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ABSTRACT 

The reliability of power supply to distribution network customers can be increased by 

embedded generation, including wind farms. The value of this increase in reliability 

needs to be evaluated, and national standards such as the GB security of supply 

standard P2/6 seek to do so. This paper appraises the capacity credit evaluation 

methodology in P2/6, and outlines an alternative methodology to integrate generation 

with load more effectively, taking into account the topology, loading and reliability of 

the surrounding network. It concludes that under certain circumstances the presence 

of embedded wind generation can allow the deferral of costly network reinforcement 

projects, but that the time for which reinforcement can reasonably be deferred is a 

function not only of the generators themselves but also of the surrounding network. 
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1. Introduction 

 The value of distributed generation for increasing the reliability of power 

supply to customers across electrical distribution networks is a well established aspect 

of energy planning policy. This value can be of particular significance for customers 

connected to remote parts of the network where there is generation in the vicinity. In 

remote locations in the UK nearby generation is typically wind powered, in which 

case appropriate allowance has to be made for generators’ variability if their effective 

contribution to network reliability is to be accurately assessed. 

 Appropriately quantifying the contribution that distributed generation can 

make to network reliability is important, in particular at a local level. If this 

contribution is overvalued, then the frequency and duration of interruptions to 

customer supply in that locality could increase to an unacceptable level. Conversely, 

if this contribution is undervalued, then unnecessary and costly capital investment 

could be incurred, with consequent price rises for customers. Given that the level of 

capital investment for a Distribution Network Operator (DNO) can exceed £100M per 

year, it is essential that accurate estimates ensure that appropriate investment is 

carried out in the right year to provide agreed levels of network reliability and security 

of supply. 

 Section 2 of this paper looks at previous work that has been carried out to 

analyse the value of distributed wind generation, in particular as regards distribution 

network reliability, in a number of different countries. In some countries there are 

national reliability design standards, and Sections 3 and 4 look in more detail at one 

example, the GB standard P2/6 which evaluates the capacity credit that should be 
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allowed for such generation, and which has proved to work well within the GB power 

system.  

The contribution that wind generation can make to network security, which 

can then be used to justify the deferral of network reinforcement, is often expressed as 

a function of the wind generators only, regardless of the topology, loading and 

reliability of the surrounding network. This paper argues that such network 

characteristics need to be taken into account, and develops in Section 5 an alternative, 

location-specific methodology based on effective load carrying capability (ELCC) for 

doing so. In Section 6, an exemplar case study demonstrates that the time for which 

reinforcement can justifiably be deferred as a consequence of embedded wind 

generation varies significantly according to these network characteristics. Conclusions 

are presented in Section 7. 

 Such an analysis is particularly timely in view of the increasing need globally 

to increase proportions of renewable generation while maintaining levels of reliability 

and without unduly increasing costs. For example, within GB there is an impending 

fundamental review and possible consequent revision of the security of supply 

standard. It is essential that any new standard allows accurate estimates to be made of 

the effective contribution of wind generation to location-specific network reliability. 

The methodology presented in this paper seeks to determine just how long costly 

network reinforcement can be deferred as a function, not only of the capacity and 

intermittency of embedded wind generators, but also of the topology, loading and 

reliability of the surrounding network. 

 

2. Background 

 A good summary of the value of wind generation in a power system is given 

in [1], which evaluates this under 5 headings: 

1. Operating cost value, generally positive, as the use of fossil fuel and more 

labour-intensive fossil fuel generators is avoided. 

2. Loss reduction value, also generally positive, as wind farms supply local 

customers who are typically closer to the wind farm than they were to a more 

remote, large fossil fuel generating station. 

3. Control value, which is the capability of a power plant to follow demand. This 

is generally negative, due to the inherent intermittency of the wind, as well as 

the possible power quality factors analysed in [2]. 

4. Capacity credit. Where new generating plant is added to a system, there is 

generally a decreased loss of load probability (LOLP) for customers, who may 

experience reduced disconnection frequency or duration. This benefit is likely 

to be less for an intermittent generator such as a wind farm than for a 

conventional generator where the fuel supply can be controlled, but it is still 

significant, and can be quantified. 

5. Grid investment value. If the capacity credit is large enough, and depending on 

the security of supply standard adopted, it may be possible to defer capital 

expenditure that would be necessary in the absence of generation by a number 

of years. Conversely, it may be necessary to invest sooner in order to 

accommodate the new generation. 

Early studies of the potential for wind generation often used Markov state 

analysis to predict probability distributions and possible time series for power 

generated [3,4,5]. These studies became increasingly robust as they were confirmed 

by actual wind farm data, and their approach has been built on by more recent work, 

often making use of Monte Carlo simulation to produce relevant time series [6-10]. 
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The concept of generator persistence has proved to be important, as described by 

Holttinen and Hirvonen [11] with particular reference to the Nordic power system. 

 The conclusions from these studies have been varied. In one study across a 

wide Canadian transmission network, the case is made for network reinforcement to 

ensure that all potential generation can be satisfactorily dispatched [8]. The need for 

accurate and reliable wind speed data is stressed, with options to use simpler 

modelling techniques when such data is sparse [7]. The potential to substitute low 

carbon wind energy for high carbon fossil fuels is one motivation for making the most 

effective wind farm connections, possibly supplemented by active network 

management in the control room [12]. 

 Some studies have also included analysis of the more localised contribution of 

wind generation to distribution network reliability. In an early paper, Hegazy et. al. 

evaluate embedded generation which is not necessarily wind-powered, using a state 

duration sampling approach with a Monte Carlo based method and a case study based 

on an IEEE 33 kV and 11 kV test network [13]. They conclude that for their data the 

amount of unsupplied load can be reduced by around 80%. This analysis was further 

developed by El-Khattan et. al. [14,15], and by Singh et. al. [16], using Monte Carlo 

simulation based on Newton-Raphson load flow analyses for each hour of a 

representative day. Singh et. al. conclude that this time dependency is an essential 

component for calculating the possible deferral time for network reinforcement. Li 

and Sabir [17], using an IEEE representative 34-bus system, found that distribution 

network reliability could be significantly improved by distributed generation relieving 

overloaded circuits under fault conditions elsewhere on the network.  

In [4], a time-sequential simulation of a rural network is used to determine 

how large a wind farm should be to achieve a specified increase in reliability. The 

metric used for this study is the expected energy not supplied (EENS), which can be 

one measure of increased reliability. A similar approach is adopted by [18], which 

also considers issues of voltage rise and system power losses. Duttagupupta and Singh 

[19] use a path augmenting max. flow algorithm to determine the optimal placement 

of distributed generation for maximising network reliability, using frequency of loss 

of load and EENS as metrics. 

Although many of these cited studies consider embedded generation in general 

rather than wind generation in particular, the methodology used is similar, provided 

that adequate allowance is made for the particular nature of wind generators’ 

intermittency. 

 

3.  Security of Supply Standards 

 Not all countries have nationwide formal standards for security of supply at 

distribution level. In the US, for example, the issue of integrating distributed 

generation was addressed in a report [20], but the findings of that report have advisory 

status only. A study in South Africa concluded that national standards were almost 

non-existent [21]. This study also highlighted that large customers might want, and be 

prepared to pay for, different standards of reliability from the majority of smaller, 

domestic customers. Bollen et. Al. [22] found that there seemed to be a sharp 

threshold value for customer satisfaction regarding reliability of supply. Billinton and 

Pan [23] show that the Canadian regulatory system is well-developed, but based on a 

system where utilities are both suppliers and distributors, unlike the UK where 

generation, transmission, distribution and supply were systematically unbundled in 

the 1990s.  
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In the UK, including Great Britain, there is a formal design standard P2 

regarding security of supply, and this standard includes capacity credit for embedded 

generation, including wind generation. It is instructive to analyze this standard in 

some detail, not only for its own sake but also as an example of such standards that 

have been implemented, or that might be implemented in the future, in other 

countries. 

The GB standard for security of supply was formulated, largely in its present 

form, in the 1970s as version P2/5. This standard sets out, for demand groups of 

different size, the restoration requirement, in terms of proportion of customers and of 

maximum permitted restoration time following a single outage (n-1) and also, for 

demand groups exceeding 100 MW, following a second outage (n-2), typically a fault 

on one circuit coincident with planned maintenance on another circuit. These 

requirements were continued unchanged in the current P2/6, and are summarised in 

Table 1 [24]. 

 
Class 

of 

supply 

Range of 

group 

demand 

 

Minimum demand to be met after 

first circuit outage (n-1) 

Minimum demand to be met after 

second circuit outage (n-2) 

A Up to 1 MW In repair time (Group Demand) NIL 

B Over 

1 MW to 12 

MW 

(a) In 3 hours (Group Demand 

minus 1 MW) 

(b) In repair time (Group Demand) 

NIL 

C Over 

12 MW to 

60 MW 

(a) Within 15 minutes (Smaller of 

Group Demand minus 12 MW and 

2/3 Group Demand) 

(b) Within 3 hours (Group 

Demand) 

NIL 

D Over 

60 MW to 

300 MW 

(a) Immediately (Group Demand 

minus up to 20 MW automatically 

disconnected) 

(b)Within 3 hours (Group 

Demand) 

(c) Within 3 hours (For Group 

Demands greater than 100 MW, 

smaller of Group Demand minus 100 

MW and 1/3 Group Demand) 

(d) Within time to restore arranged 

outage (Group Demand) 

E Over  

300 MW to 

1500 MW 

(a) Immediately (Group Demand) (b) Immediately (All customers at 2/3 

Group Demand) 

(c) Within time to restore arranged 

outage (Group Demand) 

F Over 1500 

MW 

See GB SQSS regulations See GB SQSS regulations 

 

  

Table 1 – P2/6 requirements for each demand group 

 

 The primary purpose of P2/6 is as a design standard. If, for example, supplies 

to a demand group of size 15 MW could not be fully restored within 3 hours 

following a single circuit outage, that group would be in breach of the standard. The 

regulator could then require that capital investment be undertaken to improve security 

of supply. This might typically be achieved by installing a second circuit (overhead 

line and/or underground cable, a transformer and associated switchgear, control and 

protection equipment). Other possibly less costly remedies might include permanent 

load reconfiguration, or automated post-fault circuit transfer. It could also be the case 

that the availability of local generation on the network could increase reliability 

sufficiently to avoid the breach of standard P2. 
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 One of the main uses of P2 is to determine, in an area where demand is 

increasing, for how long the existing network will be adequate, and in what year it 

will need to be reinforced in some way. 

Version P2/5 included allowances for embedded generation, but it was based 

on the types of generation common in the 1970s, in particular small shift-operated 

coal burning plant. Around the year 2000, it was seen that this assumption was no 

longer appropriate, and that P2 should therefore be modified to address this, including 

recognising the growing number of wind farms. 

A working party was set up to review P2, in particular its treatment of 

generation capacity credit, and a sequence of reports was produced [25,26,27]. They 

initially recommended that the underlying methodology of P2/5 should be retained, 

namely that the capacity credit allowed for a generator should be the same as the 

capacity of an additional circuit that would provide the same reliability, measured as a 

reduction in the EENS. This can be expressed in general by 

 

])[(])[(][ *

   xDEYDEEENS
t ttt t   (1) 

 

where tD  and tY   are the time-dependent random variables for demand and 

generation respectively, summed over different generators and types where necessary, 

and the subscript + indicates that only positive values are taken. The summation of 

expected values over time in (1) then gives the value of EENS. The equivalent circuit 

capacity *x , also called the Equivalent Firm Capacity (EFC) can then be calculated as 

that fixed value of circuit capacity which will give the same expected value of EENS 

as the proposed generators. However, as will be discussed later, this effectively 

assumes an (n-2) state with rescaled demand, and therefore addresses a different 

problem from P2/6, which is primarily concerned with the (n-1) state. 

 The principle of EFC is easily stated, but is not always so easy to apply to a 

given network. As regards wind generators, one issue was the lack of adequate data at 

the time the reports were written. Assumptions had to be made about average capacity 

factors, taking into account both the availability of wind, and the availability of the 

turbines themselves.  

 The question of seasonality arose. Given that energy demand is significantly 

greater in winter, should the wind farms be given credit based on a year-round 

average capacity factor, or on one based on winter wind speeds, which are likely to be 

higher? Either is possible, but it is not always clear which is the more appropriate. 

 Persistence was also an important factor. If an outage is expected to last 0.5 

hours, the probability of a wind generator delivering a certain power throughout that 

time can be estimated. If, however, the outage is expected to last for 3 hours, there is a 

higher probability that the wind speed will drop at some time during those 3 hours, 

and therefore the value of the wind generator will be less if it is required for 3 hours 

than if it is only required for 0.5 hours, and this fact must be reflected in the capacity 

credit allowed. 

 Sensitivity to the profile of wind farm output was also addressed. An overall 

capacity factor of 30% could be attained from different patterns of Dt  

in (1), with different proportions of time at zero output, at full capacity output, and at 

a range of levels in between. It was found that the effect on EENS was not greatly 

affected by the profile, although this was on the implicit assumption that, network-

wide, all energy supplied by the generators was needed and could be used to relieve 

any shortfall. At a local level, however, EENS is a function of the topology, circuit 
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ratings and demand profile of the surrounding network, as will be discussed in more 

detail in the following sections of this paper. 

 The working party reports had initially anticipated a fundamental review of 

the way in which generation was credited, adopting a probabilistic approach and 

incorporating a wide range of significant factors. In the event, however, time 

constraints and perhaps engineering conservatism limited the changes that could be 

incorporated. The result, as applied to wind farms in P2/6, is shown in Table 2 [24]. In 

Table 2, the F-factor is the proportion of the total nameplate rating of the wind farm 

that can be allowed as capacity credit for a given value of persistence. So, for 

example, if a wind farm with 4 turbines of capacity 2.5 MW each is required to 

mitigate a 3 hour outage (as recommended in P2/6 for switching operations involving 

this size of demand group), its capacity credit should be based on an F-factor of 24%, 

and is therefore 2.4 MW. 

 

Persistence 

(hours) 

0.5 2 3 18 24 120 360 >360 

F-factor (%) 28 25 24 14 11 0 0 0 

 

Table 2 – Capacity credit F-factors for wind generators in P2/6 

 

 It should be noted that these F-factors were calculated using historic data from 

a sample of just 3 wind farms, and on the assumption that peak demand is equal to 

generator capacity [28], and based on an (n-2) condition. However, they are generally 

applied in the (n-1) condition, and to a network where peak demand is generally not 

equal to generator capacity.  

The application of this capacity credit can best be illustrated by a worked 

example, following the approach adopted in [27]. Suppose the demand group of 15 

MW was fed by two circuits each of capacity 13.0 MW, with no lower voltage 

interconnection outside the group, as shown in Figure 1. The loss of one circuit, at a 

time of peak demand (which is always assumed in P2) would leave a shortfall of 2.0 

MW. If the fault causing the loss could not always be repaired or restored within 3 

hours, then the demand group would be in breach of P2. 

 If, however, the 4 turbine wind farm described above were connected to the 

secondary busbar supplying the demand group, then its capacity credit of 2.4 MW 

would be deemed to be sufficient to supply the shortfall, and the demand group would 

no longer be in breach of P2, although shortfalls could still occur in practice whenever 

wind farm output falls below 2.0 MW. This means that capital investment to uprate 

the two supply circuits above 13.0 MW, or to build lower voltage interconnection 

which would permit customer transfer, either permanent or post-fault, would no 

longer be required under P2/6 following the commissioning of the 4 turbine wind 

farm. 

 

 
 

Figure 1 – Worked example of demand group with wind farm 
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4.  Appraisal of Capacity Credit Evaluation in P2/6 
 The underlying studies recommended, and P2/6 uses, the metric of EENS, and 

the methodology of comparing any generator with an equivalent circuit according to 

this metric, to calculate the allowed capacity credit. Other concepts which were 

recommended by the studies and are incorporated into P2/6 include the definition and 

use of persistence, and the use of winter generation data to match the expected winter 

peak loads.  

A number of simplifications have been made by using the P2/6 look up table 

(Table 2) to evaluate capacity credit. This is acknowledged in P2/6, which allows an 

estimate to be made based on generic generation profiles or on actual time series data 

from an existing wind farm. Supporting instructions are available for these more 

detailed data-incorporating spreadsheet calculations [28, 29]. This addresses the issue 

of using essentially a single estimate of capacity factor for all wind farms, regardless 

of location. However, practical experience of using these alternative approaches, in a 

study including 28 separate wind farms across the North East of England with average 

capacity factor 0.24, has indicated that their impact on the final results is generally 

marginal [30]. 

 A number of issues, some of which were explicitly raised and discussed in 

[25], have not been fully incorporated into P2/6. Those of particular relevance to the 

evaluation of wind farm capacity credit include: 

 

1. The capacity factor for a given wind farm depends not only on the wind 

regime, but also on the availability of individual turbines, and of common 

assets that affect the availability of a group of turbines. Measuring and 

incorporating these availabilities as a distinct input has been addressed [31, 

32], but is not separately identified in the P2/6 methodology. It is essential that 

the probability distribution for Y incorporates these availabilities 

appropriately. The effective capacity factor can also be increased by the 

incorporation of additional assets, in particular electrical energy storage 

(EES), and a number of studies have evaluated the beneficial effect of 

combining wind generators with EES [33-36]. 

 

2. The use of winter generation data is generally appropriate, but there will be 

locations where the proportionate reduction in demand in summer is less than 

the proportionate decrease in relevant circuit thermal ratings. In such cases, 

the summer constraints may be the more critical, and the appropriate 

probability distribution would therefore be based on summer generation data. 

In other cases, a (possibly weighted) average value throughout the year would 

be more appropriate. 

 

3. The commercial environment in which a generator operates was also 

discussed, in particular the possibility that it might not be operational when 

needed, although technically available. This applies in particular to CCGT and 

CHP plant, but could also apply to wind generation.  

 

4. The studies underlying the formulation of P2/6 explicitly addressed the 

potential of embedded generation, in particular during switching operations, 

for deferring costly network reinforcement [27]. This is illustrated with respect 

to generic networks, and can be further refined by the use of uncertainty 
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analysis [37]. However, the underlying methodology of (1) excludes details of 

network topology, such as existing infeed circuit capacity, which therefore 

does not feature in the F-factor calculations. In effect, the F-factor calculation 

is of EFC under (n-2) conditions. 

 

5. The presence of generation on a network does not guarantee that it can be used 

in practice to relieve shortfalls at other locations on that network. In particular, 

there may be thermal or voltage constraints that prevent or limit such use. 

 

6. While P2/6 addresses peak loading only, other loading characteristics, 

including power factor and demand profiles through day, week and year, are 

significant in determining the pattern of possible shortfall, and therefore 

whether network reinforcement could indeed be deferred.  

 

7. Actual levels of network reliability are specifically excluded from P2/6 

assessment.  The probability of (n-1) and (n-2) situations actually occurring is 

a significant component in calculating reliability, but in P2/6, the same 

reliability  requirements apply to long, exposed overhead line circuits with 

relatively high failure rates serving rural communities as apply to short 

underground circuits in urban areas with relatively low failure rates. 

 

8. There also appears to be an implicit assumption in P2/6 that the two outages 

constituting an (n-2) event are independent, and that therefore an (n-2) event is 

less likely than an (n-1) event by some orders of magnitude. . In fact, they are 

highly dependent, to the extent that around 20% of all fault events on double 

circuits at extra high voltage (EHV) (33, 66 and 132 kV in GB) involve 

outages of both circuits [38]. One consequence of this dependency is that often 

most of the EENS in double circuit networks occurs following (n-2) events 

rather than (n-1) events. This proportion can exceed 99% in certain cases [39]. 

However, as Table 1 shows, for demand groups below 100 MW, only the less 

likely (n-1) events are addressed by P2/6. The value of wind generation 

following an (n-2) event depends on whether that event causes islanding of the 

load, or just network weakening (there may or may not be a small amount of 

lower voltage interconnection), and if the network is islanded, whether the 

wind generators can continue to operate. This is a crucial consideration, as was 

identified in the underlying studies [25, page 65].  

 

9. The underlying methodology of (1) to calculate an equivalent firm capacity *x  

related to existing demand is then being used to calculate F-factors, which are 

in turn used to estimate the additional demand that could be accommodated for 

the same reliability, also called the Effective Load Carrying Capability 

(ELCC). While calculations of EFC and ELCC can give similar values for the 

addition of small generators, their values tend to diverge as generator size 

increases. The F-factors are essentially calculated as EFC with the network in 

the (n-2) state, but are then used in circumstances where ELCC might be more 

appropriate,  and typically with the network in the (n-1) state. 

  

 In the light of all the above points an alternative methodology has been 

developed to address the issues raised. This methodology is detailed in the following 

section. 
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5.  Methodology to Integrate Generation with Load 

 The main issue that is not directly addressed by P2/6 is that the real value of 

wind generators depends on the relative size of the demand shortfall, which is a 

function of the topology, loading and reliability of the surrounding network, as well as 

of the capacity, intermittency and reliability of the generators themselves. This 

shortfall is a component of the EENS calculation, which can be expressed, using the 

nomenclature and methodology detailed in [39], and as developed by the authors, as 

 

])[(])*[(][    tt tttt t XDEYXdDEEENS   (2) 

 

Equation (2) can be directly compared with (1), with tD representing demand 

and tY representing generation. However, (1) and (2) differ in two critical respects. 

The first is that substituting the possible demand increment *d on the left of the 

equation (which is ELCC), instead of the equivalent circuit capacity *x on the right of 

the equation (which is EFC), makes possible demand growth the focus. This seems to 

be more in keeping with the intention of P2/6, and with the practical issues faced by 

DNOs, rather than with the modelling assumptions adopted. 

The second difference is the inclusion on both sides of the equation of the 

actual incoming circuit capacity tX . Because only positive values are taken, as 

indicated by the subscript + , there will be times when tX .contributes to one side of 

the equation, but not to the other. 

In the generic case shown in Figure 1, where supply is provided by 2 circuits 

each of thermal rating c , as in [39], tX  takes the distribution 

2

1

0

)0(

)(

)2(













N

N

N

pXp

pcXp

pcXp

  (3) 

 

Where 0Np  is the probability of being in the network intact, (n-0) state, and   1Np  

and 2Np are the probabilities of being in (n-1) and (n-2) states respectively. These 

probabilities can be estimated either from historic data for the particular circuits, if 

available, or from a theoretical calculation based on the number of assets contained in 

each circuit, individual asset condition and generic failure rates, or from a 

combination of the two. It should be noted that a probabilistic approach of this nature 

is in contrast to the generally deterministic approach adopted by P2/6, as discussed in 

points 7 and 8 of the previous section. In P2/6, the (n-1) and (n-2) situations are 

treated as completely separate cases (as in Table 1), and peak loads are assumed 

throughout. 

In a more complex case, there may be a small quantity of lower voltage 

interconnection, of total rating S , a variable with maximum value s . In this case, the 

value of X  in (3) can be increased by up to s . In the (n-0) network intact state, it will 

not be needed. but in the (n-2) state  such interconnection, although weak, becomes 

vital, particularly if islanded operation is not permitted. An example of this state is 

shown in Figure 2. The (n-1) state is more problematic, and needs careful 

consideration in individual cases. It may be that the value of S  is not constant, with 

less interconnector capacity being available at times of peak demand (because of 
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competing demand elsewhere). In this case, (3) would be replaced by (4), where *s is 

taken from a specified, probably time-dependent distribution S : 

 

2

1

*

0

)(

)(

)2(













N

N

N

psXp

pscXp

pcXp

  (4) 

 

It may also be that the single circuit capacity c  is sufficient to support peak 

demand in the present year, but may not be sufficient after a number of years of 

demand growth, due to new connections or to increased demand from existing 

customers (due for example to the acquisition of electric vehicles or heat pumps). 

 

 
 

Figure 2 – Weakly-interconnected network 

 

In (2) as in (1), tD  is the demand profile of the local load. This is usually 

available with some precision, for example in the distribution network from which the 

following case study is taken, it is in the form of historic half-hourly data. This can be 

used directly, or in summary form which quantifies daily, weekly or seasonal peaks 

and troughs. 

 Also in (2) as in (1), tY  is the generation profile of the local generator. In the 

case of an already existing wind farm, this could take the form of historic data. If such 

data is compatible with historic data for tD  then the two can be matched for each time 

period, which will enable dependencies to be recognised, for example a possible peak 

of wind speed at a time of day such as late afternoon when local demand also peaks. 

Otherwise, if the distributions for Y  and D  cannot be matched, then estimates of 

output can be based on samples taken from them independently, for example using 

Monte Carlo simulation, as has been done in the following case study. 

 There could also be time dependency between X  and either D  or Y or both. 

Over a whole year, this would be evident for example in the policy to schedule 

planned maintenance of a single supply circuit during the summer period where 

demand is generally lower than in winter. Such dependencies could be incorporated 

into the calculation of expected values either explicitly or implicitly by considering 

each state separately. 

  Using (2) to evaluate an appropriate value of capacity credit involves 

first evaluating the right hand side of the equation for the network without generation 

to derive a base level of energy unsupplied ][EENS , designated 0u . The calculation 

is then repeated with the generation included, which would give a generally lower 

value of ][EENS , designated Yu . The difference between them is measured in 

average MWh: 

 

])[(])[(0   YXDEXDEuu Y   (5) 
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This can be further expanded to separate out the (n-0), (n-1) and (n-2) states. In the 

generic case of two incoming circuits each of capacity c , and without any lower 

voltage infeed S , (5) becomes 

 

]))[(])[()((

]))[(])[()((

]))2[(])2[()((

2

1

0













YDEDEp

YcDEcDEp

YcDEcDEp

N

N

N

    (6) 

 

With lower voltage interconnection S , the expression (6) would also need to include 

S , at least in the (n-2) term.  However, in practice some of the components of (6) will 

reduce to zero. In particular, the energy unsupplied in the network intact state should 

generally be zero, both with and without generation, so the top line of (6) will vanish. 

Other simplifications will become apparent in the following case study. 

 This expression for the reduction in EENS is useful in some ways, in 

particular in that it permits the contributions of the wind farm in the (n-1) and in the 

(n-2) states to be compared. It also distinguishes between the absolute value of 

generation in rural and urban areas, with their very different underlying rates of circuit 

failure and consequent network reliability. 

 The final step in the calculation can be carried out once *d  has been 

calculated, in particular in the situation where annual growth in demand can be 

anticipated and predicted. In this case, the incremental demand *d , which can be 

accommodated as a consequence of embedded generation for no change in overall 

risk, can be expressed as a number of years of incremental demand, which can in turn 

be interpreted as a number of years n  for which costly network reinforcement can be 

deferred. This value n  will be calculated in each scenario of the case study which 

follows. 

 

6. Case Study 

 The following case study is based on an actual demand group operated by 

Northern Powergrid in the North of England. Relevant assumptions are as follows: 

 Annual demand tD  follows a triangular probability density function, with 

maximum demand d  MW in year 0 (taken to be 2012), mean demand d75.0  

MW, and minimum demand d5.0  MW. Expected load growth equates to an 

annual increase d  (normally set at 1.0 MW) at all times of day, week and 

year. This is shown in Figure 3, with 120d  MW. 

 Incoming circuit capacity at high voltage (132 kV) consists of two identical 

circuits each with thermal rating c  MW. Intitially, it is assumed that there is 

no lower voltage interconnection, although later scenarios will evaluate the 

impact of such interconnection. Figure 4 shows these circuits in the (n-1) 

condition with 0.120c  MW. 

 Overall circuit availability excluding planned downtime is 99.992% for each 

circuit, based on an expected fault rate of 0.35 per year and an average 

customer restoration time of 2 hours. However, 20% of all faults affect both 

circuits (n-2). These values are consistent with national results in [38]. 

 The embedded generation whose contribution is to be evaluated consists of a 

10 turbine wind farm, of rated capacity 25.0 MW, and output distributed as 

shown in Figure 5, giving a mean capacity factor of 0.367, which is a typical 
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winter value for GB high altitude locations. This distribution combines the 

availability of a discrete number of turbines (n=10) with the wind speed 

distribution for the proposed location. The distribution is based on actual data 

gathered from November 2011 to February 2012 from a 6.0 MVA wind farm 

which is connected to the case study network in the North of England. When 

the whole year is under consideration, the output is scaled down by a factor of 

0.8. 

 The calculations which follow are explicitly deterministic rather than 

probabilistic, although they have a probabilistic basis, following the 

methodology of P2/6. So the results are quoted as the number of years for 

which reinforcement could justifiably be deferred, such as might be used by 

Distribution Network Operator planning engineers. 

 

 
 

Figure 3 – Demand profile for case study  

 

 
 

Figure 4 – Network for case study  

. 

 
 

Figure 5 – Cumulative distribution of wind generator output 

 

Calculating values of 0u  and  Yu  in this case study depends on which rows of 

(6) are to be included in the calculation, which itself depends upon the precise 

requirements of P2/6, as set out in Table 1, and as illustrated in Figure 6. In scenario 
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A, with 90c  and 90max D  (and assuming 0s ), the network is critical for (n-1) 

events according to P2/6, because with the loss of a single circuit, any increase in 

maximum demand would lead to some customers at peak times being disconnected, 

and they could not always be restored within 3 hours as required by P2/6. But the 

network is not critical for (n-2) events, for which P2/6 does not specify security 

requirements for levels of maxD below 100 MW, which allows for 10 years of 1.0 MW 

annual load growth. Therefore, in keeping with the letter of P2/6, EENS is calculated 

for the (n-1) state only in Scenario A. 

In scenario B, with 110c and 100max D , the opposite is true. The network 

is not critical according to P2/6 for (n-1) events, as there is still 10 MW headroom on 

a single circuit, enough for 10 years of 1.0 MW annual load growth. But it is critical 

for (n-2) events as any increase in demand will take maxD above the threshold value of 

100 MW. Therefore, again in keeping with the letter of P2/6, EENS is calculated for 

the (n-2) state only in Scenario B. 

Finally, in scenario C, with 100c  and 100max D , the network is critical for 

both (n-1) and (n-2) events, so both lines of (6) should be included in the calculation. 

In keeping with the letter of P2/6, EENS is calculated for both the (n-1) state and the 

(n-2) state in Scenario C. 

 

 
 

Figure 6 – P2/6 criticality as a function of c  and maxD  

 

Scenario A: Critical at (n-1) only, so based on pn-1 

The value of 0u  increases with time, following a cubic relationship, as shown 

in Figure 7. This is because 0u  is a product of the number of hours of shortfall, 

which, being taken from the tail of a triangular distribution, is a quadratic function of 

time, multiplied by the average value of the shortfall, which is linear with time. The 
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absolute value of 0u  is small, however (0.0324 MWh in year 5 for example) because 

it is also multiplied by 1Np , which is only 0.00016. 

The reduction in 0u  as a result of generation is used to calculate Yu , and is 

found using Monte Carlo simulation, using a simulated 10000 year period. This 

allows the probabilistic nature of the calculation to be incorporated in deriving a 

deterministic result. In year 1, generation can make up 80% of the expected shortfall, 

so Yu is only 20% of 0u . This high figure occurs because the shortfall is only 1.0 MW 

at most, and the wind generators can supply this quantity of power on 80% of 

occasions when it is needed. Winter values for generation are used, as shortfalls due 

to (n-1) events are assumed to occur only during the winter season when demand is at 

its peak. In subsequent years, the proportion of shortfall which generation can supply 

decreases somewhat, falling to 72%  by year 5, and to 66% by year 10. The calculated 

values of Yu are shown alongside those of 0u  in Figure 7. 

 

 
 

Figure 7 – Effect of generation on EENS in (n-1) scenario 

 

The effect of the difference in EENS, equal to Yuu 0 , is shown by the dotted 

line construction in Figure 7. At year 5, for example, the value of 0u  can be read from 

the graph as 0.0324 Mwh. The same value of EENS on the Yu curve corresponds to a 

time of 7.2 years. Therefore the value of n , the time for which capital expenditure on 

network reinforcement can reasonably be deferred on account of the wind farm, 

comes to 2.2 years. 

The confidence interval surrounding this value of 2.2 years can be calculated, 

but it depends on the uncertainty of all the input data, including for example the 

expected rate of load growth. By using a large number of simulated years (n=10000), 

and reasonable input assumptions, a 90% confidence interval for the expected value 

of + or – 0.4 years was calculated, taking into account uncertainties in load growth, 

circuit failure rates and generator capacity factor. 

 

Scenario B: Critical at (n-2) only, so based on pn-2 

The value of 0u  again increases with time, but in this scenario it follows a 

linear relationship, as shown in Figure 8. This is because under (n-2) conditions, 0u  is 
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the total energy demand (averaged across the year), incremented by a constant 1.0 

MW per year, and multiplied by 2Np  which is 0.00004.  

The difference made by the generator depends on whether operation as a 

power island is possible. If not, as is generally the case for wind generators without 

sophisticated control, then there is no benefit to be gained from the embedded 

generators under (n-2) conditions. It is therefore assumed that a small quantity of 

lower voltage infeed, 0.5s  MW is available at all times. 

Since the minimum demand (50 MW), less lower voltage infeed, is greater 

than the maximum output of the wind farm (25 MW), the full output of the wind farm 

can be used to reduce EENS at all times. The effective value of this must be averaged 

across the whole year, so the winter output assumed in Scenario A must be reduced by 

a factor of 0.8. It has been assumed that the capacity factors used incorporate 

generator unavailability as well as wind intermittency. The reduced value of EENS 

due to generation Yu is also shown in Figure 8, as is the dotted line construction for 

calculating n . Two contrasts with Scenario A are apparent. First, the values of EENS 

are higher by a factor of around 600. This reflects the fact that, although an (n-2) 

event is less likely than an (n-1) event by a factor of 4, it causes a loss of energy 

whenever it occurs (not just at times of extreme peak demand), and the energy 

shortfall when it does occur is also much greater. The second contrast is in the value 

of n , which (calculated in Year 5) is around 7 years for the period considered,   

compared to around 2 years when considering (n-1) alone, as in Scenario A.  

 

 
 

Figure 8 – Effect of generation on EENS in (n-2) scenario 

 

Scenario C: Critical at both (n-1) and (n-2) 

 Where both (n-1) and (n-2) events are critical, the values of EENS must be 

added for the two events. However, in the present case study the   (n-2) values dwarf 

the (n-1) values by a factor of around 600. The relative contribution of the (n-1) 

component in this scenario is therefore of second order, and can be ignored in 

evaluating n , which would be around 7 years as in Scenario B. 

 It is instructive to compare the values calculated for n  with the value 

calculated using the methodology of P2/6. That methodology would simply multiply 

the 25 MW nameplate capacity of the wind farm by the appropriate F-factor, probably 

0.24 for a persistence of 3 hours, to give a capacity credit of 6.0 MW, equivalent to 
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6n  years at an annual peak demand growth of 1.0 MW. This is below the (n-2) 

value, but well above the (n-1) value, calculated using the methodology of the present 

paper. Perhaps more by accident than design, the outcomes of these two very different 

methods are very similar. 

 

7.  Conclusions 

 This paper has shown that wind generation has the potential to increase 

security of supply to customers of distribution networks under a number of different 

scenarios. In certain circumstances, the level of increased security can be used to 

defer costly network reinforcement construction projects, which may also be visually 

intrusive and disruptive during the construction phase, although the reasonable 

duration of such deferral depends on the method used to calculate capacity credit. 

 While some countries do not use explicit design standards for system security, 

others do, including GB whose P2/6 standard specifies the security required in the 

separate cases of both (n-1) and (n-2) events. This standard also makes specific 

allowance for the capacity credit to be allowed for embedded generation, including 

wind generation. The calculation of allowed credit takes into account the capacity of 

the wind farm and the required persistence. However, it does not take into account a 

number of other significant factors relating to the topology, loading and reliability of 

the surrounding network. 

 Therefore this paper has developed an alternative methodology for evaluating 

capacity credit, which integrates generation with load, and derives a realistic estimate 

of the number of years for which costly network reinforcement can reasonably be 

deferred as a consequence of embedded generation. The estimate is deterministic, as 

required by P2/6, but could in each case be given confidence intervals which would 

be a function of the uncertainty of the input data. This methodology is illustrated by a 

case study based on an actual part of the network in the North East of England. It 

concludes that, under a specified set of assumptions, the deferral time could range 

from 2 years to 7 years, depending on the precise relationship between circuit capacity 

and group demand profile, and on how these factors relate to the output profile of the 

wind generators. It is acknowledged that the limited number of wind turbines, and 

other circuit assets, introduces a granularity into the analysis which in turn affects the 

confidence level of the results. It is noted that the outcome is similar to that achieved 

using the current planning standard (which would permit deferral by around 6 years), 

although this may be fortuitous. 

 There are proposals within the GB industry to revise the P2 standard over the 

next 2-3 years [40], and it is to be hoped that this paper can make an effective 

contribution to this fundamental policy review by addressing the important issue of 

appropriate capacity credit for wind farms. 
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