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ABSTRACT

Aim Climate and land use can have important effects on the local abundances of
species, but few studies have investigated the relative impacts of these factors. Here,
we quantify the relative importance of climate, land use and surrounding popula-
tion size in determining the abundances of birds across a continent.

Location Europe.

Methods We used species abundance models to identify the relative importance
of different environmental predictors for estimating the local abundances of 342
species of European breeding birds. Models controlling for phylogeny were used to
relate species life history and ecological traits to the climate:land use importance
ratio. The mean of this ratio, across all species occurring in a given area, was
mapped to explore spatial variation in the major drivers of abundance.

Results At the scale examined, climate is generally more important than land use
in determining species abundances. However, the abundance of species in neigh-
bouring areas is also a major correlate. Among climate variables, temperature is of
greater importance than moisture availability in determining abundances. The
relative importance of these variables varies with latitude, with temperature being
most important in the north, and moisture availability in the south. Differences in
the importance of specific drivers are related to species ecological traits: climate is
more important for determining the abundance of species that have larger global
ranges or a smaller body mass.

Main conclusions Abundances of species occurring in northern Europe, an area
predicted to experience climatic changes of high magnitude, are most sensitive to
climate, particularly temperature. Given the greater confidence in future projec-
tions of temperature than precipitation, this increases confidence in projections of
the impacts of climate change on species in the north, whilst attempts to predict
future populations in central and southern Europe may be dependent on less
predictable changes in land use and precipitation.
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INTRODUCTION

Climate change has been implicated as a major driver of recent

variations in the distributions and abundances of birds (Green

et al., 2008; Gregory et al., 2009; Illán et al., 2014). However,

species responses to climate change are highly variable in both

their magnitude and rate (Walther et al., 2002). Understanding

the relative effects of climate and concurrent land use changes

on population changes of species is challenging, yet is vital for

conserving species in future. Regional variations in the extent of
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recent land use changes are increasingly pronounced (Kaplan

et al., 2012) with, for example, large differences between eastern

and western Europe (Donald et al., 2001). By contrast, the great-

est recent changes in temperature have been observed towards

the poles, a trend that is projected to continue through the

current century (IPCC, 2013). Regional disparities in expected

climate change, and differential species responses to climate

change, mean that it is important to understand the extent to

which the abundances of species in different areas are driven by

climate.

Climate is often regarded as the primary, albeit indirect, driver

of avian population dynamics (Thuiller et al., 2004). As a result,

ecologists frequently use climate projections to predict, through

species distribution modelling (SDM), the risks that species face

under particular climate change scenarios (Elith et al., 2010).

However, species that are affected by human activities are

unlikely to be in equilibrium with climatic conditions (Thuiller

et al., 2004), a pre-requisite for understanding species–climate

relationships (Pearson & Dawson, 2003). For example, the

intensification of agricultural practices across Europe during

the last quarter of the 20th century led to widespread changes in

the abundance and distribution of many farmland bird popu-

lations (Donald et al., 2001). To account for such confounding

issues, land use variables have been incorporated into SDMs and

shown to improve their explanatory power significantly

(Thuiller et al., 2004). However, few studies (Eglington &

Pearce-Higgins, 2012; Renwick et al., 2012) have directly

assessed the relative roles of climate and land use when model-

ling the abundance, rather than the distribution, of a species,

and none has done so at a continental scale. Furthermore, the

relative role of climate and land use may vary not only between

species but also spatially. Beale et al. (2014) demonstrated that

the influence of climate on the distribution of a species varied

across the species’ range. To understand the susceptibility of

species to climate change, we must first disentangle the relative

importance of climate and land use in determining abundance

at a scale encompassing the large majority, if not the entirety, of

a species’ range.

The large-scale declines in the populations of some European

birds (Vickery et al., 2014; Inger et al., 2015) are of growing

concern, among both scientists and politicians. Although spe-

cific regional declines (for example, those of farmland bird

populations in Britain) have been primarily attributed to agri-

cultural intensification (Chamberlain et al., 2000; Donald et al.,

2001), it is unclear whether climate or land use is the primary

driving factor behind large-scale variations in populations of

European birds (Thuiller et al., 2004; Green et al., 2008;

Eglington & Pearce-Higgins, 2012; Vickery et al., 2014). It has

been suggested that there exists a hierarchical scheme of envi-

ronmental controls on species distributions, whereby climatic

variables operate over the largest scale, with geology and land

use determining species distributions at smaller scales (Thuiller

et al., 2004). It has also been suggested that, by modelling abun-

dance, we can distinguish finer-scale variations in habitat quality

that may not have been evident in distribution modelling

(Howard et al., 2014); this might enable more accurate

assessments of the relative importance of land use and climate

for species at a continental scale.

Here, we assess the relative roles of climate and land use in

determining the local abundance of breeding-birds across

Europe. We examine whether the relative contribution of

climate and land use varies among species in relation to ecologi-

cal traits. Our working hypothesis, following previous research

(Barbet-Massin et al., 2012; Virkkala & Lehikoinen, 2014) on

determinants of the ecological niche, is that climatic influences

will dominate at poleward regions in Europe and that land use

will be more important in determining abundance patterns in

the more heterogeneous landscapes of central and southern

Europe. Specific traits, such as mass and range size (Angert et al.,

2011; Buckley & Kingsolver, 2012), have been linked to the char-

acteristics of species climatic niches. For example larger-bodied

and wider-ranging species occur more frequently in colder

climes (Ashton, 2002). Based on energy conservatism in

endotherms, we might expect large-bodied organisms to be less

closely tied to climate than smaller species (due to surface

area:volume ratios). Species-specific traits including breeding

range size and migratory distance have also been linked to

habitat specialization (Reif et al., 2015). Our goal here is to

identify those traits that indicate whether a species is most likely

to be sensitive to the impacts of climate change (those whose

abundance is most strongly related to climatic variation) or

habitat modification (those whose abundance is most strongly

related to land use). In addition, we investigate spatial patterns

in the role of different drivers of abundance, identifying those

areas of Europe in which birds are likely to be more susceptible

to change in climate or land use. Given that species northern

range limits are often thought to be determined by their thermal

tolerances (Woodward, 1987; Addo-Bediako et al., 2000), we

might predict that climate will be of greater importance at

higher latitudes.

METHODS

Species data

Spatial abundance data for 496 species of breeding birds within

Europe were obtained from the EBCC (European Bird Census

Council) Atlas of European breeding birds (Hagemeijer & Blair,

1997). The EBCC atlas provides, for many countries across

Europe, a population size estimate for each species in the

c. 50 km × 50 km squares of the Universal Transverse Mercator

(UTM) grid. Population size estimates, principally relating to

the period 1985–88, are based on a seven-point scale (including

zero and six logarithmically scaled categories: 1–9, 10–99, 100–

999, 1000–9999, 10,000–99,999, ≥ 100,000 breeding pairs). For

Russia, parts of Belarus, Ukraine and the Caucasus republics, the

data in the species records were primarily qualitative; therefore,

these areas were excluded from the analysis. Likewise, some areas

in western Europe recorded only qualitative presence–absence

data, so were excluded from analyses (Fig. S1 in Supporting

Information). From the initial 496 species, we excluded intro-

duced species and species which spend a significant proportion
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of their time at sea because their abundance is unlikely to be

strongly linked to terrestrial climate and land use. Due to model-

building limitations, particularly when undertaking data split-

ting for model validation, those species recorded in fewer than

20 grid cells were also omitted. The remaining 342 species were

used for all subsequent analyses.

Bioclimatic data

Climatic data were derived from the global compilation made by

New et al. (1999) for the 30-year interval 1961–90, the latter part

of which corresponds to the period of EBCC bird abundance

data collection. Following the formulation of Prentice et al.

(1992), three bioclimatic variables were calculated for each

UTM grid cell: mean temperature of the coldest month

(MTCO); growing degree-days above 5 °C(GDD5); and the

annual ratio of actual to potential evapotranspiration (APET)

(Fig. S2). Through both direct and indirect effects on vegetation,

prey, predators, competition or diseases (Gregory et al., 2009),

these variables can limit species ranges and populations. Previ-

ously, these variables have been widely and successfully used in

models to describe both the range extents (Thuiller et al., 2004;

Huntley et al., 2007; Oliver et al., 2012) and abundance patterns

(Green et al., 2008; Gregory et al., 2009; Howard et al., 2014) of

European birds.

Land use data

Land use data were compiled at the same resolution as the

species data. The land use for each cell was derived from an

aggregation of the Pan-European Land Cover (PELCOM) 1-km

resolution database (Mucher et al., 2000); these land–use classi-

fications being based on NOAA-AVHRR satellite data. The

PELCOM database was chosen over similar finer-scale land use

datasets due to its complete spatial coverage of the study area

and the homogeneity of the methods used for land cover clas-

sification (Thuiller et al., 2004; Araújo et al., 2005). Eight land

use classifications were used: forest, grassland, urban, arable,

wetland, coastal, shrubland and barren. The percentage coverage

of each of these eight classes was calculated for each UTM grid

cell (Fig. S3).

Surrounding local abundance

Spatial autocorrelation (SAC) refers to the greater degree of

similarity between more proximate samples and can occur

through distance-related biological processes and spatially

structured environmental processes (Dormann, 2007). Method-

ologies assessing the effects of SAC have shown that it may

influence both coefficients and inference in statistical analyses

through the violation of the independence assumption,

autocorrelated residuals and, hence, inflation of type 1 errors

(Legendre, 1993). Segurado et al. (2006) recommend the inclu-

sion of an autocovariate term as the most effective means of

dealing with spatial autocorrelation. Therefore, we account for

potential spatial autocorrelation in our models by calculating an

indicator of surrounding abundance for each UTM grid cell

using equation 1:

L
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i= ( )⎛
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⎠⎟∑log10

1 1

2
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where L is the surrounding local abundance, n is the number of

adjacent cells, A is the categorical abundance scale is the categori-

cal abundance scale and i is the abundance category index. In the

formula, the log-scaled integer estimates of abundance in the

adjacent cells are back-transformed and divided by two to give an

absolute abundance for each cell relating to the midpoint of the

abundance category. The mean of these estimates of surrounding

absolute abundances across cells is log-transformed to enable

direct comparison with the original abundance values on the

existing ordinal scale.

In those cases where neighbouring cells included marine

habitats, the categorical abundance was included in the above

calculation as a zero (alternatively, including these cells as

missing data had no impact on our findings; Fig. S4). We

included information only from neighbouring cells immediately

adjacent to the focal cell (i.e. first-order neighbours; Dormann

et al., 2007); higher orders of neighbouring cells were consid-

ered, but model fit was best when only first-order neighbours

were included (Fig. S5).

Statistical analyses

Random forests (RF) were used to model species abundance and

to provide estimates for the relative importance of predictor

variables. This machine learning technique is a bootstrap-based

classification and regression tree (CART) method (Cutler et al.,

2007). Robust to over-fitting, it is widely recognized to produce

good predictive models; hence, it is increasingly applied to

species distribution modelling (Cutler et al., 2007). RF models

were preferred to ordinal regression techniques because they

make fewer assumptions about the distribution of predictor and

response variables (Cutler et al., 2007).

Models were fitted using 10-fold cross validation to reduce

SAC between training and test data and to minimize over-

fitting. To improve stability, each model was built using 1000

classification trees fitted to a random sample of the observations

(approximately 63% of the available data). The remaining ‘out-

of-bag’ observations (OOB; a term used with RF models to

describe the semi-independent test data not used initially for

model fitting) were then cross-validated against the resulting

trees to estimate model performance (Cutler et al., 2007) using a

threshold independent measure of model performance, namely

AUC, the area under the receiver operating characteristic (ROC)

curve (Manel et al., 2001). Previous evaluation has shown that

these models perform well when assessed using other measures

of model discrimination and calibration, in addition to AUC

(Howard et al., 2014). These previous analyses also demon-

strated that RF models substantially reduced residual SAC rela-

tive to that present in the raw data.
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The importance of individual variables was calculated using a

permutation-based measure of the normalized difference in

prediction accuracy for the OOB data when the predictor vari-

able is included as originally observed, versus when the predic-

tor variable is randomly permuted. Higher values of AUC

indicate a greater degree of association between the variable and

the response (Cutler et al., 2007). To account for potential cor-

relations among predictor variables, a conditional permutation

approach, proposed by Strobl et al. (2008), was applied using the

‘party’ package in R (Liaw & Wiener, 2002; R Development Core

Team, 2012). Using this approach, the underlying correlation

structure is preserved by permuting the predictor variable only

within groups of observations. This method provides a fair

means of comparison, identifying the relevant predictors and

mostly eliminating the preference for correlated variables

(Strobl et al., 2008). To enable comparisons between species,

relative variable importance was calculated by dividing the

importance of each individual variable by the summed impor-

tance across all variables for each species. Relative variable

importance for each species was aggregated for each of the two

broad categories of driver: climate and land use (Ishwaran,

2007). The aggregated importance of climate variables was then

divided by the aggregated importance of land use variables. This

ratio was taken to give a measure of the relative importance of

climate and land use for each species (Table S1).

A phylogenetic generalized least squares (PGLS) approach

was used to test both for relationships between species-specific

traits and the relative importance of climate to land use (here-

after termed ‘relative climate importance’) and for relationships

between species-specific traits and the importance of spatial

autocorrelation for a species, whilst controlling for phylogenetic

non-independence (Freckleton, 2009). Species traits were taken

from BirdLife International & NatureServe (2012) and included

mean body mass, generation length, primary habitat associa-

tion, migratory strategy and average and maximum natal dis-

persal distances. Global range size, a measure of the geographic

scale over which the drivers of abundance operate, was also

included, and was derived from BirdLife International species

range polygons (BirdLife International & NatureServe, 2012).

Prevalence within the study area, which represents the quantity

of available data, was calculated as the proportion of UTM

squares that were occupied (from Hagemeijer & Blair, 1997).

Phylogeny was based on a consensus tree built using 5000 trees

sub-sampled from the global phylogeny built by Jetz et al.

(2012). We compared the Akaike information criterion (AIC)

corrected for small sample size (AICc) for all subsets of the

global model, selecting all models within six ΔAICc of the best

performing model. To avoid selecting overly complex models,

all models with a better-performing simpler nested model

were disregarded (Richards, 2008). Diagnostic plots were exam-

ined for the final model for each analysis to check for

heteroscedasticity, non-normal errors and outliers. Phylogenetic

analyses were carried out in the ‘caper’ package in R (Orme et al.,

2012; R Development Core Team, 2012).

Spatial variation in relative variable importance was investi-

gated by calculating the mean ratio of importance of climate

versus land use for all species present within a UTM grid cell.

This was applied to all cells where more than 75% of the species

present were represented by quantitative data (Fig. S1). In total,

this accounted for 47.5% of the UTM grid cells across Europe.

As we found little variation in the performance of models for

species located in different parts of Europe, these ratios were not

corrected for model fit. To test for spatial variation in these

ratios, an ordinary least squares regression (OLS) was used to

examine the relationship between the mean ratio of importance

of climate versus land use for all species present in a UTM

grid cell against the latitude and longitude of the cell. Species

richness and heterogeneity of land use (the latter measured

using Shannon’s diversity index; Forman, 1995) within each

UTM grid cell were also included in these OLS models and an

ANOVA used to identify differences in the explanatory power of

variables.

RESULTS

The relative importance of abundance drivers

RF models of the abundance of the 342 species of European

breeding bird generally performed well, with a mean AUC

score of 0.97 (SE ± 0.001). An ANOVA comparing the relative

importance of the two aggregated variable types (climate and

land use) and the spatial autocovariate term across the species

models, whilst controlling for species as a random effect,

showed an overall significant difference between the three

variable types (F2,1023 = 4442, P < 0.01; Fig. 1a). Specifically,

despite the models including more land use variables than

climate variables and only one SAC term, Tukey’s post-hoc

analysis revealed that climate was significantly more important

than land use (P = 0.05) in explaining the abundance of

species. Further, the importance of each of the climate vari-

ables in isolation was greater than that of any of the land use

variables. Perhaps unsurprisingly, given the spatial coherence

of most species distributions, the SAC term appeared to be

significantly more important than both climate and land use

(P < 0.01).

There were also significant differences in the relative impor-

tance of individual variables among species (F11,341 = 168.4,

P < 0.01; Fig. 1b). In general, within the climatic variables, tem-

perature variables have a much greater impact on species abun-

dances than moisture availability. Both GDD5 and MTCO were

significantly more important than APET (Tukey’s post-hoc

analysis, P < 0.01 for both). The importance of individual land

use variables in modelling abundances also differed signifi-

cantly. In addition, the prevalence of a land use type across

Europe was positively correlated with the mean relative impor-

tance of that variable (r2 = 0.89) in the models of species abun-

dance. For example, forest, arable, coastal and inland wetland

land uses were all significantly more related to species abun-

dances than the grassland, urban, shrubland and barren land use

types (Tukey’s post-hoc analysis, P ≤ 0.05 for each comparison).

The most important land use variables for a species were those

directly related to its primary habitat association (e.g. arable
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land coverage was the most important variable determining the

abundance of farmland species) (Fig. S6).

Between-species variation in relative
variable importance

When testing the relationship between the ratio of the relative

importance of climate versus land use variables for species

and species-specific traits, a PGLS model retained four vari-

ables. These were: a species’ primary habitat association,

its global range size, its log body mass and its prevalence

across Europe (Table 1). This model explained 18% of the

observed variance in relative climatic importance. A highly sig-

nificant positive relationship was found between global range

size and the relative climatic importance, whilst body mass and

prevalence were significant negative covariates. The relative

importance of climate appeared to be unaffected by primary

habitat association, with the exception of coastal species, for

which climate was less important than for other species

(Table 1).

A PGLS model testing relationships between the importance

of SAC for each species and species-specific traits retained only

primary habitat association and log body mass. A highly signifi-

cant negative relationship was found between body mass and the

importance of SAC, whilst SAC was less important for

species associated with Mediterranean or tundra and moorland

habitats than for species with other primary habitat associations

(Table S2).

Spatial patterns in the importance of climate and
land use

There are clear spatial patterns in relative climatic importance

across Europe (Fig. 2). A regression analysis revealed a signifi-

cant positive relationship between the mean relative climatic

importance for all species present in a UTM grid cell and

the latitude of that cell (F1,1716 = 2585, P < 0.01); this indicates

that the relative importance of climate for determining the

abundance of species increases from southern to northern

Europe. Significant relationships were also identified between

mean relative climatic importance of a UTM grid cell and

the longitude, species richness and land use heterogeneity of

that cell. However, the proportion of variance explained by

these variables was low (1.20, 2.37 and 0.76%, respectively),

particularly when compared with the proportion of variance

explained by latitude (57.50%; Table S3). Spatial patterning

is also evident in the relative importance of individual

climatic variables (e.g. see the contrast between a temperature
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Figure 1 Mean relative importance (± SE) of climatic and land use variables along with spatial autocorrelation for 342 species in
determining species local abundance, for both aggregated variables (a) and individual variables (b). Notches indicate the 95% confidence
intervals of the median, with a lack of overlap indicating a significant difference at the 5% level. Circles indicate outliers.

What drives avian abundance?

Global Ecology and Biogeography, 24, 1249–1260, © 2015 The Authors. Global Ecology and Biogeography
published by John Wiley & Sons Ltd

1253



and a moisture-related variable, Fig. 3). There were significant

positive relationships between the relative importance of

both temperature-related variables and latitude (regression

of the mean importance of an individual climate variable

across all species present in a UTM grid cell against latitude:

GDD5, F1,1716 = 7118, P < 0.01; and MTCO, F1,1716 = 11,353,

P < 0.01; Fig. 3a,b, Table S3). Conversely, the relative impor-

tance of APET in explaining abundance declined with latitude

[regression (as above): F1,1716 = 3618, P < 0.01; Fig. 3c, Table

S3].

DISCUSSION

At the spatial scale examined, the abundances of the vast major-

ity of terrestrial European birds are more strongly influenced by

climate than by land use. We demonstrate, for the first time,

Table 1 Species traits and the relative
importance of climate and land use.
Estimated coefficients from AIC selected
phylogenetically corrected GLS
regression models of the ratio of the
relative importance of climatic and land
use variables for determining the
abundance of species on species-specific
traits. P-values significant at the 5% level
are shown in bold.

Effect size Standard error t-value P-value

Intercept (habitat generalists) 0.66 1.15 0.58 0.57

Primary habitat association:

1. Coastal –0.95 0.31 –3.09 <0.01

2. Inland wetland –0.22 0.18 –1.22 0.22

3. Tundra, mires and moorland 0.01 0.22 0.06 0.95

4. Boreal and temperate forest 0.32 0.18 1.78 0.08

5. Mediterranean 0.48 0.34 1.41 0.16

6. Agriculture and grassland –0.06 0.18 –0.33 0.74

7. Montane grasslands –0.35 0.38 –0.92 0.36

Log (body mass) –0.17 0.07 –2.34 0.02

Prevalence across Europe –1.61 0.27 –5.98 <0.01

Log (global range size) 0.23 0.06 3.56 <0.01

Lambda = 1. Residual standard error: 0.509 on 265 degrees of freedom. Adjusted R-squared = 0.173.

Ratio of climate to land use
importance

2.49
1
0.60

Qualitative Data

Figure 2 Spatial distribution of the ratio of the relative importance of climate to land use for determining the abundance of European
bird species present within each UTM grid cell. Grey regions indicate areas omitted from analysis due to paucity of quantitative data (see
Methods).
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substantial spatial variation in the relative importance of factors

driving local abundance. We discuss these results in the light

of three key findings: (1) the substantial differences between

land use, climate and neighbouring abundance in their relative

importance for determining local species abundance; (2) the

strong spatial patterns in variable importance; and (3) the spe-

cific traits that predispose a species to the influence of either

climate or land use.

Relative Variable Importance (%)
53.12

10.27

Qualitative Data

Relative Variable Importance (%)
32.86

9.06

Qualitative Data

Relative Variable Importance (%)
20.65

1.60

Qualitative Data

a) 

b) 

c) 

Figure 3 Spatial distribution of relative
importance for determining the
abundance of European birds of
measures of: (a) mean temperature of
the coldest month; (b) growing
degree-days above 5 °C; and (c) actual to
potential evapotranspiration ratio. Grey
regions indicate areas omitted from
analysis due to paucity of quantitative
data (see Methods). Note the different
scales for each plot.
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Differences in the relative importance of climate,
land use and spatial autocorrelation

There is substantial evidence for the individual impacts that

changes in both climate and land use have on European bird

populations (Lemoine et al., 2007; Vickery et al., 2014), and

conflicting opinions about which is the most important factor

affecting avian populations (Thuiller et al., 2004; Vickery et al.,

2014). Here, despite evidence of variation in their importance

among species and across space, we show that climate is usually

more influential than land use in driving abundance patterns

within a species’ range. Previous studies (Thuiller et al., 2004)

suggested that climate is a better predictor of range extent than

land use but here, for the first time, we demonstrate that, within

a species’ range, climate is also the dominant factor in determin-

ing abundance patterns at this larger, landscape scale.

Species distributions are thought to be determined by a hier-

archical scheme of environmental controls, with climatic vari-

ables operating over the largest range, and factors such as land

use, geology and topography operating at increasingly finer

scales (Thuiller et al., 2004). This hierarchy may also operate on

abundance, favouring a greater importance of climate than land

use at a coarse spatial scale. Despite this, we have also shown the

importance of land use variables independently of the variabil-

ity described by climate. Widespread land uses, whose occur-

rence may not be closely tied to local climate, such as arable

land, forestry and inland wetlands, were important determi-

nants of abundance patterns. Surprisingly, we also identified

more localized land use variables, such as shrubland and urban

environments, as important predictors of the abundance of

some species. This contrasts with previous studies investigating

the perceived role of land use variables on range extent (Thuiller

et al., 2004), where the importance of more localized land use

variables was less evident. One explanation for this difference

may lie in the difference between presence–absence models (as

used by Thuiller et al., 2004) and our abundance models. Spe-

cifically, by considering abundance, our models can reflect finer-

scale differences in habitat quality than can presence–absence

models (Howard et al., 2014). Abundance models might, there-

fore expose finer-scale species–habitat relationships than those

detected by presence–absence modelling. However, this does

not mean that climate and/or land use models are sufficient

to explain spatial variations in abundance patterns for all

species.

By using a conditional inference framework and

permutation-based approach to assess variable importance, we

also showed that the majority of spatial variation in species

abundance can be related to the abundance of the same species

in neighbouring cells. This term partly reflects the degree of

spatial aggregation in climate and land use, as well as in the bird

abundance data themselves. This could result in estimates of the

importance of climate and land use being more conservative

than if SAC had not been accounted for. Also incorporated in

this term are the effects of unknown spatial processes, such as

biotic interactions. The apparent importance of SAC suggests

that species’ dispersal abilities may be an important factor in

determining local abundance, which may in turn indicate

potential difficulties in establishing new breeding areas sepa-

rated from current distributions (Tilman & Kareiva, 1997;

Dormann et al., 2007). Our finding that this variable can, in

some instances, explain 70% or more of the spatial variation

in abundance of a species indicates the importance of account-

ing for spatial autocorrelation when modelling abundance

(Segurado et al., 2006). Techniques such as hierarchical parti-

tioning can help us understand the extent to which some of the

variation in SAC is related to spatial patterning in the other

predictor variables, but this approach cannot be applied to RF

models.

When climate variables are considered individually, our

results indicate that temperature-related variables are much

more important than moisture availability in determining

abundances across Europe. This is important, as the highest

degree of predictive uncertainty for future climates occurs with

precipitation forecasting (Theis et al., 2005). With the exception

of the Mediterranean region, where precipitation is shown to be

an important determinant of abundance, our results suggest

that uncertainty around precipitation forecasts may affect pro-

jections of future European species range extents to a much

lesser extent than currently expected and, thus, that projections

of future climate suitability for most species may be more reli-

able than is currently supposed.

Spatial variance in the role of land use and climate
in determining abundances

Spatial patterns in the relative importance of climate and land

use indicate that the abundances of species that occur at higher

latitudes in Europe are more strongly dictated by climate

variables. Despite the correlative nature of the models, their high

predictive ability on spatially independent data indicates that

our findings are robust. Our results, therefore, could have

important ramifications with regard to future climate change.

Future changes in climate are projected to be greatest in more

northerly latitudes of Europe (Virkkala et al., 2008; IPCC,

2013), and in a direction unfavourable to most northerly species

(Huntley et al., 2007). Whilst the past is not necessarily a good

predictor of the future, bioclimate models have been shown to

have some power in predicting future population changes

(Green et al., 2008; Gregory et al., 2008). The strong dependence

of avian abundance in these areas on climate means that con-

stituent species will not only be exposed to some of the strongest

climate changes in future but also that their populations will be

among the most sensitive to such changes. Previous studies have

identified that boreal and arctic species are vulnerable to climate

change as a result of projected future declines in range size

(Virkkala et al., 2008). Given, in addition, that the abundances

of these species are particularly strongly related to climatic

factors, all other things being equal, populations are likely to be

subject to more substantial declines than currently anticipated

from considerations of range extent alone.

The relative importance of individual climatic variables also

shows spatial patterns, with temperature-related variables more
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important in the north, and moisture availability more impor-

tant in the south. These findings are in line with the water–

energy hypothesis, in which the key factor determining richness

variation switches from moisture availability at the equator to

energy-related variables towards the poles (Hawkins et al., 2003;

Whittaker et al., 2007), and match latitudinal gradients in the

temporal variation in bird populations to both temperature and

precipitation (Pearce-Higgins & Green, 2014). In those areas

where energy inputs are low, such as at higher latitudes, tem-

perature constrains species richness and abundance (Brown &

Maurer, 1989); by contrast, where temperatures (and hence

energy input) are higher, moisture availability constrains rich-

ness and abundance (Hawkins et al., 2003).

The importance of land use in determining abundance is

more evident for species present in the southern regions of

Europe. In this context, there are parallels with the apparent

climate sensitivity of more northerly species, discussed above.

Specifically, the future impacts of land use change in southern

Europe may be compounded by the prevalence of land use spe-

cialists (as defined by Moreira & Russo, 2007) in these regions.

The Mediterranean regions where such species are principally

located are also the regions where land use change is likely to be

greatest in future (Jetz et al., 2007), potentially accelerating rates

of population change.

Some countries wholly (Norway and Poland), mostly (Spain)

or partly (Italy, France and Iceland), did not provide quantita-

tive spatial estimates of species abundance for the EBCC atlas

(Hagemeijer & Blair, 1997). This includes some southern

regions that are highly heterogeneous in both land use and

temperature (Sanderson et al., 2002; Barnagaud et al., 2012).

Whilst it is possible that a paucity of data in these areas may bias

the importance of variables towards those regions where data

are more fully represented, for example mid and northern

Europe, given that we were able to incorporate data from Iberia,

southern France, Italy and Greece in the south, and Scotland,

Iceland, Sweden and Finland in the north, the full range of

variation across both climate and land use is adequately repre-

sented in the data. Looking forward, several countries omitted

from our analyses have subsequently initiated standardized

population monitoring (PECBMS, 2009), providing the poten-

tial for future analyses to be applied to the entire region. As with

all correlative modelling, our predictive ability does not extend

to novel regions of parameter space. For example, the introduc-

tion of novel land uses to an area could, through a novel com-

bination of climate and land use variables, create a previously

unmodelled habitat niche. This is particularly the case for those

land uses governed by anthropogenic factors (rather than cli-

matic variables), such as arable or urban land use, which, if

introduced to new regions of northern Europe, could create

novel conditions.

Species characteristics and the drivers of abundance

A range of ecological characteristics, such as body mass, range

size and gene frequency, have all been linked to the climate

sensitivity of species (Buckley & Kingsolver, 2012; Parmesan

et al., 2013). Our results provide further evidence for trait–

climate relationships. First, our analyses identify a negative

relationship between body mass and the importance of

climate. This is perhaps unsurprising, given the lower surface

area to volume ratio of larger-bodied organisms, which renders

them less susceptible to climate (Peters, 1986). Second, we

show a negative relationship between prevalence of a species

across Europe and the importance of climate. This is consistent

with the idea that an extensive prevalence indicates that

a species is adapted to a wide range of climatic conditions

(and vice versa) (Addo-Bediako et al., 2000; Ohlemuller et al.,

2008). Although there are good reasons to expect negative rela-

tionships between the importance of climate and both body

mass and prevalence, attributing causal relationships is vexed

in this case. This results from the positive association between

body mass and prevalence, as well as the fact that both of these

traits are known to increase with increasing latitude (Brown &

Maurer, 1989).

CONCLUSIONS

Here, we present the first comprehensive analysis of the factors

determining spatial variation in abundance of a continental avi-

fauna. We compare the relative importance of climate and land

use variables in determining the abundance of species, taking

into account the importance of spatial autocorrelation. Overall,

the importance of climate variables outweighs that of land use in

determining species abundances; furthermore, across Europe,

the importance of variables related to temperature outweighs

those related to moisture, increasing our confidence in projec-

tions of the impact of future climate change on European bird

species. Spatial variation in relative variable importance shows

that climate variables are particularly important for those

species present in northern Europe. This knowledge, combined

with predictions of high-magnitude climatic changes in these

areas, indicates that northern bird species in Europe are likely to

be amongst those most vulnerable to future impacts of climate

change on their populations.
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