangian
generators on tree-level scattering amplitudes.
Finally, one should exercise some caution in the manip-

ulations above, in particular in setting Kα _αA � 0. In fact,
Kα _αA contains an as yet unnoticed holomorphic anomaly
[28] arising only in four-point kinematics. The key fact to
notice is that [29]

Kα _α
1

hii�1i� 2πδ�hii�1i�δ��ii�1���ii�1��pi�pi�1�α _α:

�30�
The right-hand side of Eq. (30) vanishes, unless the �ii� 1�
factor is compensated for by a corresponding pole, which
indeed occurs in a four-point amplitude A�1; 2; 3; 4�, when,
for instance, the vanishing of h23i implies the vanishing of
h41i. Such a holomorphic anomaly could affect the first and
second line of Eq. (19). However, thanks to the presence of
the combination P�−4;−3� − rP�1; 2�, which precisely
vanishes on the support of the δ function, i.e., the
forward-scattering kinematic configuration, these holomor-
phic anomalies cancel out.
To summarize, in this Letter we have presented the first

concrete calculation showing that there is a single Yangian
structure in N � 4 SYM theory. Yangian symmetry is
believed to be a fundamental property of this theory, and
yet the manifestations on the one-loop dilatation operator
and the S matrix of the theory are vastly different. Here, we
have solved the puzzle concerning the presence of these
two contrasting realizations of the Yangian symmetry by
providing a direct link between the two. We also note that,
importantly, we have not assumed the integrability of the
underlying theory. We expect that the ideas presented here
will be useful in understanding the Yangian symmetry of
the dilatation operator to higher loops.
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