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Abstract

This paper describes our on-going research into the design of finite state machines (FSMs) that exhibit self-healing characteristics. The
approach adopted here is based on conversion of the traditionally adopted logic hardware design into generic look-up table (LUT) format.
Instead of relying upon bespoke hardware mitigation strategies such as triple modular redundancy, our approach relies upon well-established
data error detection and correction (EDC) codes that are ideally suited to protecting LUTs. This ‘memory-mapping’ of logic brings self-healing
capabilities that can be applied to a wide variety of FSMs. We illustrate our method by mapping a generic automotive used fuel pump controller
(FPC) design to LUT format. Built-in repair is and fault monitoring are both considered to be extremely important embedded control
applications and we therefore discuss significant benefits that can be brought by incorporating self-healing capability to the underlying
hardware. We demonstrate the design principles of our approach verify the state-based behavior of the resulting FSM. We further discuss the
how content addressable memory (CAM) can be used to achieve efficient address mapping. In order to protect against address errors occurring
at the input, a two-stage LUT implementation is used that removes errors occurring in the input data stream as well as protection of the state
mapping itself.
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Technical glossary
1. Introduction

Abbr _ Definition

CAM  Content-addressable memory In our world today every fossil fuel burning engine in

ECU  Engine control unit i different applications requires a type of fuel storage and a

IEIP?CC Eiﬁrpi?;‘;czggtﬁ?;omcmn means of getting this fuel to the engine at the right pressure
and amount required. This is done in all the cases with the

FPGA Field-programmable gate array

FPS Fuel pressure system

FSM Finite-state machine
LUT Look-up table
MUX  Multiplexer

PLD Programmable logic device

SEU Single upset event

STB State transition block

help of an electric pump which can be controlled through a
simple relay or a fuel pump controller (FPC) based on a PLD.
For controlling the pressure for the simple relay solution a
mechanical pressure stabilizing system is part of this fuel
supply system. Mechanical system can cause problems in
unstable pressure , which is why most of fossil fuel driven
engines are equipped with pressure controlled FPC. FPCs are
based on PLDs programed in standard programming logic
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according to a given specification that describes the system
behavior in regards of performance and total car system
interfacing. The core of a PLD system contain in most cases a
type of microcontroller based system and in some cases a
field programming gate array (FPGA) surrounded by sensor
and output interfacing hardware. Today's FPC are a part of
complex engine systems controlled by several electrical
control units (ECU) that require inter-system communication
for maintaining optimal system behavior for performance in
the event of sensor degradation and to handle fault conditions.
This research work focuses on the main task of the FPC
providing fuel at the right amount and pressure to the engine.
The adaptation is achieved by converting and coding the state
transition diagram into a memory based system which only
uses the memory data to perform the FSM task. For accurate
pressure control feedback or feed-forward control can be
utilized in the application. What particular controller
hardware gets chosen depends on the design and the
preference of the designer. The research work described in
this paper is based on a P (proportional) controller type which
can be implemented by switching on the power to fuel pump
at a given voltage (V) level to produce the required minimal
fuel pressure to start the engine. The required fuel pressure is
achieved by incrementing or decrementing the voltage level in
a stepwise fashion. A LUT based FPC simulation is presented
in Figure 1 which is based on a MatLab adaptation of our
approach. Other than the P type controller, a PI (proportional
integer) or PID (proportional integer derivative) type
controller behavior can been used.
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Fig. 1 Simulation data of memory mapped FPC

The FPC is then mapped into a self-protecting FSM in the
form of a Moore state machine, wherein the memory is CAM
based in order to produce a space-efficient mapping. CAM
based memory offers the advantage over linear addressable
memory, that is uses pattern matching for data access.
Through this feature the memory structure is compactor and
memory gaps can be avoided. The task of the self-protecting
of the FSM is been done through dynamic input filtering with
the goal of limiting the possibility of FSM upsets. The task of
self-controlling and healing are part of the goal of maintain a
functional LUT based FSM in case of memory data
corruption. This three features are seen as self-* qualities for
creating a fault tolerant system. For the FSM coding the
approach of self-configuring FSM for LUT out of [1] gets
used. The complete fuel pressure system (FPS), comprising

FPC and fuel pump will be limited in this simulation to the
FPC only and simulated. A basic FPS as a block diagram gets
presented in Figure 2.
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Fig. 2: Basic block diagram of a FPS

2. LUT-based architectures for implementing FSMs

FSMs are used in many applications where a fixed
mapping between input and output logic patterns is needed. In
its simplest form, the FSM stores a direct one-to-one mapping
between input logic data patterns and the corresponding
output data patterns. This is normally achieved by storing all
of the possible mappings in the form a LUT and using the
current input pattern to look-up the relevant output pattern.
For simple input/output mappings, the contents of the LUT
can be determined directly by analyzing the system’s state
transition diagram.

More complex input/output mappings are possible, in
which case a formal approach can be used. The logic design
of an FSM with a given number of inputs I, outputs O and
states S can be defined as a 5-tuple (1,0,S,5,0). The state
transition function is & : I x S > S and the output function is ®
:I1x S > O [2-4]. An FSM alters its current state following the
defined state transition defined by the input specified at this
state and is defined as either a Moore or a Mealy state
machine [5-7] as illustrated in Figure 3.
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Fig. 3 Moore (a) and Mealy (b) FSMs [7]

The difference between Moore and Mealy is defined by the
output response in regards to the input stimulus. In a Moore
based FSM the output functionality is controlled by the state
only (see Figure 3a) and defined as @ : S & O. The output
function of a Mealy state machine depends on the state and
input and is defined as o : I x S & O (see Figure 3b) [2-4].
Between the two designs there is an important dissimilarity: -
Mealy require less state transition than a Moore. In this
regards a Mealy FSM has more compact state transition
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structure. In order to translate a Mealy into a Moore FSM
state splitting has to be done and this increases significantly
the number of states and state transitions [8].

The creation of a FSM starts with defining the state
transition diagram which can then be converted into a state
transition table. Figure 4a presents a state diagram of a JK-
flip-flop as an example and Figure 4b shows the associated
state transition table. Figure 4c shows the trust table and the
FSM challenge of creating the toggle function. The table
(Figure 4b) contains the state transition in conjunction with
the applied inputs (I) per table row, which also includes the
required output (O) information. The structure of the state (S)
definition in this table is configured in the following way: the
state information on the left represents the current state and on
the right it represents the state the FSM switches to after
associated input sequence has been applied. In the special
case of “don’t care” conditions, where O is independent of the
previous state, a “-“ symbol is used and the FSM is
incompletely specified. The logic definition of the FSM
changes into a 6-tuple (1,0,S,5,,1), where A represents the
don’t care conditions [8].

The state table in Figure 4b shows within the input
information (in this case both inputs J and K are shown as one
value) all possible combination of J and K and the output
information of Q and Q. The trust table of the JK-flip-flop
(presented in Figure 4c) shows the logical definition.
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Fig. 4 JK-flip-flop FSM state representation
3. Mapping FSM state representation into memory

The structure of the resulting FSM state transition table
(See Figure 4b) can be used for transferring it into memory
LUT. The basic principal of transferring FSM into a LUT
memory structure is to allocate one LUT row per state
transition whereby each row is accessed by unique LUT
address and data has a fixed information structure [9]. In the
case the minimum number of LUT row entries is defined by
the number of state transition entries. An increase of the
number of entries can occur due to “don’t care” entries within
the input sequences at one FSM state definition. The LUT can
then be controlled by inputs and memory address feedback to
create the necessary outputs and state transition. By
introducing a binary state coding of the individual states (see
Figure 5a) placing them within the table accordingly (see
Figure 5b). The memory address is the combination of input
(Figure 5b red bits) and current state (Figure 5b green bits)
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combined in binary format. The data stored at this memory
location is the output bits (Figure 5b yellow bits), which in
this case also acts as the necessary feedback information to
create the current state in the address pointer of the FSM.

Address | Word

0001
0010

0101
0110
1001
1010

10
1110

Fig. 5: JK-flip-flop state transition table transformation into memory

By assuming that the number of unique addresses
appearing in the resulting table is N_addr. The JK-flip-flop
memory mapping example presented in Figure 4b indicates
that the addressable memory size is defined by 2N-249" Hence
memory size will grow exponentially by the number of
addressable locations, which determined by is the total
number of input and state encoded bits[10]. The structuring of
the addressed states gets arranged through the input structure
which is fixed and which creates gaps throughout the
information stored in the LUT. For example the above JK-
flip-flop needs 2* = 16 addressable word locations, from
which only 9 are used. This is further broken down into 8
addresses associated with JK-flip-flop working conditions and
1 address reserved for reset or start up memory location.
Hence 7 locations are unused and cannot be allocated for the
state machine functionality. These undesirable memory
locations can still be accessed within the FSM in the event of
an address fault and hence they require a present condition to
prevent misbehavior of the FSM. If this precaution is not
taken the FSM may force an undefined state transition
including incorrect output information and a non-recoverable
state.

4. Self-protecting FSM against invalid input sequences

The block diagram of the functionality for self-protecting a
Moore FSM is presented in Figure 6. Protecting the FSM
against execution of invalid states, input filtering and blocking
is required for this task. Our research is driven by the idea to
filter undesired input stimulus in an effective way without
creating a massive memory overhead. For this task we altered
the FSM design. Two primary blocks of the FSM can be
identified labelled as the input block and state transition block
(STB). All the data needed required by the state mapped-
design is stored in CAM because of the two specific
advantages: firstly CAM continues data storage and retrieving
of data within a single clock cycle. Secondly, in the event that
data matching is unsuccessful the CAM indicates this
condition with a flag which can be used as a fault indicator of
the system if required.
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Fig. 6: Block diagram of the self-protecting FSM against input upsets
showing input and state transition blocks

Our approach targets the self-protection of the input circuit of
the FSM against input sequences which could interfere with
the designed FSM state transition flow. Erroneous input
sequences can lead to unspecified state transition of the FSM
(see Section II, point A) or unspecified memory entries within
the state transition memory and can be caused by faulty
sensor or SEU events on the input side of the FSM. For
achieving the self-protecting of influence of erroneous input
stimulus on the FSM state transition the state dependent input
information must to be excluded from the main FSM state
transition information stored in the state memory data. This
disassociation between the data requires a cascaded memory
structure performed through the two blocks of our design (see
Figure 6). The information link for change of state transition
between input and state transition block is performed with the
help of coded data. Coded data used for the FSM state
transition prevents unclear specified input state transition
sequences and reduces the data structure of the FSM memory
data. This research work does not work with unspecified
memory entries to eliminate possible undesirable state
transition but instead this is been done through content
filtering.

The detailed operation of the input block and STB is now
described.

a) Input block functionality

The input block presented on the left in Figure 6 filters all the
input sequences stimulating accordingly to the present state
transition of the FSM and which is supplied to the input block
by the STB. The input block is made up out of three
individual sub functional blocks, which are an incoming
register, MUX and input filter CAM. The register and MUX
are getting their control data from word data out of the input
filter CAM of the pre-set stage selection done by the STB.
The register contains D-flip-flops where the reset inputs are
used to suppress the associated input data supplied at their
inputs defined by the control data of the input filter CAM.
With this all unrequired input information is getting blocked
from taking any effect on the behaviour of the FSM. A
subsequent MUX is used to reduce the remaining input
information into a compact data package without unnecessary
data gaps and stored in the register. This MUX is controlled
by the same control data from the input filter CAM. Within
the register the data from the MUX, input filter CAM data and
current state of the FSM is combined for creating a unique
content search pattern for the input filter CAM. Accessing the
input filter CAM with this data will produce a pre-defined
state transition data trigger, which is different from the input
data but linked to a specific state transition. This bit of data is
transferred into the register of the STB.

b) STB functionality

The STB is a traditional design of a FSM with the
difference that a CAM is used instead of a standard type
memory. The advantages of using a CAM is the compact data
structure which is achieved by using contents for addressing
the data. With this a linear addressing of a memory is not
required and only the needed data can be stored and makes the
addressing of the memory data unique for the application. The
FSM can be implemented from the information of state
transition table and can be converted into the appropriated
memory based FSM data structure. The address register is
enabled by the search and match signal of the input block
CAM. With this a link between both blocks are established.

5. Adaptation of FPC into memory logic based on state
diagram

The Moore style FSM behavior gets used in this research
work running on CAM hardware. A block diagram of the
proposed FPC structure that we are using for our research is
shown in Figure 7. For the CAM FSM block of this diagram
the self-protecting FSM described in point 4 will be used. .
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Fig. 7: Block diagram of a FPC including input and output signals

The following input signals are getting used by the memory
based FSM (MB-FSM) on the input side:

Von : (VO) voltage on

: (FLO) fuel level in tank OK

Engine ON : (EO) engine is switched on

EP OK : (EPO) engine fuel pressure

FP Max :(FPA) fuel pressure above specification
FP Min : (FPI1) fuel pressure below specification
FP OK : fuel pressure OK

These signals are getting used on the output side of the MB-

FSM: Pump On:

Pump on :(PO) switch fuel pump on

Tol Level :(TL) current tolerance band

FP Level :(FPL) fuel pressure value

Vinc : (VI) increase fuel pump voltage
V dec : (VD) decrease fuel pump voltage

The state diagram for the simulated FPC can be seen in Figure
8a.
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(1) reset (9) FPI=1; EPO=0; FPO=0  (17) FPO=1
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(8) PO=1; VD=1; VI=0 (16) PO=0; VD=0; VI=0
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Fig. 8: Design of FPC, (a) State diagram of the simulated FPC of this research
paper, (b) state transitions triggered by input signals, (c) output related state
transition.

The definition of the different main state transition
requirements (STR) are presented in Figure 8b and the main
state transition trigger. This state diagram (Figure 8a) is only
the broad representation of the FPC FSM state description.
The example for the control behaviour of the MB-FSM based
FPC gets presented in Figure 1. The nominal FP for this
simulation is an estimated and simulated pressure value with a
+10% tolerance band. This simulation has been done to show
the basic control performance of the FPC done on a MB-FSM.
All external input and outputs where part of the overall
simulation and shows the capability of memory based
controller.

The memory requirement of a traditional FSM approach
can be calculated with M = 21*S x (0 + s) where i is number
of inputs, s is number of states and o is number of outputs.
This comes to a memory size of 40960 bits. The memory
requirement of the CAM based FSM can be calculated with
M=s*2*i+o0+2*c+3+*s) where i is number of
inputs, s is number of states, o is number of outputs and ¢ is
unique link number between CAM blocks. For the MB-FSM
FPC a memory size of 220 bits would be required.

6. Self-healing in case of memory data corruption

Today modern integrated circuits are driven by continues
effort of shrinking transistor size which make them more
susceptible to bit upsets caused by alpha particle or neutron
hits. This effect can be measured in the soft-error rate (SER)
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and effect is also referred to as the single-event upsets (SEU).
Due to their uniform structure and the nature of storing binary
information makes them susceptible for SEU effects. In paper
[11] the protection of CAM against 1 bit alteration caused by
SEU per data word with the help of error-correcting-match
scheme got described. This scheme works on the bases of
hamming code and added several parity bits for each CAM
data word. Comparing the circuit of a standard memory
against the CAM reveals that the main difference is in the
addressing of the data. Within the standard memory a
centralized addressing logic creates the required individual
data location. This structure is centralized and clustered away
from the individual memory cell. Comparing this to the
structure of a CAM the main difference is within the
addressing and its logic design. CAM is based on a searching
instead of a direct addressing. Each memory cell has its own
data matching circuit and it is not centralized [12]. Because of
this the hardware overhead compared to a standard memory
module is not bigger. But a CAM is going to be more
susceptible to SEUs due to the nature of contain searching. If
a contain search does not generate a match a close match will
be taken and which has be avoided in any case of a FSM
application.

The self-healing approach we are proposing in our research
work for handling single bit alteration in a CAM data word is
based on the use of single parity checking. The principal of
this approach works on the duplicate data storage within the
CAM distinguished only by a single bit information within the
contain search pattern required for finding and addressing of
the CAM data word. This single bit or switching bit of the
contain search pattern is governed by the parity bit check of
the original CAM data word. In the case of a parity fault in
the original data word the switch bit gets set and the back-up
data gets read out. This is been performed in the way that the
address pointer still containing the current state transition
pointer which is getting altered that the parity fault bit gets
set. Due to the parity fault the execution of state transition
gets retained for one clock cycle and the altered pointer gets
executed. This task of altering the state pointer instead of
correcting the faulty memory data showed the best
performance within our simulation and required system logic
requirements. Every type of data reconstruction based on error
correction approaches requires a certain logic or controller.
The goal in our research was to limit the controlling logic to a
minimum and utilize memory for the majority of the task
performance. In the case of both data words within the CAM
are been corrupted the FSM gets halted and an insuperable
fault within the system has occur.

7. Summary and Conclusion

Any system which can cope with filtering away
undesirable input stimulus and handles data alteration
including recovery requires an overhead in processing and
hardware if based on a PLD type controller. Every off this
tasks will increase the workload on the PLD and reflexes into
variable response time on a given input stimulus. Our research
shows that with using a LUT based controller offers the
following benefits: contain response time, fault tolerance to
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single memory data corruption and input stimulus filtering.
The response time on an input stimulus for the CAM based
system is a fixed time of two clock cycles. Only in the case of
a single memory data corruption error within the stored data
within one or both of the CAMs the maximum number of
clock cycle will be four. The current limitation of memory
data corruption on a single error is limiting the fault tolerance
of our work for the current simulation based application and
was the scope of this phase of our in progress research work.
Adaptation of altered parity check concepts are targeted for
multiple data bit upsets and data reconstruction will be
achievable. In our system based on simulation a stable
response time of the memory based controller can be achieved
and adapted application on this system will benefit from this.
The use of fault tolerance based on parity bit evaluation has
been done on using duplicate data entries which can be
accessed through content variation for exclusion of hardware
overhead. Input filtering reduces the impact of system
malfunction by only evaluation of the required signals at the
current application step.

Acknowledgements

This work is supported by the EPSRC Centre for Innovated
Manufacturing in  Through-life Engineering Services
EP/1033246/1.

References

[n P. Schiefer, R. McWilliam, and A. Purvis, "Creating a Self-
configuring Finite State Machine out of Memory Look-up
Tables," Procedia CIRP, vol. 11, pp. 363-366, // 2013.

[2]

[3]

[8]

[9]

[10]

[11]

[12]

R. Senhadji-Navarro, I. Garcia-Vargas, G. Jimenez-Moreno, and
A. Civit-Ballcels, "ROM-based FSM implementation using input
multiplexing in FPGA devices," Electronics Letters, vol. 40, pp.
1249-1251, 2004.

L. Frigerio and F. Salice, "RAM-based fault tolerant state
machines for FPGAs," in Defect and Fault-Tolerance in VLSI
Systems, 2007. DFT '07. 22nd IEEE International Symposium on,
2007, pp. 312-320.

R. Senhadji-Navarro, 1. Garcia-Vargas, and J. L. Guisado,
"Performance evaluation of RAM-based implementation of Finite
State Machines in FPGAs," in Electronics, Circuits and Systems
(ICECS), 2012 19th IEEE International Conference on, 2012, pp.
225-228.

E. F. Moore, "Gedanken-experiments on sequential machines,"
Automata studies, vol. 34, pp. 129-153, 1956.

G. H. Mealy, "A method for synthesizing sequential circuits," Bell
System Technical Journal, vol. 34, pp. 1045-1079, 1955.

R. Leveugle, R. Rochet, G. Saucier, L. Martinez, and C. Pitot, "A
synthesis tool for fault-tolerant finite state machines," in Fault-
Tolerant Computing, 1993. FTCS-23. Digest of Papers., The
Twenty-Third International Symposium on, 1993, pp. 502-511.

D. Lee and M. Yannakakis, "Principles and methods of testing
finite state machines-a survey," Proceedings of the IEEE, vol. 84,
pp. 1090-1123, 1996.

X. Wendling, R. Rochet, and R. Leveugle, "ROM-based synthesis
of fault-tolerant controllers," in Defect and Fault Tolerance in
VLSI Systems, 1996. Proceedings., 1996 IEEE International
Symposium on, 1996, pp. 304-308.

L. Garcia-Vargas, R. Senhadji-Navarro, G. Jimenez-Moreno, A.
Civit-Balcells, and P. Guerra-Gutierrez, "ROM-Based Finite State
Machine Implementation in Low Cost FPGAs," in Industrial
Electronics, 2007. ISIE 2007. IEEE International Symposium on,
2007, pp. 2342-2347.

K. Pagiamtzis, N. Azizi, and F. N. Najm, "A Soft-Error Tolerant
Content-Addressable Memory (CAM) Using An Error-Correcting-
Match Scheme," in Custom Integrated Circuits Conference, 2006.
CICC '06. IEEE, 2006, pp. 301-304.

K. Pagiamtzis and A. Sheikholeslami, "Content-addressable
memory (CAM) circuits and architectures: a tutorial and survey,"
Solid-State Circuits, IEEE Journal of, vol. 41, pp. 712-727, 2006.



